// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use back::abi; use back::link::mangle_internal_name_by_path_and_seq; use driver::session::FullDebugInfo; use lib::llvm::ValueRef; use middle::moves; use middle::trans::base::*; use middle::trans::build::*; use middle::trans::common::*; use middle::trans::datum::{Datum, DatumBlock, Expr, Lvalue, rvalue_scratch_datum}; use middle::trans::debuginfo; use middle::trans::expr; use middle::trans::type_of::*; use middle::trans::type_::Type; use middle::ty; use util::ppaux::Repr; use util::ppaux::ty_to_str; use arena::TypedArena; use syntax::ast; use syntax::ast_util; // ___Good to know (tm)__________________________________________________ // // The layout of a closure environment in memory is // roughly as follows: // // struct rust_opaque_box { // see rust_internal.h // unsigned ref_count; // only used for @fn() // type_desc *tydesc; // describes closure_data struct // rust_opaque_box *prev; // (used internally by memory alloc) // rust_opaque_box *next; // (used internally by memory alloc) // struct closure_data { // type_desc *bound_tdescs[]; // bound descriptors // struct { // upvar1_t upvar1; // ... // upvarN_t upvarN; // } bound_data; // } // }; // // Note that the closure is itself a rust_opaque_box. This is true // even for ~fn and ||, because we wish to keep binary compatibility // between all kinds of closures. The allocation strategy for this // closure depends on the closure type. For a sendfn, the closure // (and the referenced type descriptors) will be allocated in the // exchange heap. For a fn, the closure is allocated in the task heap // and is reference counted. For a block, the closure is allocated on // the stack. // // ## Opaque closures and the embedded type descriptor ## // // One interesting part of closures is that they encapsulate the data // that they close over. So when I have a ptr to a closure, I do not // know how many type descriptors it contains nor what upvars are // captured within. That means I do not know precisely how big it is // nor where its fields are located. This is called an "opaque // closure". // // Typically an opaque closure suffices because we only manipulate it // by ptr. The routine Type::at_box().ptr_to() returns an appropriate // type for such an opaque closure; it allows access to the box fields, // but not the closure_data itself. // // But sometimes, such as when cloning or freeing a closure, we need // to know the full information. That is where the type descriptor // that defines the closure comes in handy. We can use its take and // drop glue functions to allocate/free data as needed. // // ## Subtleties concerning alignment ## // // It is important that we be able to locate the closure data *without // knowing the kind of data that is being bound*. This can be tricky // because the alignment requirements of the bound data affects the // alignment requires of the closure_data struct as a whole. However, // right now this is a non-issue in any case, because the size of the // rust_opaque_box header is always a mutiple of 16-bytes, which is // the maximum alignment requirement we ever have to worry about. // // The only reason alignment matters is that, in order to learn what data // is bound, we would normally first load the type descriptors: but their // location is ultimately depend on their content! There is, however, a // workaround. We can load the tydesc from the rust_opaque_box, which // describes the closure_data struct and has self-contained derived type // descriptors, and