// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A Folder represents an AST->AST fold; it accepts an AST piece, //! and returns a piece of the same type. So, for instance, macro //! expansion is a Folder that walks over an AST and produces another //! AST. //! //! Note: using a Folder (other than the MacroExpander Folder) on //! an AST before macro expansion is probably a bad idea. For instance, //! a folder renaming item names in a module will miss all of those //! that are created by the expansion of a macro. use ast::*; use ast; use ast_util; use codemap::{respan, Span, Spanned}; use owned_slice::OwnedSlice; use parse::token; use ptr::P; use std::ptr; use util::small_vector::SmallVector; use std::rc::Rc; // This could have a better place to live. pub trait MoveMap { fn move_map(self, f: |T| -> T) -> Self; } impl MoveMap for Vec { fn move_map(mut self, f: |T| -> T) -> Vec { for p in self.iter_mut() { unsafe { // FIXME(#5016) this shouldn't need to zero to be safe. ptr::write(p, f(ptr::read_and_zero(p))); } } self } } impl MoveMap for OwnedSlice { fn move_map(self, f: |T| -> T) -> OwnedSlice { OwnedSlice::from_vec(self.into_vec().move_map(f)) } } pub trait Folder { // Any additions to this trait should happen in form // of a call to a public `noop_*` function that only calls // out to the folder again, not other `noop_*` functions. // // This is a necessary API workaround to the problem of not // being able to call out to the super default method // in an overridden default method. fn fold_crate(&mut self, c: Crate) -> Crate { noop_fold_crate(c, self) } fn fold_meta_items(&mut self, meta_items: Vec>) -> Vec> { noop_fold_meta_items(meta_items, self) } fn fold_meta_item(&mut self, meta_item: P) -> P { noop_fold_meta_item(meta_item, self) } fn fold_view_path(&mut self, view_path: P) -> P { noop_fold_view_path(view_path, self) } fn fold_view_item(&mut self, vi: ViewItem) -> ViewItem { noop_fold_view_item(vi, self) } fn fold_foreign_item(&mut self, ni: P) -> P { noop_fold_foreign_item(ni, self) } fn fold_item(&mut self, i: P) -> SmallVector> { noop_fold_item(i, self) } fn fold_item_simple(&mut self, i: Item) -> Item { noop_fold_item_simple(i, self) } fn fold_struct_field(&mut self, sf: StructField) -> StructField { noop_fold_struct_field(sf, self) } fn fold_item_underscore(&mut self, i: Item_) -> Item_ { noop_fold_item_underscore(i, self) } fn fold_fn_decl(&mut self, d: P) -> P { noop_fold_fn_decl(d, self) } fn fold_type_method(&mut self, m: TypeMethod) -> TypeMethod { noop_fold_type_method(m, self) } fn fold_method(&mut self, m: P) -> SmallVector> { noop_fold_method(m, self) } fn fold_block(&mut self, b: P) -> P { noop_fold_block(b, self) } fn fold_stmt(&mut self, s: P) -> SmallVector> { s.and_then(|s| noop_fold_stmt(s, self)) } fn fold_arm(&mut self, a: Arm) -> Arm { noop_fold_arm(a, self) } fn fold_pat(&mut self, p: P) -> P { noop_fold_pat(p, self) } fn fold_decl(&mut self, d: P) -> SmallVector> { noop_fold_decl(d, self) } fn fold_expr(&mut self, e: P) -> P { e.map(|e| noop_fold_expr(e, self)) } fn fold_ty(&mut self, t: P) -> P { noop_fold_ty(t, self) } fn fold_mod(&mut self, m: Mod) -> Mod { noop_fold_mod(m, self) } fn fold_foreign_mod(&mut self, nm: ForeignMod) -> ForeignMod { noop_fold_foreign_mod(nm, self) } fn fold_variant(&mut self, v: P) -> P { noop_fold_variant(v, self) } fn fold_ident(&mut self, i: Ident) -> Ident { noop_fold_ident(i, self) } fn fold_uint(&mut self, i: uint) -> uint { noop_fold_uint(i, self) } fn fold_path(&mut self, p: Path) -> Path { noop_fold_path(p, self) } fn fold_local(&mut self, l: P) -> P { noop_fold_local(l, self) } fn fold_mac(&mut self, _macro: Mac) -> Mac { panic!("fold_mac disabled by default"); // NB: see note about macros above. // if you really want a folder that // works on macros, use this // definition in your trait impl: // fold::noop_fold_mac(_macro, self) } fn fold_explicit_self(&mut self, es: ExplicitSelf) -> ExplicitSelf { noop_fold_explicit_self(es, self) } fn fold_explicit_self_underscore(&mut self, es: ExplicitSelf_) -> ExplicitSelf_ { noop_fold_explicit_self_underscore(es, self) } fn fold_lifetime(&mut self, l: Lifetime) -> Lifetime { noop_fold_lifetime(l, self) } fn fold_lifetime_def(&mut self, l: LifetimeDef) -> LifetimeDef { noop_fold_lifetime_def(l, self) } fn fold_attribute(&mut self, at: Attribute) -> Attribute { noop_fold_attribute(at, self) } fn fold_arg(&mut self, a: Arg) -> Arg { noop_fold_arg(a, self) } fn fold_generics(&mut