// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Lints in the Rust compiler. //! //! This contains lints which can feasibly be implemented as their own //! AST visitor. Also see `rustc::lint::builtin`, which contains the //! definitions of lints that are emitted directly inside the main //! compiler. //! //! To add a new lint to rustc, declare it here using `declare_lint!()`. //! Then add code to emit the new lint in the appropriate circumstances. //! You can do that in an existing `LintPass` if it makes sense, or in a //! new `LintPass`, or using `Session::add_lint` elsewhere in the //! compiler. Only do the latter if the check can't be written cleanly as a //! `LintPass` (also, note that such lints will need to be defined in //! `rustc::lint::builtin`, not here). //! //! If you define a new `LintPass`, you will also need to add it to the //! `add_builtin!` or `add_builtin_with_new!` invocation in `lib.rs`. //! Use the former for unit-like structs and the latter for structs with //! a `pub fn new()`. use middle::{cfg, def, infer, stability, traits}; use middle::cstore::CrateStore; use middle::def_id::DefId; use middle::subst::Substs; use middle::ty::{self, Ty}; use middle::ty::adjustment; use rustc::front::map as hir_map; use util::nodemap::{NodeSet}; use lint::{Level, LateContext, LintContext, LintArray, Lint}; use lint::{LintPass, LateLintPass}; use std::collections::HashSet; use syntax::{ast}; use syntax::attr::{self, AttrMetaMethods}; use syntax::codemap::{self, Span}; use rustc_front::hir; use rustc_front::intravisit::FnKind; use bad_style::{MethodLateContext, method_context}; // hardwired lints from librustc pub use lint::builtin::*; declare_lint! { WHILE_TRUE, Warn, "suggest using `loop { }` instead of `while true { }`" } #[derive(Copy, Clone)] pub struct WhileTrue; impl LintPass for WhileTrue { fn get_lints(&self) -> LintArray { lint_array!(WHILE_TRUE) } } impl LateLintPass for WhileTrue { fn check_expr(&mut self, cx: &LateContext, e: &hir::Expr) { if let hir::ExprWhile(ref cond, _, _) = e.node { if let hir::ExprLit(ref lit) = cond.node { if let ast::LitBool(true) = lit.node { cx.span_lint(WHILE_TRUE, e.span, "denote infinite loops with loop { ... }"); } } } } } declare_lint! { BOX_POINTERS, Allow, "use of owned (Box type) heap memory" } #[derive(Copy, Clone)] pub struct BoxPointers; impl BoxPointers { fn check_heap_type<'a, 'tcx>(&self, cx: &LateContext<'a, 'tcx>, span: Span, ty: Ty<'tcx>) { for leaf_ty in ty.walk() { if let ty::TyBox(_) = leaf_ty.sty { let m = format!("type uses owned (Box type) pointers: {}", ty); cx.span_lint(BOX_POINTERS, span, &m); } } } } impl LintPass for BoxPointers { fn get_lints(&self) -> LintArray { lint_array!(BOX_POINTERS) } } impl LateLintPass for BoxPointers { fn check_item(&mut self, cx: &LateContext, it: &hir::Item) { match it.node { hir::ItemFn(..) | hir::ItemTy(..) | hir::ItemEnum(..) | hir::ItemStruct(..) => self.check_heap_type(cx, it.span, cx.tcx.node_id_to_type(it.id)), _ => () } // If it's a struct, we also have to check the fields' types match it.node { hir::ItemStruct(ref struct_def, _) => { for struct_field in struct_def.fields() { self.check_heap_type(cx, struct_field.span, cx.tcx.node_id_to_type(struct_field.node.id)); } } _ => () } } fn check_expr(&mut self, cx: &LateContext, e: &hir::Expr) { let ty = cx.tcx.node_id_to_type(e.id); self.check_heap_type(cx, e.span, ty); } } declare_lint! { NON_SHORTHAND_FIELD_PATTERNS, Warn, "using `Struct { x: x }` instead of `Struct { x }`" } #[derive(Copy, Clone)] pub struct NonShorthandFieldPatterns; impl LintPass for NonShorthandFieldPatterns { fn get_lints(&self) -> LintArray { lint_array!