read the alignment from there. It's just annoying to // do. Hopefully should this ever become an issue we'll have monomorphized // and type descriptors will all be a bad dream. // // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ pub enum EnvAction { /// Copy the value from this llvm ValueRef into the environment. EnvCopy, /// Move the value from this llvm ValueRef into the environment. EnvMove, /// Access by reference (used for stack closures). EnvRef } pub struct EnvValue { action: EnvAction, datum: Datum } impl EnvAction { pub fn to_str(&self) -> ~str { match *self { EnvCopy => ~"EnvCopy", EnvMove => ~"EnvMove", EnvRef => ~"EnvRef" } } } impl EnvValue { pub fn to_str(&self, ccx: &CrateContext) -> ~str { format!("{}({})", self.action.to_str(), self.datum.to_str(ccx)) } } // Given a closure ty, emits a corresponding tuple ty pub fn mk_closure_tys(tcx: &ty::ctxt, bound_values: &[EnvValue]) -> ty::t { // determine the types of the values in the env. Note that this // is the actual types that will be stored in the map, not the // logical types as the user sees them, so by-ref upvars must be // converted to ptrs. let bound_tys = bound_values.iter().map(|bv| { match bv.action { EnvCopy | EnvMove => bv.datum.ty, EnvRef => ty::mk_mut_ptr(tcx, bv.datum.ty) } }).collect(); let cdata_ty = ty::mk_tup(tcx, bound_tys); debug!("cdata_ty={}", ty_to_str(tcx, cdata_ty)); return cdata_ty; } fn tuplify_box_ty(tcx: &ty::ctxt, t: ty::t) -> ty::t { let ptr = ty::mk_imm_ptr(tcx, ty::mk_i8()); ty::mk_tup(tcx, vec!(ty::mk_uint(), ty::mk_nil_ptr(tcx), ptr, ptr, t)) } fn allocate_cbox<'a>(bcx: &'a Block<'a>, sigil: ast::Sigil, cdata_ty: ty::t) -> Result<'a> { let _icx = push_ctxt("closure::allocate_cbox"); let tcx = bcx.tcx(); // Allocate and initialize the box: match sigil { ast::ManagedSigil => { tcx.sess.bug("trying to trans allocation of @fn") } ast::OwnedSigil => { malloc_raw(bcx, cdata_ty, heap_exchange_closure) } ast::BorrowedSigil => { let cbox_ty = tuplify_box_ty(tcx, cdata_ty); let llbox = alloc_ty(bcx, cbox_ty, "__closure"); rslt(bcx, llbox) } } } pub struct ClosureResult<'a> { llbox: ValueRef, // llvalue of ptr to closure cdata_ty: ty::t, // type of the closure data bcx: &'a Block<'a> // final bcx } // Given a block context and a list of tydescs and values to bind // construct a closure out of them. If copying is true, it is a // heap allocated closure that copies the upvars into environment. // Otherwise, it is stack allocated and copies pointers to the upvars. pub fn store_environment<'a>( bcx: &'a Block<'a>, bound_values: Vec , sigil: ast::Sigil) -> ClosureResult<'a> { let _icx = push_ctxt("closure::store_environment"); let ccx = bcx.ccx(); let tcx = ccx.tcx(); // compute the type of the closure let cdata_ty = mk_closure_tys(tcx, bound_values.as_slice()); // cbox_ty has the form of a tuple: (a, b, c) we want a ptr to a // tuple. This could be a ptr in uniq or a box or on stack, // whatever. let cbox_ty = tuplify_box_ty(tcx, cdata_ty); let cboxptr_ty = ty::mk_ptr(tcx, ty::mt {ty:cbox_ty, mutbl:ast::MutImmutable}); let llboxptr_ty = type_of(ccx, cboxptr_ty); // If there are no bound values, no point in allocating anything. if bound_values.is_empty() { return ClosureResult {llbox: C_null(llboxptr_ty), cdata_ty: cdata_ty, bcx: bcx}; } // allocate closure in the heap let Result {bcx: bcx, val: llbox} = allocate_cbox(bcx, sigil, cdata_ty); let llbox = PointerCast(bcx, llbox, llboxptr_ty); debug!("tuplify_box_ty = {}", ty_to_str(tcx, cbox_ty)); // Copy expr values into boxed bindings. let mut bcx = bcx; for (i, bv) in bound_values.move_iter().enumerate() { debug!