self, generics: Generics) -> Generics { noop_fold_generics(generics, self) } fn fold_trait_ref(&mut self, p: TraitRef) -> TraitRef { noop_fold_trait_ref(p, self) } fn fold_struct_def(&mut self, struct_def: P) -> P { noop_fold_struct_def(struct_def, self) } fn fold_lifetimes(&mut self, lts: Vec) -> Vec { noop_fold_lifetimes(lts, self) } fn fold_lifetime_defs(&mut self, lts: Vec) -> Vec { noop_fold_lifetime_defs(lts, self) } fn fold_ty_param(&mut self, tp: TyParam) -> TyParam { noop_fold_ty_param(tp, self) } fn fold_ty_params(&mut self, tps: OwnedSlice) -> OwnedSlice { noop_fold_ty_params(tps, self) } fn fold_tt(&mut self, tt: &TokenTree) -> TokenTree { noop_fold_tt(tt, self) } fn fold_tts(&mut self, tts: &[TokenTree]) -> Vec { noop_fold_tts(tts, self) } fn fold_token(&mut self, t: token::Token) -> token::Token { noop_fold_token(t, self) } fn fold_interpolated(&mut self, nt: token::Nonterminal) -> token::Nonterminal { noop_fold_interpolated(nt, self) } fn fold_opt_lifetime(&mut self, o_lt: Option) -> Option { noop_fold_opt_lifetime(o_lt, self) } fn fold_variant_arg(&mut self, va: VariantArg) -> VariantArg { noop_fold_variant_arg(va, self) } fn fold_opt_bounds(&mut self, b: Option>) -> Option> { noop_fold_opt_bounds(b, self) } fn fold_bounds(&mut self, b: OwnedSlice) -> OwnedSlice { noop_fold_bounds(b, self) } fn fold_ty_param_bound(&mut self, tpb: TyParamBound) -> TyParamBound { noop_fold_ty_param_bound(tpb, self) } fn fold_mt(&mut self, mt: MutTy) -> MutTy { noop_fold_mt(mt, self) } fn fold_field(&mut self, field: Field) -> Field { noop_fold_field(field, self) } fn fold_where_clause(&mut self, where_clause: WhereClause) -> WhereClause { noop_fold_where_clause(where_clause, self) } fn fold_where_predicate(&mut self, where_predicate: WherePredicate) -> WherePredicate { noop_fold_where_predicate(where_predicate, self) } fn fold_typedef(&mut self, typedef: Typedef) -> Typedef { noop_fold_typedef(typedef, self) } fn fold_associated_type(&mut self, associated_type: AssociatedType) -> AssociatedType { noop_fold_associated_type(associated_type, self) } fn new_id(&mut self, i: NodeId) -> NodeId { i } fn new_span(&mut self, sp: Span) -> Span { sp } } pub fn noop_fold_meta_items(meta_items: Vec>, fld: &mut T) -> Vec> { meta_items.move_map(|x| fld.fold_meta_item(x)) } pub fn noop_fold_view_path(view_path: P, fld: &mut T) -> P { view_path.map(|Spanned {node, span}| Spanned { node: match node { ViewPathSimple(ident, path, node_id) => { let id = fld.new_id(node_id); ViewPathSimple(ident, fld.fold_path(path), id) } ViewPathGlob(path, node_id) => { let id = fld.new_id(node_id); ViewPathGlob(fld.fold_path(path), id) } ViewPathList(path, path_list_idents, node_id) => { let id = fld.new_id(node_id); ViewPathList(fld.fold_path(path), path_list_idents.move_map(|path_list_ident| { Spanned { node: match path_list_ident.node { PathListIdent { id, name } => PathListIdent { id: fld.new_id(id), name: name }, PathListMod { id } => PathListMod { id: fld.new_id(id) } }, span: fld.new_span(path_list_ident.span) } }), id) } }, span: fld.new_span(span) }) } pub fn noop_fold_arm(Arm {attrs, pats, guard, body}: Arm, fld: &mut T) -> Arm { Arm { attrs: attrs.move_map(|x| fld.fold_attribute(x)), pats: pats.move_map(|x| fld.fold_pat(x)), guard: guard.map(|x| fld.fold_expr(x)), body: fld.fold_expr(body), } } pub fn noop_fold_decl(d: P, fld: &mut T) -> SmallVector> { d.and_then(|Spanned {node, span}| match node { DeclLocal(l) => SmallVector::one(P(Spanned { node: DeclLocal(fld.fold_local(l)), span: fld.new_span(span) })), DeclItem(it) => fld.fold_item(it).into_iter().map(|i| P(Spanned { node: DeclItem(i), span: fld.new_span(span) })).collect() }) } pub fn noop_fold_ty(t: P, fld: &mut T) -> P { t.map(|Ty {id, node, span}| Ty { id: fld.new_id(id), node: match node { TyNil | TyBot | TyInfer => node, TyUniq(ty) => TyUniq(fld.fold_ty(ty)), TyVec(ty) => TyVec(fld.fold_ty(ty)), TyPtr(mt) => TyPtr(fld.fold_mt(mt)), TyRptr(region, mt) => { TyRptr(fld.fold_opt_lifetime(region), fld.fold_mt(mt)) } TyClosure(f) => { TyClosure(f.map(|ClosureTy {fn_style, onceness, bounds, decl, lifetimes}| { ClosureTy { fn_style: fn_style, onceness: onceness, bounds: fld.fold_bounds(bounds), decl: fld.fold_fn_decl(decl), lifetimes: fld.fold_lifetime_defs(lifetimes) } })) } TyProc(f) => { TyProc(f.map(|ClosureTy {fn_style, onceness, bounds, decl, lifetimes}| { ClosureTy { fn_style: fn_style, onceness: onceness, bounds: fld.fold_bounds(bounds), decl: fld.fold_fn_decl(decl), lifetimes: fld.fold_lifetime_defs(lifetimes) } })) } TyBareFn(f) => { TyBareFn(f.map(|BareFnTy {lifetimes, fn_style, abi, decl}| BareFnTy { lifetimes: fld.fold_lifetime_defs(lifetimes), fn_style: fn_style, abi: abi, decl: fld.fold_fn_decl(decl) })) } TyUnboxedFn(f) => { TyUnboxedFn(f.map(|UnboxedFnTy {decl, kind}| UnboxedFnTy { decl: fld.fold_fn_decl(decl), kind: kind, })) } TyTup(tys) => TyTup(tys.move_map(|ty| fld.fold_ty(ty))), TyParen(ty) => TyParen(fld.fold_ty(ty)), TyPath(path, bounds, id) => { let id = fld.new_id(id); TyPath(fld.fold_path(path), fld.fold_opt_bounds(bounds), id) } TyQPath(ref qpath) => { TyQPath(P(QPath { for_type: fld.fold_ty(qpath.for_type.clone()), trait_name: fld.fold_path(qpath.trait_name.clone()), item_name: fld.fold_ident(qpath.item_name.clone()), })) } TyFixedLengthVec(ty, e) => { TyFixedLengthVec(fld.fold_ty(ty), fld.fold_expr(e)) } TyTypeof(expr) => TyTypeof(fld.fold_expr(expr)) }, span: fld.new_span(span) }) } pub fn noop_fold_foreign_mod(ForeignMod {abi, view_items, items}: ForeignMod, fld: &mut T) -> ForeignMod { ForeignMod { abi: abi, view_items: view_items.move_map(|x| fld.fold_view_item(x)), items: items.move_map(|x| fld.fold_foreign_item(x)), } } pub fn noop_fold_variant(v: P, fld: &mut T) -> P { v.map(|Spanned {node: Variant_ {id, name, attrs, kind, disr_expr, vis}, span}| Spanned { node: Variant_ { id: fld.new_id(id), name: name, attrs: attrs.move_map(|x| fld.fold_attribute(x)), kind: match kind { TupleVariantKind(variant_args) => { TupleVariantKind(variant_args.move_map(|x| fld.fold_variant_arg(x))) } StructVariantKind(struct_def) => { StructVariantKind(fld.fold_struct_def(struct_def)) } }, disr_expr: disr_expr.map(|e| fld.fold_expr(e)), vis: vis, }, span: fld.new_span(span), }) } pub fn noop_fold_ident(i: Ident, _: &mut T) -> Ident { i } pub fn noop_fold_uint(i: uint, _: &mut T) -> uint { i } pub fn noop_fold_path(Path {global, segments, span}: Path, fld: &mut T) -> Path { Path { global: global, segments: segments.move_map(|PathSegment {identifier, lifetimes, types}| PathSegment { identifier: fld.fold_ident(identifier), lifetimes: fld.fold_lifetimes(lifetimes), types: types.move_map(|typ| fld.fold_ty(typ)), }), span: fld.new_span(span) } } pub fn noop_fold_local(l: P, fld: &mut T) -> P { l.map(|Local {id, pat, ty, init, source, span}| Local { id: fld.new_id(id), ty: fld.fold_ty(ty), pat: fld.fold_pat(pat), init: init.map(|e| fld.fold_expr(e)), source: source, span: fld.new_span(span) }) } pub fn noop_fold_attribute(at: Attribute, fld: &mut T) -> Attribute { let Spanned {node: Attribute_ {id, style, value, is_sugared_doc}, span} = at; Spanned { node: Attribute_ { id: id, style: style, value: fld.fold_meta_item(value), is_sugared_doc: is_sugared_doc }, span: fld.new_span(span) } } pub fn noop_fold_explicit_self_underscore(es: ExplicitSelf_, fld: &mut T) -> ExplicitSelf_ { match es { SelfStatic | SelfValue(_) => es, SelfRegion(lifetime, m, ident) => { SelfRegion(fld.fold_opt_lifetime(lifetime), m, ident) } SelfExplicit(typ, ident) => { SelfExplicit(fld.fold_ty(typ), ident) } } } pub fn noop_fold_explicit_self(Spanned {span, node}: ExplicitSelf, fld: &mut T) -> ExplicitSelf { Spanned { node: fld.fold_explicit_self_underscore(node), span: fld.new_span(span) } } pub fn noop_fold_mac(Spanned {node, span}: Mac, fld: &mut T) -> Mac { Spanned { node: match node { MacInvocTT(p, tts, ctxt) => { MacInvocTT(fld.fold_path(p), fld.fold_tts(tts.as_slice()), ctxt) } }, span: fld.new_span(span) } } pub fn noop_fold_meta_item(mi: P, fld: &mut T) -> P { mi.map(|Spanned {node, span}| Spanned { node: match node { MetaWord(id) => MetaWord(id), MetaList(id, mis) => { MetaList(id, mis.move_map(|e| fld.fold_meta_item(e))) } MetaNameValue(id, s) => MetaNameValue(id, s) }, span: fld.new_span(span) }) } pub fn noop_fold_arg(Arg {id, pat, ty}: Arg, fld: &mut T) -> Arg { Arg { id: fld.new_id(id), pat: fld.fold_pat(pat), ty: fld.fold_ty(ty) } } pub fn noop_fold_tt(tt: &TokenTree, fld: &mut T) -> TokenTree { match *tt { TtToken(span, ref tok) => TtToken(span, fld.fold_token(tok.clone())), TtDelimited(span, ref delimed) => { let (ref open, ref tts, ref close) = **delimed; TtDelimited(span, Rc::new(( Delimiter { span: open.span, token: fld.fold_token(open.token.clone()) }, fld.fold_tts(tts.as_slice()), Delimiter { span: close.span, token: fld.fold_token(close.token.clone()) }, ))) }, TtSequence(span, ref pattern, ref