(NON_SHORTHAND_FIELD_PATTERNS) } } impl LateLintPass for NonShorthandFieldPatterns { fn check_pat(&mut self, cx: &LateContext, pat: &hir::Pat) { let def_map = cx.tcx.def_map.borrow(); if let hir::PatStruct(_, ref v, _) = pat.node { let field_pats = v.iter().filter(|fieldpat| { if fieldpat.node.is_shorthand { return false; } let def = def_map.get(&fieldpat.node.pat.id).map(|d| d.full_def()); if let Some(def_id) = cx.tcx.map.opt_local_def_id(fieldpat.node.pat.id) { def == Some(def::DefLocal(def_id, fieldpat.node.pat.id)) } else { false } }); for fieldpat in field_pats { if let hir::PatIdent(_, ident, None) = fieldpat.node.pat.node { if ident.node.name == fieldpat.node.name { // FIXME: should this comparison really be done on the name? // doing it on the ident will fail during compilation of libcore cx.span_lint(NON_SHORTHAND_FIELD_PATTERNS, fieldpat.span, &format!("the `{}:` in this pattern is redundant and can \ be removed", ident.node)) } } } } } } declare_lint! { UNSAFE_CODE, Allow, "usage of `unsafe` code" } #[derive(Copy, Clone)] pub struct UnsafeCode; impl LintPass for UnsafeCode { fn get_lints(&self) -> LintArray { lint_array!(UNSAFE_CODE) } } impl LateLintPass for UnsafeCode { fn check_expr(&mut self, cx: &LateContext, e: &hir::Expr) { if let hir::ExprBlock(ref blk) = e.node { // Don't warn about generated blocks, that'll just pollute the output. if blk.rules == hir::UnsafeBlock(hir::UserProvided) { cx.span_lint(UNSAFE_CODE, blk.span, "usage of an `unsafe` block"); } } } fn check_item(&mut self, cx: &LateContext, it: &hir::Item) { match it.node { hir::ItemTrait(hir::Unsafety::Unsafe, _, _, _) => cx.span_lint(UNSAFE_CODE, it.span, "declaration of an `unsafe` trait"), hir::ItemImpl(hir::Unsafety::Unsafe, _, _, _, _, _) => cx.span_lint(UNSAFE_CODE, it.span, "implementation of an `unsafe` trait"), _ => return, } } fn check_fn(&mut self, cx: &LateContext, fk: FnKind, _: &hir::FnDecl, _: &hir::Block, span: Span, _: ast::NodeId) { match fk { FnKind::ItemFn(_, _, hir::Unsafety::Unsafe, _, _, _) => cx.span_lint(UNSAFE_CODE, span, "declaration of an `unsafe` function"), FnKind::Method(_, sig, _) => { if sig.unsafety == hir::Unsafety::Unsafe { cx.span_lint(UNSAFE_CODE, span, "implementation of an `unsafe` method") } }, _ => (), } } fn check_trait_item(&mut self, cx: &LateContext, trait_item: &hir::TraitItem) { if let hir::MethodTraitItem(ref sig, None) = trait_item.node { if sig.unsafety == hir::Unsafety::Unsafe { cx.span_lint(UNSAFE_CODE, trait_item.span, "declaration of an `unsafe` method") } } } } declare_lint! { MISSING_DOCS, Allow, "detects missing documentation for public members" } pub struct MissingDoc { /// Stack of IDs of struct definitions. struct_def_stack: Vec, /// True if inside variant definition in_variant: bool, /// Stack of whether #[doc(hidden)] is set /// at each level which has lint attributes. doc_hidden_stack: Vec, /// Private traits or trait items that leaked through. Don't check their methods. private_traits: HashSet, } impl MissingDoc { pub fn new() -> MissingDoc { MissingDoc { struct_def_stack: vec!(), in_variant: false, doc_hidden_stack: vec!(false), private_traits: HashSet::new(), } } fn doc_hidden(&self) -> bool { *self.doc_hidden_stack.last().expect("empty doc_hidden_stack") } fn check_missing_docs_attrs(&self, cx: &LateContext, id: Option, attrs: &[ast::Attribute], sp: Span, desc: &'static str) { // If we're building a test harness, then warning about // documentation is probably not really relevant right now. if cx.sess().opts.test { return; } // `#[doc(hidden)]` disables missing_docs check. if self.doc_hidden() { return; } // Only check publicly-visible items, using the result from the privacy pass. // It's an option so the crate root can also use this function (it doesn't // have a NodeId). if let Some(id) = id { if !cx.access_levels.is_exported(id) { return; } } let has_doc = attrs.iter().any(|a| { match a.node.value.node { ast::MetaNameValue(ref name, _) if *name == "doc" => true, _ => false } }); if !has_doc { cx.span_lint(MISSING_DOCS, sp, &format!