("Copy {} into closure", bv.to_str(ccx)); if ccx.sess().asm_comments() { add_comment(bcx, format!("Copy {} into closure", bv.to_str(ccx))); } let bound_data = GEPi(bcx, llbox, [0u, abi::box_field_body, i]); match bv.action { EnvCopy | EnvMove => { bcx = bv.datum.store_to(bcx, bound_data); } EnvRef => { Store(bcx, bv.datum.to_llref(), bound_data); } } } ClosureResult { llbox: llbox, cdata_ty: cdata_ty, bcx: bcx } } // Given a context and a list of upvars, build a closure. This just // collects the upvars and packages them up for store_environment. fn build_closure<'a>(bcx0: &'a Block<'a>, cap_vars: &[moves::CaptureVar], sigil: ast::Sigil) -> ClosureResult<'a> { let _icx = push_ctxt("closure::build_closure"); // If we need to, package up the iterator body to call let bcx = bcx0; // Package up the captured upvars let mut env_vals = Vec::new(); for cap_var in cap_vars.iter() { debug!("Building closure: captured variable {:?}", *cap_var); let datum = expr::trans_local_var(bcx, cap_var.def); match cap_var.mode { moves::CapRef => { assert_eq!(sigil, ast::BorrowedSigil); env_vals.push(EnvValue {action: EnvRef, datum: datum}); } moves::CapCopy => { env_vals.push(EnvValue {action: EnvCopy, datum: datum}); } moves::CapMove => { env_vals.push(EnvValue {action: EnvMove, datum: datum}); } } } return store_environment(bcx, env_vals, sigil); } // Given an enclosing block context, a new function context, a closure type, // and a list of upvars, generate code to load and populate the environment // with the upvars and type descriptors. fn load_environment<'a>(bcx: &'a Block<'a>, cdata_ty: ty::t, cap_vars: &[moves::CaptureVar], sigil: ast::Sigil) -> &'a Block<'a> { let _icx = push_ctxt("closure::load_environment"); // Don't bother to create the block if there's nothing to load if cap_vars.len() == 0 { return bcx; } // Load a pointer to the closure data, skipping over the box header: let llcdata = at_box_body(bcx, cdata_ty, bcx.fcx.llenv.unwrap()); // Store the pointer to closure data in an alloca for debug info because that's what the // llvm.dbg.declare intrinsic expects let env_pointer_alloca = if bcx.sess().opts.debuginfo == FullDebugInfo { let alloc = alloc_ty(bcx, ty::mk_mut_ptr(bcx.tcx(), cdata_ty), "__debuginfo_env_ptr"); Store(bcx, llcdata, alloc); Some(alloc) } else { None }; // Populate the upvars from the environment let mut i = 0u; for cap_var in cap_vars.iter() { let mut upvarptr = GEPi(bcx, llcdata, [0u, i]); match sigil { ast::BorrowedSigil => { upvarptr = Load(bcx, upvarptr); } ast::ManagedSigil | ast::OwnedSigil => {} } let def_id = ast_util::def_id_of_def(cap_var.def); bcx.fcx.llupvars.borrow_mut().insert(def_id.node, upvarptr); for &env_pointer_alloca in env_pointer_alloca.iter() { debuginfo::create_captured_var_metadata( bcx, def_id.node, cdata_ty, env_pointer_alloca, i, sigil, cap_var.span); } i += 1u; } bcx } fn fill_fn_pair(bcx: &Block, pair: ValueRef, llfn: ValueRef, llenvptr: ValueRef) { Store(bcx, llfn, GEPi(bcx, pair, [0u, abi::fn_field_code])); let llenvptr = PointerCast(bcx, llenvptr, Type::i8p(bcx.ccx())); Store(bcx, llenvptr, GEPi(bcx, pair, [0u, abi::fn_field_box])); } pub fn trans_expr_fn<'a>( bcx: &'a Block<'a>, sigil: ast::Sigil, decl: &ast::FnDecl, body: &ast::Block, id: ast::NodeId, dest: expr::Dest) -> &'a Block<'a> { /*! * * Translates the body of a closure expression. * * - `sigil` * - `decl` * - `body` * - `id`: The id of the closure expression. * - `cap_clause`: information about captured variables, if any. * - `dest`: where to write the closure value, which must be a (fn ptr, env) pair */ let _icx = push_ctxt("closure::trans_expr_fn"); let dest_addr = match dest { expr::SaveIn(p) => p, expr::Ignore => { return bcx; // closure construction is non-side-effecting } }; let ccx = bcx.ccx(); let fty = node_id_type(bcx, id); let f = match ty::get(fty).sty { ty::ty_closure(ref f) => f, _ => fail!