sep, is_optional) => TtSequence(span, Rc::new(fld.fold_tts(pattern.as_slice())), sep.clone().map(|tok| fld.fold_token(tok)), is_optional), TtNonterminal(sp,ref ident) => TtNonterminal(sp,fld.fold_ident(*ident)) } } pub fn noop_fold_tts(tts: &[TokenTree], fld: &mut T) -> Vec { tts.iter().map(|tt| fld.fold_tt(tt)).collect() } // apply ident folder if it's an ident, apply other folds to interpolated nodes pub fn noop_fold_token(t: token::Token, fld: &mut T) -> token::Token { match t { token::Ident(id, followed_by_colons) => { token::Ident(fld.fold_ident(id), followed_by_colons) } token::Lifetime(id) => token::Lifetime(fld.fold_ident(id)), token::Interpolated(nt) => token::Interpolated(fld.fold_interpolated(nt)), _ => t } } /// apply folder to elements of interpolated nodes // // NB: this can occur only when applying a fold to partially expanded code, where // parsed pieces have gotten implanted ito *other* macro invocations. This is relevant // for macro hygiene, but possibly not elsewhere. // // One problem here occurs because the types for fold_item, fold_stmt, etc. allow the // folder to return *multiple* items; this is a problem for the nodes here, because // they insist on having exactly one piece. One solution would be to mangle the fold // trait to include one-to-many and one-to-one versions of these entry points, but that // would probably confuse a lot of people and help very few. Instead, I'm just going // to put in dynamic checks. I think the performance impact of this will be pretty much // nonexistent. The danger is that someone will apply a fold to a partially expanded // node, and will be confused by the fact that their "fold_item" or "fold_stmt" isn't // getting called on NtItem or NtStmt nodes. Hopefully they'll wind up reading this // comment, and doing something appropriate. // // BTW, design choice: I considered just changing the type of, e.g., NtItem to contain // multiple items, but decided against it when I looked at parse_item_or_view_item and // tried to figure out what I would do with multiple items there.... pub fn noop_fold_interpolated(nt: token::Nonterminal, fld: &mut T) -> token::Nonterminal { match nt { token::NtItem(item) => token::NtItem(fld.fold_item(item) // this is probably okay, because the only folds likely // to peek inside interpolated nodes will be renamings/markings, // which map single items to single items .expect_one("expected fold to produce exactly one item")), token::NtBlock(block) => token::NtBlock(fld.fold_block(block)), token::NtStmt(stmt) => token::NtStmt(fld.fold_stmt(stmt) // this is probably okay, because the only folds likely // to peek inside interpolated nodes will be renamings/markings, // which map single items to single items .expect_one("expected fold to produce exactly one statement")), token::NtPat(pat) => token::NtPat(fld.fold_pat(pat)), token::NtExpr(expr) => token::NtExpr(fld.fold_expr(expr)), token::NtTy(ty) => token::NtTy(fld.fold_ty(ty)), token::NtIdent(box id, is_mod_name) => token::NtIdent(box fld.fold_ident(id), is_mod_name), token::NtMeta(meta_item) => token::NtMeta(fld.fold_meta_item(meta_item)), token::NtPath(box path) => token::NtPath(box fld.fold_path(path)), token::NtTT(tt) => token::NtTT(P(fld.fold_tt(&*tt))), // it looks to me like we can leave out the matchers: token::NtMatchers(matchers) _ => nt } } pub fn noop_fold_fn_decl(decl: P, fld: &mut T) -> P { decl.map(|FnDecl {inputs, output, cf, variadic}| FnDecl { inputs: inputs.move_map(|x| fld.fold_arg(x)), output: fld.fold_ty(output), cf: cf, variadic: variadic }) } pub fn noop_fold_ty_param_bound(tpb: TyParamBound, fld: &mut T) -> TyParamBound where T: Folder { match tpb { TraitTyParamBound(ty) => TraitTyParamBound(fld.fold_trait_ref(ty)), RegionTyParamBound(lifetime) => RegionTyParamBound(fld.fold_lifetime(lifetime)), UnboxedFnTyParamBound(bound) => { match *bound { UnboxedFnBound { ref path, ref decl, ref lifetimes, ref_id } => { UnboxedFnTyParamBound(P(UnboxedFnBound { path: fld.fold_path(path.clone()), decl: fld.fold_fn_decl(decl.clone()), lifetimes: fld.fold_lifetime_defs(lifetimes.clone()), ref_id: fld.new_id(ref_id), })) } } } } } pub fn noop_fold_ty_param(tp: TyParam, fld: &mut T) -> TyParam { let TyParam {id, ident, bounds, unbound, default, span} = tp; TyParam { id: fld.new_id(id), ident: ident, bounds: fld.fold_bounds(bounds), unbound: unbound.map(|x| fld.fold_ty_param_bound(x)), default: default.map(|x| fld.fold_ty(x)), span: span } } pub fn noop_fold_ty_params(tps: OwnedSlice, fld: &mut T) -> OwnedSlice { tps.move_map(|tp| fld.fold_ty_param(tp)) } pub fn noop_fold_lifetime(l: Lifetime, fld: &mut T) -> Lifetime { Lifetime { id: fld.new_id(l.id), name: l.name, span: fld.new_span(l.span) } } pub fn noop_fold_lifetime_def(l: LifetimeDef, fld: &mut T) -> LifetimeDef { LifetimeDef { lifetime: fld.fold_lifetime(l.lifetime), bounds: fld.fold_lifetimes(l.bounds), } } pub fn noop_fold_lifetimes(lts: Vec, fld: &mut T) -> Vec { lts.move_map(|l| fld.fold_lifetime(l)) } pub fn noop_fold_lifetime_defs(lts: Vec, fld: &mut T) -> Vec { lts.move_map(|l| fld.fold_lifetime_def(l)) } pub fn noop_fold_opt_lifetime(o_lt: Option, fld: &mut T) -> Option { o_lt.map(|lt| fld.fold_lifetime(lt)) } pub fn noop_fold_generics(Generics {ty_params, lifetimes, where_clause}: Generics, fld: &mut T) -> Generics { Generics { ty_params: fld.fold_ty_params(ty_params), lifetimes: fld.fold_lifetime_defs(lifetimes), where_clause: fld.fold_where_clause(where_clause), } } pub fn noop_fold_where_clause( WhereClause {id, predicates}: WhereClause, fld: &mut T) -> WhereClause { WhereClause { id: fld.new_id(id), predicates: predicates.move_map(|predicate| { fld.fold_where_predicate(predicate) }) } } pub fn noop_fold_where_predicate( WherePredicate {id, ident, bounds, span}: WherePredicate, fld: &mut T) -> WherePredicate { WherePredicate { id: fld.new_id(id), ident: fld.fold_ident(ident), bounds: bounds.move_map(|x| fld.fold_ty_param_bound(x)), span: fld.new_span(span) } } pub fn noop_fold_typedef(t: Typedef, folder: &mut T) -> Typedef where T: Folder { let new_id = folder.new_id(t.id); let new_span = folder.new_span(t.span); let new_attrs = t.attrs.iter().map(|attr| { folder.fold_attribute((*attr).clone()) }).collect(); let new_ident = folder.fold_ident(t.ident); let new_type = folder.fold_ty(t.typ); ast::Typedef { ident: new_ident, typ: new_type, id: new_id, span: new_span, vis: t.vis, attrs: new_attrs, } } pub fn noop_fold_associated_type(at: AssociatedType, folder: &mut T) -> AssociatedType where T: Folder { let new_id = folder.new_id(at.id); let new_span = folder.new_span(at.span); let new_ident = folder.fold_ident(at.ident); let new_attrs = at.attrs .iter() .map(|attr| folder.fold_attribute((*attr).clone())) .collect(); ast::AssociatedType { ident: new_ident, attrs: new_attrs, id: new_id, span: new_span, } } pub fn noop_fold_struct_def(struct_def: P, fld: &mut T) -> P { struct_def.map(|StructDef { fields, ctor_id }| StructDef { fields: fields.move_map(|f| fld.fold_struct_field(f)), ctor_id: ctor_id.map(|cid| fld.new_id(cid)), }) } pub fn noop_fold_trait_ref(p: TraitRef, fld: &mut T) -> TraitRef { let id = fld.new_id(p.ref_id); let TraitRef { path, lifetimes, .. } = p; ast::TraitRef { path: fld.fold_path(path), ref_id: id, lifetimes: fld.fold_lifetime_defs(lifetimes), } } pub fn noop_fold_struct_field(f: StructField, fld: &mut T) -> StructField { let StructField {node: StructField_ {id, kind, ty, attrs}, span} = f; Spanned { node: StructField_ { id: fld.new_id(id), kind: kind, ty: fld.fold_ty(ty), attrs: attrs.move_map(|a| fld.fold_attribute(a)) }, span: fld.new_span(span) } } pub fn noop_fold_field(Field {ident, expr, span}: Field, folder: &mut T) -> Field { Field { ident: respan(ident.span, folder.fold_ident(ident.node)), expr: folder.fold_expr(expr), span: folder.new_span(span) } } pub fn noop_fold_mt(MutTy {ty, mutbl}: MutTy, folder: &mut T) -> MutTy { MutTy { ty: folder.fold_ty(ty), mutbl: mutbl, } } pub fn noop_fold_opt_bounds(b: Option>, folder: &mut T) -> Option> { b.map(|bounds| folder.fold_bounds(bounds)) } fn noop_fold_bounds(bounds: TyParamBounds, folder: &mut T) -> TyParamBounds { bounds.move_map(|bound| folder.fold_ty_param_bound(bound)) } fn noop_fold_variant_arg(VariantArg {id, ty}: VariantArg, folder: &mut T) -> VariantArg { VariantArg { id: folder.new_id(id), ty: folder.fold_ty(ty) } } pub fn noop_fold_view_item(ViewItem {node, attrs, vis, span}: ViewItem, folder: &mut T) -> ViewItem { ViewItem { node: match node { ViewItemExternCrate(ident, string, node_id) => { ViewItemExternCrate(ident, string, folder.new_id(node_id)) } ViewItemUse(view_path) => { ViewItemUse(folder.fold_view_path(view_path)) } }, attrs: attrs.move_map(|a| folder.fold_attribute(a)), vis: vis, span: folder.new_span(span) } } pub fn noop_fold_block(b: P, folder: &mut T) -> P { b.map(|Block {id, view_items, stmts, expr, rules, span}| Block { id: folder.new_id(id), view_items: view_items.move_map(|x| folder.fold_view_item(x)), stmts: stmts.into_iter().flat_map(|s| folder.fold_stmt(s).into_iter()).collect(), expr: expr.map(|x| folder.fold_expr(x)), rules: rules, span: folder.new_span(span), }) } pub fn noop_fold_item_underscore(i: Item_, folder: &mut T) -> Item_ { match i { ItemStatic(t, m, e) => { ItemStatic(folder.fold_ty(t), m, folder.fold_expr(e)) } ItemConst(t, e) => { ItemConst(folder.fold_ty(t), folder.fold_expr(e)) } ItemFn(decl, fn_style, abi, generics, body) => { ItemFn( folder.fold_fn_decl(decl), fn_style, abi, folder.fold_generics(generics), folder.fold_block(body) ) } ItemMod(m) => ItemMod(folder.fold_mod(m)), ItemForeignMod(nm) => ItemForeignMod(folder.fold_foreign_mod(nm)), ItemTy(t, generics) => { ItemTy(folder.fold_ty(t), folder.fold_generics(generics)) } ItemEnum(enum_definition, generics) => { ItemEnum( ast::EnumDef { variants: enum_definition.variants.move_map(|x| folder.fold_variant(x)), }, folder.fold_generics(generics)) } ItemStruct(struct_def, generics) => { let struct_def = folder.fold_struct_def(struct_def); ItemStruct(struct_def, folder.fold_generics(generics)) } ItemImpl(generics, ifce, ty, impl_items) => { let mut new_impl_items = Vec::new(); for impl_item in impl_items.iter() { match *impl_item { MethodImplItem(ref x) => { for method in folder.fold_method((*x).clone()) .into_iter() { new_impl_items.push(MethodImplItem(method)) } } TypeImplItem(ref t) => { new_impl_items.push(TypeImplItem( P(folder.fold_typedef((**t).clone())))); } } } let ifce = match ifce { None => None, Some(ref trait_ref) => { Some(folder.fold_trait_ref((*trait_ref).clone())) } }; ItemImpl(folder.fold_generics(generics), ifce, folder.fold_ty(ty), new_impl_items) } ItemTrait(generics, unbound, bounds, methods) => { let bounds = folder.fold_bounds(bounds); let methods = methods.into_iter().flat_map(|method| { let r = match method { RequiredMethod(m) => { SmallVector::one(RequiredMethod( folder.fold_type_method(m))) .into_iter() } ProvidedMethod(method) => { // the awkward collect/iter idiom here is because // even though an iter and a map satisfy the same // trait bound, they're not actually the same type, so // the method arms don't unify. let methods: SmallVector = folder.fold_method(method).into_iter() .map(|m| ProvidedMethod(m)).collect(); methods.into_iter() } TypeTraitItem(at) => { SmallVector::one(TypeTraitItem(P( folder.fold_associated_type( (*at).clone())))) .into_iter() } }; r }).collect(); ItemTrait(folder.fold_generics(generics), unbound, bounds, methods) } ItemMac(m) => ItemMac(folder.fold_mac(m)), } } pub fn noop_fold_type_method(m: TypeMethod, fld: &mut T) -> TypeMethod { let TypeMethod { id, ident, attrs, fn_style, abi, decl, generics, explicit_self, vis, span } = m; TypeMethod { id: fld.new_id(id), ident: fld.fold_ident(ident), attrs: attrs.move_map(|a| fld.fold_attribute(a)), fn_style: fn_style, abi: abi, decl: fld.fold_fn_decl(decl), generics: fld.fold_generics(generics), explicit_self: fld.fold_explicit_self(explicit_self), vis: vis, span: fld.new_span(span) } } pub fn noop_fold_mod(Mod {inner, view_items, items}: Mod, folder: &mut T) -> Mod { Mod { inner: folder.new_span(inner), view_items: view_items.move_map(|x| folder.fold_view_item(x)), items: items.into_iter().flat_map(|x| folder.fold_item(x).into_iter()).collect(), } } pub fn noop_fold_crate(Crate {module, attrs, config, exported_macros, span}: Crate, folder: &mut T) -> Crate { Crate { module: folder.fold_mod(module), attrs: attrs.move_map(|x| folder.fold_attribute(x)), config: folder.fold_meta_items(config), exported_macros: exported_macros, span: folder.new_span(span) } } // fold one item into possibly many items pub fn noop_fold_item(i: P, folder: &mut T) -> SmallVector> { SmallVector::one(i.map(|i| folder.fold_item_simple(i))) } // fold one item into exactly one item pub fn noop_fold_item_simple(Item {id, ident, attrs, node, vis, span}: Item, folder: &mut T) -> Item { let id = folder.new_id(id); let node = folder.fold_item_underscore(node); let ident = match node { // The node may have changed, recompute the "pretty" impl name. ItemImpl(_, ref maybe_trait, ref ty, _) => { ast_util::impl_pretty_name(maybe_trait, &**ty) } _ => ident }; Item { id: id, ident: folder.fold_ident(ident), attrs: attrs.move_map(|e| folder.fold_attribute(e)), node: node, vis: vis, span: folder.new_span(span) } } pub fn noop_fold_foreign_item(ni: P, folder: &mut T) -> P { ni.map(|ForeignItem {id, ident, attrs, node, span, vis}| ForeignItem { id: folder.new_id(id), ident: folder.fold_ident(ident), attrs: attrs.move_map(|x| folder.fold_attribute(x)), node: match node { ForeignItemFn(fdec, generics) => { ForeignItemFn(fdec.map(|FnDecl {inputs, output, cf, variadic}| FnDecl { inputs: inputs.move_map(|a| folder.fold_arg(a)), output: folder.fold_ty(output), cf: cf, variadic: variadic }), folder.fold_generics(generics)) } ForeignItemStatic(t, m) => { ForeignItemStatic(folder.fold_ty(t), m) } }, vis: vis, span: folder.new_span(span) }) } // Default fold over a method. // Invariant: produces exactly one method. pub fn noop_fold_method(m: P, folder: &mut T) -> SmallVector> { SmallVector::one(m.map(|Method {id, attrs, node, span}| Method { id: folder.new_id(id), attrs: attrs.move_map(|a| folder.fold_attribute(a)), node: match node { MethDecl(ident, generics, abi, explicit_self, fn_style, decl, body, vis) => { MethDecl(folder.fold_ident(ident), folder.fold_generics(generics), abi, folder.fold_explicit_self(explicit_self), fn_style, folder.fold_fn_decl(decl), folder.fold_block(body), vis) }, MethMac(mac) => MethMac(folder.fold_mac(mac)), }, span: folder.new_span(span) })) } pub fn noop_fold_pat(p: P, folder: &mut T) -> P { p.map(|Pat {id, node, span}| Pat { id: folder.new_id(id), node: match node { PatWild(k) => PatWild(k), PatIdent(binding_mode, pth1, sub) => { PatIdent(binding_mode, Spanned{span: folder.new_span(pth1.span), node: folder.fold_ident(pth1.node)}, sub.map(|x| folder.fold_pat(x))) } PatLit(e) => PatLit(folder.fold_expr(e)), PatEnum(pth, pats) => { PatEnum(folder.fold_path(pth), pats.map(|pats| pats.move_map(|x| folder.fold_pat(x)))) } PatStruct(pth, fields, etc) => { let pth = folder.fold_path(pth); let fs = fields.move_map(|f| { Spanned { span: folder.new_span(f.span), node: ast::FieldPat { ident: f.node.ident, pat: folder.fold_pat(f.node.pat), is_shorthand: f.node.is_shorthand, }} }); PatStruct(pth, fs, etc) } PatTup(elts) => PatTup(elts.move_map(|x| folder.fold_pat(x))), PatBox(inner) => PatBox(folder.fold_pat(inner)), PatRegion(inner) => PatRegion(folder.fold_pat(inner)), PatRange(e1, e2) => { PatRange(folder.fold_expr(e1), folder.fold_expr(e2)) }, PatVec(before, slice, after) => { PatVec(before.move_map(|x| folder.fold_pat(x)), slice.map(|x| folder.fold_pat(x)), after.move_map(|x| folder.fold_pat(x))) } PatMac(mac) => PatMac(folder.fold_mac(mac)) }, span: folder.new_span(span) }) } pub fn noop_fold_expr(Expr {id, node, span}: Expr, folder: &mut T) -> Expr { Expr { id: folder.new_id(id), node: match node { ExprBox(p, e) => { ExprBox(folder.fold_expr(p), folder.fold_expr(e)) } ExprVec(exprs) => { ExprVec(exprs.move_map(|x| folder.fold_expr(x))) } ExprRepeat(expr, count) => { ExprRepeat(folder.fold_expr(expr), folder.fold_expr(count)) } ExprTup(elts) => ExprTup(elts.move_map(|x| folder.fold_expr(x))), ExprCall(f, args) => { ExprCall(folder.fold_expr(f), args.move_map(|x| folder.fold_expr(x))) } ExprMethodCall(i, tps, args) => { ExprMethodCall( respan(i.span, folder.fold_ident(i.node)), tps.move_map(|x| folder.fold_ty(x)), args.move_map(|x| folder.fold_expr(x))) } ExprBinary(binop, lhs, rhs) => { ExprBinary(binop, folder.fold_expr(lhs), folder.fold_expr(rhs)) } ExprUnary(binop, ohs) => { ExprUnary(binop, folder.fold_expr(ohs)) } ExprLit(l) => ExprLit(l), ExprCast(expr, ty) => { ExprCast(folder.fold_expr(expr), folder.fold_ty(ty)) } ExprAddrOf(m, ohs) => ExprAddrOf(m, folder.fold_expr(ohs)), ExprIf(cond, tr, fl) => { ExprIf(folder.fold_expr(cond), folder.fold_block(tr), fl.map(|x| folder.fold_expr(x))) } ExprIfLet(pat, expr, tr, fl) => { ExprIfLet(folder.fold_pat(pat), folder.fold_expr(expr), folder.fold_block(tr), fl.map(|x| folder.fold_expr(x))) } ExprWhile(cond, body, opt_ident) => { ExprWhile(folder.fold_expr(cond), folder.fold_block(body), opt_ident.map(|i| folder.fold_ident(i))) } ExprWhileLet(pat, expr, body, opt_ident) => { ExprWhileLet(folder.fold_pat(pat), folder.fold_expr(expr), folder.fold_block(body), opt_ident.map(|i| folder.fold_ident(i))) } ExprForLoop(pat, iter, body, opt_ident) => { ExprForLoop(folder.fold_pat(pat), folder.fold_expr(iter), folder.fold_block(body), opt_ident.map(|i| folder.fold_ident(i))) } ExprLoop(body, opt_ident) => { ExprLoop(folder.fold_block(body), opt_ident.map(|i| folder.fold_ident(i))) } ExprMatch(expr, arms, source) => { ExprMatch(folder.fold_expr(expr), arms.move_map(|x| folder.fold_arm(x)), source) } ExprFnBlock(capture_clause, decl, body) => { ExprFnBlock(capture_clause, folder.fold_fn_decl(decl), folder.fold_block(body)) } ExprProc(decl, body) => { ExprProc(folder.fold_fn_decl(decl), folder.fold_block(body)) } ExprUnboxedFn(capture_clause, kind, decl, body) => { ExprUnboxedFn(capture_clause, kind, folder.fold_fn_decl(decl), folder.fold_block(body)) } ExprBlock(blk) => ExprBlock(folder.fold_block(blk)), ExprAssign(el, er) => { ExprAssign(folder.fold_expr(el), folder.fold_expr(er)) } ExprAssignOp(op, el, er) => { ExprAssignOp(op, folder.fold_expr(el), folder.fold_expr(er)) } ExprField(el, ident, tys) => { ExprField(folder.fold_expr(el), respan(ident.span, folder.fold_ident(ident.node)), tys.move_map(|x| folder.fold_ty(x))) } ExprTupField(el, ident, tys) => { ExprTupField(folder.fold_expr(el), respan(ident.span, folder.fold_uint(ident.node)), tys.move_map(|x| folder.fold_ty(x))) } ExprIndex(el, er) => { ExprIndex(folder.fold_expr(el), folder.fold_expr(er)) } ExprSlice(e, e1, e2, m) => { ExprSlice(folder.fold_expr(e), e1.map(|x| folder.fold_expr(x)), e2.map(|x| folder.fold_expr(x)), m) } ExprPath(pth) => ExprPath(folder.fold_path(pth)), ExprBreak(opt_ident) => ExprBreak(opt_ident.map(|x| folder.fold_ident(x))), ExprAgain(opt_ident) => ExprAgain(opt_ident.map(|x| folder.fold_ident(x))), ExprRet(e) => ExprRet(e.map(|x| folder.fold_expr(x))), ExprInlineAsm(InlineAsm { inputs, outputs, asm, asm_str_style, clobbers, volatile, alignstack, dialect, expn_id, }) => ExprInlineAsm(InlineAsm { inputs: inputs.move_map(|(c, input)| { (c, folder.fold_expr(input)) }), outputs: outputs.move_map(|(c, out, is_rw)| { (c, folder.fold_expr(out), is_rw) }), asm: asm, asm_str_style: asm_str_style, clobbers: clobbers, volatile: volatile, alignstack: alignstack, dialect: dialect, expn_id: expn_id, }), ExprMac(mac) => ExprMac(folder.fold_mac(mac)), ExprStruct(path, fields, maybe_expr) => { ExprStruct(folder.fold_path(path), fields.move_map(|x| folder.fold_field(x)), maybe_expr.map(|x| folder.fold_expr(x))) }, ExprParen(ex) => ExprParen(folder.fold_expr(ex)) }, span: folder.new_span(span) } } pub fn noop_fold_stmt(Spanned {node, span}: Stmt, folder: &mut T) -> SmallVector> { let span = folder.new_span(span); match node { StmtDecl(d, id) => { let id = folder.new_id(id); folder.fold_decl(d).into_iter().map(|d| P(Spanned { node: StmtDecl(d, id), span: span })).collect() } StmtExpr(e, id) => { let id = folder.new_id(id); SmallVector::one(P(Spanned { node: StmtExpr(folder.fold_expr(e), id), span: span })) } StmtSemi(e, id) => { let id = folder.new_id(id); SmallVector::one(P(Spanned { node: StmtSemi(folder.fold_expr(e), id), span: span })) } StmtMac(mac, semi) => SmallVector::one(P(Spanned { node: StmtMac(folder.fold_mac(mac), semi), span: span })) } } #[cfg(test)] mod test { use std::io; use ast; use util::parser_testing::{string_to_crate, matches_codepattern}; use parse::token; use print::pprust; use fold; use super::*; // this version doesn't care about getting comments or docstrings in. fn fake_print_crate(s: &mut pprust::State, krate: &ast::Crate) -> io::IoResult<()> { s.print_mod(&krate.module, krate.attrs.as_slice()) } // change every identifier to "zz" struct ToZzIdentFolder; impl Folder for ToZzIdentFolder { fn fold_ident(&mut self, _: ast::Ident) -> ast::Ident { token::str_to_ident("zz") } fn fold_mac(&mut self, macro: ast::Mac) -> ast::Mac { fold::noop_fold_mac(macro, self) } } // maybe add to expand.rs... macro_rules! assert_pred ( ($pred:expr, $predname:expr, $a:expr , $b:expr) => ( { let pred_val = $pred; let a_val = $a; let b_val = $b; if !(pred_val(a_val.as_slice(),b_val.as_slice())) { panic!("expected args satisfying {}, got {} and {}", $predname, a_val, b_val); } } ) ) // make sure idents get transformed everywhere #[test] fn ident_transformation () { let mut zz_fold = ToZzIdentFolder; let ast = string_to_crate( "#[a] mod b {fn c (d : e, f : g) {h!(i,j,k);l;m}}".to_string()); let folded_crate = zz_fold.fold_crate(ast); assert_pred!( matches_codepattern, "matches_codepattern", pprust::to_string(|s| fake_print_crate(s, &folded_crate)), "#[a]mod zz{fn zz(zz:zz,zz:zz){zz!(zz,zz,zz);zz;zz}}".to_string()); } // even inside macro defs.... #[test] fn ident_transformation_in_defs () { let mut zz_fold = ToZzIdentFolder; let ast = string_to_crate( "macro_rules! a {(b $c:expr $(d $e:token)f+ => \ (g $(d $d $e)+))} ".to_string()); let folded_crate = zz_fold.fold_crate(ast); assert_pred!( matches_codepattern, "matches_codepattern", pprust::to_string(|s| fake_print_crate(s, &folded_crate)), "zz!zz((zz$zz:zz$(zz $zz:zz)zz+=>(zz$(zz$zz$zz)+)))".to_string()); } }