("missing documentation for {}", desc)); } } } impl LintPass for MissingDoc { fn get_lints(&self) -> LintArray { lint_array!(MISSING_DOCS) } } impl LateLintPass for MissingDoc { fn enter_lint_attrs(&mut self, _: &LateContext, attrs: &[ast::Attribute]) { let doc_hidden = self.doc_hidden() || attrs.iter().any(|attr| { attr.check_name("doc") && match attr.meta_item_list() { None => false, Some(l) => attr::contains_name(&l[..], "hidden"), } }); self.doc_hidden_stack.push(doc_hidden); } fn exit_lint_attrs(&mut self, _: &LateContext, _: &[ast::Attribute]) { self.doc_hidden_stack.pop().expect("empty doc_hidden_stack"); } fn check_struct_def(&mut self, _: &LateContext, _: &hir::VariantData, _: ast::Name, _: &hir::Generics, item_id: ast::NodeId) { self.struct_def_stack.push(item_id); } fn check_struct_def_post(&mut self, _: &LateContext, _: &hir::VariantData, _: ast::Name, _: &hir::Generics, item_id: ast::NodeId) { let popped = self.struct_def_stack.pop().expect("empty struct_def_stack"); assert!(popped == item_id); } fn check_crate(&mut self, cx: &LateContext, krate: &hir::Crate) { self.check_missing_docs_attrs(cx, None, &krate.attrs, krate.span, "crate"); } fn check_item(&mut self, cx: &LateContext, it: &hir::Item) { let desc = match it.node { hir::ItemFn(..) => "a function", hir::ItemMod(..) => "a module", hir::ItemEnum(..) => "an enum", hir::ItemStruct(..) => "a struct", hir::ItemTrait(_, _, _, ref items) => { // Issue #11592, traits are always considered exported, even when private. if it.vis == hir::Visibility::Inherited { self.private_traits.insert(it.id); for itm in items { self.private_traits.insert(itm.id); } return } "a trait" }, hir::ItemTy(..) => "a type alias", hir::ItemImpl(_, _, _, Some(ref trait_ref), _, ref impl_items) => { // If the trait is private, add the impl items to private_traits so they don't get // reported for missing docs. let real_trait = cx.tcx.trait_ref_to_def_id(trait_ref); if let Some(node_id) = cx.tcx.map.as_local_node_id(real_trait) { match cx.tcx.map.find(node_id) { Some(hir_map::NodeItem(item)) => if item.vis == hir::Visibility::Inherited { for itm in impl_items { self.private_traits.insert(itm.id); } }, _ => { } } } return }, hir::ItemConst(..) => "a constant", hir::ItemStatic(..) => "a static", _ => return }; self.check_missing_docs_attrs(cx, Some(it.id), &it.attrs, it.span, desc); } fn check_trait_item(&mut self, cx: &LateContext, trait_item: &hir::TraitItem) { if self.private_traits.contains(&trait_item.id) { return } let desc = match trait_item.node { hir::ConstTraitItem(..) => "an associated constant", hir::MethodTraitItem(..) => "a trait method", hir::TypeTraitItem(..) => "an associated type", }; self.check_missing_docs_attrs(cx, Some(trait_item.id), &trait_item.attrs, trait_item.span, desc); } fn check_impl_item(&mut self, cx: &LateContext, impl_item: &hir::ImplItem) { // If the method is an impl for a trait, don't doc. if method_context(cx, impl_item.id, impl_item.span) == MethodLateContext::TraitImpl { return; } let desc = match impl_item.node { hir::ImplItemKind::Const(..) => "an associated constant", hir::ImplItemKind::Method(..) => "a method", hir::ImplItemKind::Type(_) => "an associated type", }; self.check_missing_docs_attrs(cx, Some(impl_item.id), &impl_item.attrs, impl_item.span, desc); } fn check_struct_field(&mut self, cx: &LateContext, sf: &hir::StructField) { if let hir::NamedField(_, vis) = sf.node.kind { if vis == hir::Public || self.in_variant { let cur_struct_def = *self.struct_def_stack.last() .expect("empty struct_def_stack"); self.check_missing_docs_attrs(cx, Some(cur_struct_def), &sf.node.attrs, sf.span, "a struct field") } } } fn check_variant(&mut self, cx: &LateContext, v: &hir::Variant, _: &hir::Generics) { self.check_missing_docs_attrs(cx, Some(v.node.data.id()), &v.node.attrs, v.span, "a variant"); assert!