use clippy_utils::diagnostics::span_lint_and_then; use clippy_utils::msrvs::{self, Msrv}; use clippy_utils::source::indent_of; use clippy_utils::{is_default_equivalent, peel_blocks}; use rustc_errors::Applicability; use rustc_hir::{ def::{CtorKind, CtorOf, DefKind, Res}, Body, Expr, ExprKind, GenericArg, Impl, ImplItemKind, Item, ItemKind, Node, PathSegment, QPath, Ty, TyKind, }; use rustc_lint::{LateContext, LateLintPass}; use rustc_middle::ty::{Adt, AdtDef, SubstsRef}; use rustc_session::{declare_tool_lint, impl_lint_pass}; use rustc_span::sym; declare_clippy_lint! { /// ### What it does /// Detects manual `std::default::Default` implementations that are identical to a derived implementation. /// /// ### Why is this bad? /// It is less concise. /// /// ### Example /// ```rust /// struct Foo { /// bar: bool /// } /// /// impl Default for Foo { /// fn default() -> Self { /// Self { /// bar: false /// } /// } /// } /// ``` /// /// Use instead: /// ```rust /// #[derive(Default)] /// struct Foo { /// bar: bool /// } /// ``` /// /// ### Known problems /// Derive macros [sometimes use incorrect bounds](https://github.com/rust-lang/rust/issues/26925) /// in generic types and the user defined `impl` may be more generalized or /// specialized than what derive will produce. This lint can't detect the manual `impl` /// has exactly equal bounds, and therefore this lint is disabled for types with /// generic parameters. #[clippy::version = "1.57.0"] pub DERIVABLE_IMPLS, complexity, "manual implementation of the `Default` trait which is equal to a derive" } pub struct DerivableImpls { msrv: Msrv, } impl DerivableImpls { #[must_use] pub fn new(msrv: Msrv) -> Self { DerivableImpls { msrv } } } impl_lint_pass!(DerivableImpls => [DERIVABLE_IMPLS]); fn is_path_self(e: &Expr<'_>) -> bool { if let ExprKind::Path(QPath::Resolved(_, p)) = e.kind { matches!(p.res, Res::SelfCtor(..) | Res::Def(DefKind::Ctor(..), _)) } else { false } } fn check_struct<'tcx>( cx: &LateContext<'tcx>, item: &'tcx Item<'_>, self_ty: &Ty<'_>, func_expr: &Expr<'_>, adt_def: AdtDef<'_>, substs: SubstsRef<'_>, ) { if let TyKind::Path(QPath::Resolved(_, p)) = self_ty.kind { if let Some(PathSegment { args, .. }) = p.segments.last() { let args = args.map(|a| a.args).unwrap_or(&[]); // substs contains the generic parameters of the type declaration, while args contains the arguments // used at instantiation time. If both len are not equal, it means that some parameters were not // provided (which means that the default values were used); in this case we will not risk // suggesting too broad a rewrite. We won't either if any argument is a type or a const. if substs.len() != args.len() || args.iter().any(|arg| !matches!(arg, GenericArg::Lifetime(_))) { return; } } } let should_emit = match peel_blocks(func_expr).kind { ExprKind::Tup(fields) => fields.iter().all(|e| is_default_equivalent(cx, e)), ExprKind::Call(callee, args) if is_path_self(callee) => args.iter().all(|e| is_default_equivalent(cx, e)), ExprKind::Struct(_, fields, _) => fields.iter().all(|ef| is_default_equivalent(cx, ef.expr)), _ => false, }; if should_emit { let struct_span = cx.tcx.def_span(adt_def.did()); span_lint_and_then(cx, DERIVABLE_IMPLS, item.span, "this `impl` can be derived", |diag| { diag.span_suggestion_hidden( item.span, "remove the manual implementation...", String::new(), Applicability::MachineApplicable, ); diag.span_suggestion( struct_span.shrink_to_lo(), "...and instead derive it", "#[derive(Default)]\n".to_string(), Applicability::MachineApplicable, ); }); } } fn check_enum<'tcx>(cx: &LateContext<'tcx>, item: &'tcx Item<'_>, func_expr: &Expr<'_>, adt_def: AdtDef<'_>) { if_chain! { if let ExprKind::Path(QPath::Resolved(None, p)) = &peel_blocks(func_expr).kind; if let Res::Def(DefKind::Ctor(CtorOf::Variant, CtorKind::Const), id) = p.res; if let variant_id = cx.tcx.parent(id); if let Some(variant_def) = adt_def.variants().iter().find(|v| v.def_id == variant_id); if variant_def.fields.is_empty(); if !variant_def.is_field_list_non_exhaustive(); then { let enum_span = cx.tcx.def_span(adt_def.did()); let indent_enum = indent_of(cx, enum_span).unwrap_or(0); let variant_span = cx.tcx.def_span(variant_def.def_id); let indent_variant = indent_of(cx, variant_span).unwrap_or(0); span_lint_and_then( cx, DERIVABLE_IMPLS, item.span, "this `impl` can be derived", |diag| { diag.span_suggestion_hidden( item.span, "remove the manual implementation...", String::new(), Applicability::MachineApplicable ); diag.span_suggestion( enum_span.shrink_to_lo(), "...and instead derive it...", format!( "#[derive(Default)]\n{indent}", indent = " ".repeat(indent_enum), ), Applicability::MachineApplicable ); diag.span_suggestion( variant_span.shrink_to_lo(), "...and mark the default variant", format!( "#[default]\n{indent}", indent = " ".repeat(indent_variant), ), Applicability::MachineApplicable ); } ); } } } impl<'tcx> LateLintPass<'tcx> for DerivableImpls { fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx Item<'_>) { if_chain! { if let ItemKind::Impl(Impl { of_trait: Some(ref trait_ref), items: [child], self_ty, .. }) = item.kind; if !cx.tcx.has_attr(item.owner_id, sym::automatically_derived); if !item.span.from_expansion(); if let Some(def_id) = trait_ref.trait_def_id(); if cx.tcx.is_diagnostic_item(sym::Default, def_id); if let impl_item_hir = child.id.hir_id(); if let Some(Node::ImplItem(impl_item)) = cx.tcx.hir().find(impl_item_hir); if let ImplItemKind::Fn(_, b) = &impl_item.kind; if let Body { value: func_expr, .. } = cx.tcx.hir().body(*b); if let &Adt(adt_def, substs) = cx.tcx.type_of(item.owner_id).subst_identity().kind(); if let attrs = cx.tcx.hir().attrs(item.hir_id()); if !attrs.iter().any(|attr| attr.doc_str().is_some()); if let child_attrs = cx.tcx.hir().attrs(impl_item_hir); if !child_attrs.iter().any(|attr| attr.doc_str().is_some()); then { if adt_def.is_struct() { check_struct(cx, item, self_ty, func_expr, adt_def, substs); } else if adt_def.is_enum() && self.msrv.meets(msrvs::DEFAULT_ENUM_ATTRIBUTE) { check_enum(cx, item, func_expr, adt_def); } } } } extract_msrv_attr!(LateContext); }