("expected closure") }; let tcx = bcx.tcx(); let s = tcx.map.with_path(id, |path| { mangle_internal_name_by_path_and_seq(path, "closure") }); let llfn = decl_internal_rust_fn(ccx, true, f.sig.inputs.as_slice(), f.sig.output, s); // set an inline hint for all closures set_inline_hint(llfn); let cap_vars = ccx.maps.capture_map.borrow().get_copy(&id); let ClosureResult {llbox, cdata_ty, bcx} = build_closure(bcx, cap_vars.deref().as_slice(), sigil); trans_closure(ccx, decl, body, llfn, bcx.fcx.param_substs, id, [], ty::ty_fn_ret(fty), |bcx| load_environment(bcx, cdata_ty, cap_vars.deref().as_slice(), sigil)); fill_fn_pair(bcx, dest_addr, llfn, llbox); bcx } pub fn get_wrapper_for_bare_fn(ccx: &CrateContext, closure_ty: ty::t, def: ast::Def, fn_ptr: ValueRef, is_local: bool) -> ValueRef { let def_id = match def { ast::DefFn(did, _) | ast::DefStaticMethod(did, _, _) | ast::DefVariant(_, did, _) | ast::DefStruct(did) => did, _ => { ccx.sess().bug(format!("get_wrapper_for_bare_fn: \ expected a statically resolved fn, got {:?}", def)); } }; match ccx.closure_bare_wrapper_cache.borrow().find(&fn_ptr) { Some(&llval) => return llval, None => {} } let tcx = ccx.tcx(); debug!("get_wrapper_for_bare_fn(closure_ty={})", closure_ty.repr(tcx)); let f = match ty::get(closure_ty).sty { ty::ty_closure(ref f) => f, _ => { ccx.sess().bug(format!("get_wrapper_for_bare_fn: \ expected a closure ty, got {}", closure_ty.repr(tcx))); } }; let name = ty::with_path(tcx, def_id, |path| { mangle_internal_name_by_path_and_seq(path, "as_closure") }); let llfn = if is_local { decl_internal_rust_fn(ccx, true, f.sig.inputs.as_slice(), f.sig.output, name) } else { decl_rust_fn(ccx, true, f.sig.inputs.as_slice(), f.sig.output, name) }; ccx.closure_bare_wrapper_cache.borrow_mut().insert(fn_ptr, llfn); // This is only used by statics inlined from a different crate. if !is_local { // Don't regenerate the wrapper, just reuse the original one. return llfn; } let _icx = push_ctxt("closure::get_wrapper_for_bare_fn"); let arena = TypedArena::new(); let fcx = new_fn_ctxt(ccx, llfn, -1, true, f.sig.output, None, None, &arena); init_function(&fcx, true, f.sig.output, None); let bcx = fcx.entry_bcx.get().unwrap(); let args = create_datums_for_fn_args(&fcx, ty::ty_fn_args(closure_ty) .as_slice()); let mut llargs = Vec::new(); match fcx.llretptr.get() { Some(llretptr) => { llargs.push(llretptr); } None => {} } llargs.extend(&mut args.iter().map(|arg| arg.val)); let retval = Call(bcx, fn_ptr, llargs.as_slice(), []); if type_is_zero_size(ccx, f.sig.output) || fcx.llretptr.get().is_some() { RetVoid(bcx); } else { Ret(bcx, retval); } // HACK(eddyb) finish_fn cannot be used here, we returned directly. debuginfo::clear_source_location(&fcx); fcx.cleanup(); llfn } pub fn make_closure_from_bare_fn<'a>(bcx: &'a Block<'a>, closure_ty: ty::t, def: ast::Def, fn_ptr: ValueRef) -> DatumBlock<'a, Expr> { let scratch = rvalue_scratch_datum(bcx, closure_ty, "__adjust"); let wrapper = get_wrapper_for_bare_fn(bcx.ccx(), closure_ty, def, fn_ptr, true); fill_fn_pair(bcx, scratch.val, wrapper, C_null(Type::i8p(bcx.ccx()))); DatumBlock(bcx, scratch.to_expr_datum()) }