(!self.in_variant); self.in_variant = true; } fn check_variant_post(&mut self, _: &LateContext, _: &hir::Variant, _: &hir::Generics) { assert!(self.in_variant); self.in_variant = false; } } declare_lint! { pub MISSING_COPY_IMPLEMENTATIONS, Allow, "detects potentially-forgotten implementations of `Copy`" } #[derive(Copy, Clone)] pub struct MissingCopyImplementations; impl LintPass for MissingCopyImplementations { fn get_lints(&self) -> LintArray { lint_array!(MISSING_COPY_IMPLEMENTATIONS) } } impl LateLintPass for MissingCopyImplementations { fn check_item(&mut self, cx: &LateContext, item: &hir::Item) { if !cx.access_levels.is_reachable(item.id) { return; } let (def, ty) = match item.node { hir::ItemStruct(_, ref ast_generics) => { if ast_generics.is_parameterized() { return; } let def = cx.tcx.lookup_adt_def(cx.tcx.map.local_def_id(item.id)); (def, cx.tcx.mk_struct(def, cx.tcx.mk_substs(Substs::empty()))) } hir::ItemEnum(_, ref ast_generics) => { if ast_generics.is_parameterized() { return; } let def = cx.tcx.lookup_adt_def(cx.tcx.map.local_def_id(item.id)); (def, cx.tcx.mk_enum(def, cx.tcx.mk_substs(Substs::empty()))) } _ => return, }; if def.has_dtor() { return; } let parameter_environment = cx.tcx.empty_parameter_environment(); // FIXME (@jroesch) should probably inver this so that the parameter env still impls this // method if !ty.moves_by_default(¶meter_environment, item.span) { return; } if parameter_environment.can_type_implement_copy(ty, item.span).is_ok() { cx.span_lint(MISSING_COPY_IMPLEMENTATIONS, item.span, "type could implement `Copy`; consider adding `impl \ Copy`") } } } declare_lint! { MISSING_DEBUG_IMPLEMENTATIONS, Allow, "detects missing implementations of fmt::Debug" } pub struct MissingDebugImplementations { impling_types: Option, } impl MissingDebugImplementations { pub fn new() -> MissingDebugImplementations { MissingDebugImplementations { impling_types: None, } } } impl LintPass for MissingDebugImplementations { fn get_lints(&self) -> LintArray { lint_array!(MISSING_DEBUG_IMPLEMENTATIONS) } } impl LateLintPass for MissingDebugImplementations { fn check_item(&mut self, cx: &LateContext, item: &hir::Item) { if !cx.access_levels.is_reachable(item.id) { return; } match item.node { hir::ItemStruct(..) | hir::ItemEnum(..) => {}, _ => return, } let debug = match cx.tcx.lang_items.debug_trait() { Some(debug) => debug, None => return, }; if self.impling_types.is_none() { let debug_def = cx.tcx.lookup_trait_def(debug); let mut impls = NodeSet(); debug_def.for_each_impl(cx.tcx, |d| { if let Some(n) = cx.tcx.map.as_local_node_id(d) { if let Some(ty_def) = cx.tcx.node_id_to_type(n).ty_to_def_id() { if let Some(node_id) = cx.tcx.map.as_local_node_id(ty_def) { impls.insert(node_id); } } } }); self.impling_types = Some(impls); debug!("{:?}", self.impling_types); } if !self.impling_types.as_ref().unwrap().contains(&item.id) { cx.span_lint(MISSING_DEBUG_IMPLEMENTATIONS, item.span, "type does not implement `fmt::Debug`; consider adding #[derive(Debug)] \ or a manual implementation") } } } declare_lint! { DEPRECATED, Warn, "detects use of #[rustc_deprecated] items" } /// Checks for use of items with `#[rustc_deprecated]` attributes #[derive(Copy, Clone)] pub struct Stability; impl Stability { fn lint(&self, cx: &LateContext, _id: DefId, span: Span, stability: &Option<&attr::Stability>) { // Deprecated attributes apply in-crate and cross-crate. let (lint, label) = match *stability { Some(&attr::Stability { depr: Some(_), .. }) => (DEPRECATED, "deprecated"), _ => return }; output(cx, span, stability, lint, label); fn output(cx: &LateContext, span: Span, stability: &Option<&attr::Stability>, lint: &'static Lint, label: &'static str) { let msg = match *stability { Some(&attr::Stability {depr: Some(attr::Deprecation {ref reason, ..}), ..}) => { format!("use of {} item: {}", label, reason) } _ => format!("use of {} item", label) }; cx.span_lint(lint, span, &msg[..]); } } } impl LintPass for Stability { fn get_lints(&self) -> LintArray { lint_array!(DEPRECATED) } } impl LateLintPass for Stability { fn check_item(&mut self, cx: &LateContext, item: &hir::Item) { stability::check_item(cx.tcx, item, false, &mut |id, sp, stab| self.lint(cx, id, sp, &stab)); } fn check_expr(&mut self, cx: &LateContext, e: &hir::Expr) { stability::check_expr(cx.tcx, e, &mut |id, sp, stab| self.lint(cx, id, sp, &stab)); } fn check_path(&mut self, cx: &LateContext, path: &hir::Path, id: ast::NodeId) { stability::check_path(cx.tcx, path, id, &mut |id, sp, stab| self.lint(cx, id, sp, &stab)); } fn check_path_list_item(&mut self, cx: &LateContext, item: &hir::PathListItem) { stability::check_path_list_item(cx.tcx, item, &mut |id, sp, stab| self.lint(cx, id, sp, &stab)); } fn check_pat(&mut self, cx: &LateContext, pat: &hir::Pat) { stability::check_pat(cx.tcx, pat, &mut |id, sp, stab| self.lint(cx, id, sp, &stab)); } } declare_lint! { pub UNCONDITIONAL_RECURSION, Warn, "functions that cannot return without calling themselves" } #[derive(Copy, Clone)] pub struct UnconditionalRecursion; impl LintPass for UnconditionalRecursion { fn get_lints(&self) -> LintArray { lint_array![UNCONDITIONAL_RECURSION] } } impl LateLintPass for UnconditionalRecursion { fn check_fn(&mut self, cx: &LateContext, fn_kind: FnKind, _: &hir::FnDecl, blk: &hir::Block, sp: Span, id: ast::NodeId) { let method = match fn_kind { FnKind::ItemFn(..) => None, FnKind::Method(..) => { cx.tcx.impl_or_trait_item(cx.tcx.map.local_def_id(id)).as_opt_method() } // closures can't recur, so they don't matter. FnKind::Closure => return }; // Walk through this function (say `f`) looking to see if // every possible path references itself, i.e. the function is // called recursively unconditionally. This is done by trying // to find a path from the entry node to the exit node that // *doesn't* call `f` by traversing from the entry while // pretending that calls of `f` are sinks (i.e. ignoring any // exit edges from them). // // NB. this has an edge case with non-returning statements, // like `loop {}` or `panic!()`: control flow never reaches // the exit node through these, so one can have a function // that never actually calls itselfs but is still picked up by // this lint: // // fn f(cond: bool) { // if !cond { panic!() } // could come from `assert!(cond)` // f(false) // } // // In general, functions of that form may be able to call // itself a finite number of times and then diverge. The lint // considers this to be an error for two reasons, (a) it is // easier to implement, and (b) it seems rare to actually want // to have behaviour like the above, rather than // e.g. accidentally recurring after an assert. let cfg = cfg::CFG::new(cx.tcx, blk); let mut work_queue = vec![cfg.entry]; let mut reached_exit_without_self_call = false; let mut self_call_spans = vec![]; let mut visited = HashSet::new(); while let Some(idx) = work_queue.pop() { if idx == cfg.exit { // found a path! reached_exit_without_self_call = true; break; } let cfg_id = idx.node_id(); if visited.contains(&cfg_id) { // already done continue; } visited.insert(cfg_id); let node_id = cfg.graph.node_data(idx).id(); // is this a recursive call? let self_recursive = if node_id != ast::DUMMY_NODE_ID { match method { Some(ref method) => { expr_refers_to_this_method(cx.tcx, method, node_id) } None => expr_refers_to_this_fn(cx.tcx, id, node_id) } } else { false }; if self_recursive { self_call_spans.push(cx.tcx.map.span(node_id)); // this is a self call, so we shouldn't explore past // this node in the CFG. continue; } // add the successors of this node to explore the graph further. for (_, edge) in cfg.graph.outgoing_edges(idx) { let target_idx = edge.target(); let target_cfg_id = target_idx.node_id(); if !visited.contains(&target_cfg_id) { work_queue.push(target_idx) } } } // Check the number of self calls because a function that // doesn't return (e.g. calls a `-> !` function or `loop { /* // no break */ }`) shouldn't be linted unless it actually // recurs. if !reached_exit_without_self_call && !self_call_spans.is_empty() { cx.span_lint(UNCONDITIONAL_RECURSION, sp, "function cannot return without recurring"); // FIXME #19668: these could be span_lint_note's instead of this manual guard. if cx.current_level(UNCONDITIONAL_RECURSION) != Level::Allow { let sess = cx.sess(); // offer some help to the programmer. for call in &self_call_spans { sess.span_note(*call, "recursive call site") } sess.fileline_help(sp, "a `loop` may express intention \ better if this is on purpose") } } // all done return; // Functions for identifying if the given Expr NodeId `id` // represents a call to the function `fn_id`/method `method`. fn expr_refers_to_this_fn(tcx: &ty::ctxt, fn_id: ast::NodeId, id: ast::NodeId) -> bool { match tcx.map.get(id) { hir_map::NodeExpr(&hir::Expr { node: hir::ExprCall(ref callee, _), .. }) => { tcx.def_map .borrow() .get(&callee.id) .map_or(false, |def| def.def_id() == tcx.map.local_def_id(fn_id)) } _ => false } } // Check if the expression `id` performs a call to `method`. fn expr_refers_to_this_method(tcx: &ty::ctxt, method: &ty::Method, id: ast::NodeId) -> bool { // Check for method calls and overloaded operators. let opt_m = tcx.tables.borrow().method_map.get(&ty::MethodCall::expr(id)).cloned(); if let Some(m) = opt_m { if method_call_refers_to_method(tcx, method, m.def_id, m.substs, id) { return true; } } // Check for overloaded autoderef method calls. let opt_adj = tcx.tables.borrow().adjustments.get(&id).cloned(); if let Some(adjustment::AdjustDerefRef(adj)) = opt_adj { for i in 0..adj.autoderefs { let method_call = ty::MethodCall::autoderef(id, i as u32); if let Some(m) = tcx.tables.borrow().method_map .get(&method_call) .cloned() { if method_call_refers_to_method(tcx, method, m.def_id, m.substs, id) { return true; } } } } // Check for calls to methods via explicit paths (e.g. `T::method()`). match tcx.map.get(id) { hir_map::NodeExpr(&hir::Expr { node: hir::ExprCall(ref callee, _), .. }) => { match tcx.def_map.borrow().get(&callee.id).map(|d| d.full_def()) { Some(def::DefMethod(def_id)) => { let item_substs = tcx.tables.borrow().item_substs .get(&callee.id) .cloned() .unwrap_or_else(|| ty::ItemSubsts::empty()); method_call_refers_to_method( tcx, method, def_id, &item_substs.substs, id) } _ => false } } _ => false } } // Check if the method call to the method with the ID `callee_id` // and instantiated with `callee_substs` refers to method `method`. fn method_call_refers_to_method<'tcx>(tcx: &ty::ctxt<'tcx>, method: &ty::Method, callee_id: DefId, callee_substs: &Substs<'tcx>, expr_id: ast::NodeId) -> bool { let callee_item = tcx.impl_or_trait_item(callee_id); match callee_item.container() { // This is an inherent method, so the `def_id` refers // directly to the method definition. ty::ImplContainer(_) => { callee_id == method.def_id } // A trait method, from any number of possible sources. // Attempt to select a concrete impl before checking. ty::TraitContainer(trait_def_id) => { let trait_substs = callee_substs.clone().method_to_trait(); let trait_substs = tcx.mk_substs(trait_substs); let trait_ref = ty::TraitRef::new(trait_def_id, trait_substs); let trait_ref = ty::Binder(trait_ref); let span = tcx.map.span(expr_id); let obligation = traits::Obligation::new(traits::ObligationCause::misc(span, expr_id), trait_ref.to_poly_trait_predicate()); // unwrap() is ok here b/c `method` is the method // defined in this crate whose body we are // checking, so it's always local let node_id = tcx.map.as_local_node_id(method.def_id).unwrap(); let param_env = ty::ParameterEnvironment::for_item(tcx, node_id); let infcx = infer::new_infer_ctxt(tcx, &tcx.tables, Some(param_env), false); let mut selcx = traits::SelectionContext::new(&infcx); match selcx.select(&obligation) { // The method comes from a `T: Trait` bound. // If `T` is `Self`, then this call is inside // a default method definition. Ok(Some(traits::VtableParam(_))) => { let self_ty = callee_substs.self_ty(); let on_self = self_ty.map_or(false, |t| t.is_self()); // We can only be recurring in a default // method if we're being called literally // on the `Self` type. on_self && callee_id == method.def_id } // The `impl` is known, so we check that with a // special case: Ok(Some(traits::VtableImpl(vtable_impl))) => { let container = ty::ImplContainer(vtable_impl.impl_def_id); // It matches if it comes from the same impl, // and has the same method name. container == method.container && callee_item.name() == method.name } // There's no way to know if this call is // recursive, so we assume it's not. _ => return false } } } } } } declare_lint! { PLUGIN_AS_LIBRARY, Warn, "compiler plugin used as ordinary library in non-plugin crate" } #[derive(Copy, Clone)] pub struct PluginAsLibrary; impl LintPass for PluginAsLibrary { fn get_lints(&self) -> LintArray { lint_array![PLUGIN_AS_LIBRARY] } } impl LateLintPass for PluginAsLibrary { fn check_item(&mut self, cx: &LateContext, it: &hir::Item) { if cx.sess().plugin_registrar_fn.get().is_some() { // We're compiling a plugin; it's fine to link other plugins. return; } match it.node { hir::ItemExternCrate(..) => (), _ => return, }; let prfn = match cx.sess().cstore.extern_mod_stmt_cnum(it.id) { Some(cnum) => cx.sess().cstore.plugin_registrar_fn(cnum), None => { // Probably means we aren't linking the crate for some reason. // // Not sure if / when this could happen. return; } }; if prfn.is_some() { cx.span_lint(PLUGIN_AS_LIBRARY, it.span, "compiler plugin used as an ordinary library"); } } } declare_lint! { PRIVATE_NO_MANGLE_FNS, Warn, "functions marked #[no_mangle] should be exported" } declare_lint! { PRIVATE_NO_MANGLE_STATICS, Warn, "statics marked #[no_mangle] should be exported" } declare_lint! { NO_MANGLE_CONST_ITEMS, Deny, "const items will not have their symbols exported" } #[derive(Copy, Clone)] pub struct InvalidNoMangleItems; impl LintPass for InvalidNoMangleItems { fn get_lints(&self) -> LintArray { lint_array!(PRIVATE_NO_MANGLE_FNS, PRIVATE_NO_MANGLE_STATICS, NO_MANGLE_CONST_ITEMS) } } impl LateLintPass for InvalidNoMangleItems { fn check_item(&mut self, cx: &LateContext, it: &hir::Item) { match it.node { hir::ItemFn(..) => { if attr::contains_name(&it.attrs, "no_mangle") && !cx.access_levels.is_reachable(it.id) { let msg = format!("function {} is marked #[no_mangle], but not exported", it.name); cx.span_lint(PRIVATE_NO_MANGLE_FNS, it.span, &msg); } }, hir::ItemStatic(..) => { if attr::contains_name(&it.attrs, "no_mangle") && !cx.access_levels.is_reachable(it.id) { let msg = format!("static {} is marked #[no_mangle], but not exported", it.name); cx.span_lint(PRIVATE_NO_MANGLE_STATICS, it.span, &msg); } }, hir::ItemConst(..) => { if attr::contains_name(&it.attrs, "no_mangle") { // Const items do not refer to a particular location in memory, and therefore // don't have anything to attach a symbol to let msg = "const items should never be #[no_mangle], consider instead using \ `pub static`"; cx.span_lint(NO_MANGLE_CONST_ITEMS, it.span, msg); } } _ => {}, } } } #[derive(Clone, Copy)] pub struct MutableTransmutes; declare_lint! { MUTABLE_TRANSMUTES, Deny, "mutating transmuted &mut T from &T may cause undefined behavior" } impl LintPass for MutableTransmutes { fn get_lints(&self) -> LintArray { lint_array!(MUTABLE_TRANSMUTES) } } impl LateLintPass for MutableTransmutes { fn check_expr(&mut self, cx: &LateContext, expr: &hir::Expr) { use syntax::abi::RustIntrinsic; let msg = "mutating transmuted &mut T from &T may cause undefined behavior,\ consider instead using an UnsafeCell"; match get_transmute_from_to(cx, expr) { Some((&ty::TyRef(_, from_mt), &ty::TyRef(_, to_mt))) => { if to_mt.mutbl == hir::Mutability::MutMutable && from_mt.mutbl == hir::Mutability::MutImmutable { cx.span_lint(MUTABLE_TRANSMUTES, expr.span, msg); } } _ => () } fn get_transmute_from_to<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, expr: &hir::Expr) -> Option<(&'tcx ty::TypeVariants<'tcx>, &'tcx ty::TypeVariants<'tcx>)> { match expr.node { hir::ExprPath(..) => (), _ => return None } if let def::DefFn(did, _) = cx.tcx.resolve_expr(expr) { if !def_id_is_transmute(cx, did) { return None; } let typ = cx.tcx.node_id_to_type(expr.id); match typ.sty { ty::TyBareFn(_, ref bare_fn) if bare_fn.abi == RustIntrinsic => { if let ty::FnConverging(to) = bare_fn.sig.0.output { let from = bare_fn.sig.0.inputs[0]; return Some((&from.sty, &to.sty)); } }, _ => () } } None } fn def_id_is_transmute(cx: &LateContext, def_id: DefId) -> bool { match cx.tcx.lookup_item_type(def_id).ty.sty { ty::TyBareFn(_, ref bfty) if bfty.abi == RustIntrinsic => (), _ => return false } cx.tcx.with_path(def_id, |path| match path.last() { Some(ref last) => last.name().as_str() == "transmute", _ => false }) } } } /// Forbids using the `#[feature(...)]` attribute #[derive(Copy, Clone)] pub struct UnstableFeatures; declare_lint! { UNSTABLE_FEATURES, Allow, "enabling unstable features (deprecated. do not use)" } impl LintPass for UnstableFeatures { fn get_lints(&self) -> LintArray { lint_array!(UNSTABLE_FEATURES) } } impl LateLintPass for UnstableFeatures { fn check_attribute(&mut self, ctx: &LateContext, attr: &ast::Attribute) { if attr::contains_name(&[attr.node.value.clone()], "feature") { if let Some(items) = attr.node.value.meta_item_list() { for item in items { ctx.span_lint(UNSTABLE_FEATURES, item.span, "unstable feature"); } } } } } /// Lints for attempts to impl Drop on types that have `#[repr(C)]` /// attribute (see issue #24585). #[derive(Copy, Clone)] pub struct DropWithReprExtern; declare_lint! { DROP_WITH_REPR_EXTERN, Warn, "use of #[repr(C)] on a type that implements Drop" } impl LintPass for DropWithReprExtern { fn get_lints(&self) -> LintArray { lint_array!(DROP_WITH_REPR_EXTERN) } } impl LateLintPass for DropWithReprExtern { fn check_crate(&mut self, ctx: &LateContext, _: &hir::Crate) { let drop_trait = match ctx.tcx.lang_items.drop_trait() { Some(id) => ctx.tcx.lookup_trait_def(id), None => { return } }; drop_trait.for_each_impl(ctx.tcx, |drop_impl_did| { if !drop_impl_did.is_local() { return; } let dtor_self_type = ctx.tcx.lookup_item_type(drop_impl_did).ty; match dtor_self_type.sty { ty::TyEnum(self_type_def, _) | ty::TyStruct(self_type_def, _) => { let self_type_did = self_type_def.did; let hints = ctx.tcx.lookup_repr_hints(self_type_did); if hints.iter().any(|attr| *attr == attr::ReprExtern) && self_type_def.dtor_kind().has_drop_flag() { let drop_impl_span = ctx.tcx.map.def_id_span(drop_impl_did, codemap::DUMMY_SP); let self_defn_span = ctx.tcx.map.def_id_span(self_type_did, codemap::DUMMY_SP); ctx.span_lint_note(DROP_WITH_REPR_EXTERN, drop_impl_span, "implementing Drop adds hidden state to types, \ possibly conflicting with `#[repr(C)]`", self_defn_span, "the `#[repr(C)]` attribute is attached here"); } } _ => {} } }) } }