// Copyright 2016 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // Validate AST before lowering it to HIR // // This pass is supposed to catch things that fit into AST data structures, // but not permitted by the language. It runs after expansion when AST is frozen, // so it can check for erroneous constructions produced by syntax extensions. // This pass is supposed to perform only simple checks not requiring name resolution // or type checking or some other kind of complex analysis. use rustc::lint; use rustc::session::Session; use syntax::ast::*; use syntax::attr; use syntax::codemap::Spanned; use syntax::parse::token; use syntax::symbol::keywords; use syntax::visit::{self, Visitor}; use syntax_pos::Span; use errors; struct AstValidator<'a> { session: &'a Session, } impl<'a> AstValidator<'a> { fn err_handler(&self) -> &errors::Handler { &self.session.parse_sess.span_diagnostic } fn check_lifetime(&self, lifetime: &Lifetime) { let valid_names = [keywords::StaticLifetime.name(), keywords::Invalid.name()]; if !valid_names.contains(&lifetime.ident.name) && token::Ident(lifetime.ident.without_first_quote()).is_reserved_ident() { self.err_handler().span_err(lifetime.span, "lifetimes cannot use keyword names"); } } fn check_label(&self, label: Ident, span: Span) { if token::Ident(label.without_first_quote()).is_reserved_ident() || label.name == "'_" { self.err_handler().span_err(span, &format!("invalid label name `{}`", label.name)); } } fn invalid_non_exhaustive_attribute(&self, variant: &Variant) { let has_non_exhaustive = attr::contains_name(&variant.node.attrs, "non_exhaustive"); if has_non_exhaustive { self.err_handler().span_err(variant.span, "#[non_exhaustive] is not yet supported on variants"); } } fn invalid_visibility(&self, vis: &Visibility, span: Span, note: Option<&str>) { if vis != &Visibility::Inherited { let mut err = struct_span_err!(self.session, span, E0449, "unnecessary visibility qualifier"); if vis == &Visibility::Public { err.span_label(span, "`pub` not needed here"); } if let Some(note) = note { err.note(note); } err.emit(); } } fn check_decl_no_pat(&self, decl: &FnDecl, report_err: ReportFn) { for arg in &decl.inputs { match arg.pat.node { PatKind::Ident(BindingMode::ByValue(Mutability::Immutable), _, None) | PatKind::Wild => {} PatKind::Ident(BindingMode::ByValue(Mutability::Mutable), _, None) => report_err(arg.pat.span, true), _ => report_err(arg.pat.span, false), } } } fn check_trait_fn_not_const(&self, constness: Spanned) { match constness.node { Constness::Const => { struct_span_err!(self.session, constness.span, E0379, "trait fns cannot be declared const") .span_label(constness.span, "trait fns cannot be const") .emit(); } _ => {} } } fn no_questions_in_bounds(&self, bounds: &TyParamBounds, where_: &str, is_trait: bool) { for bound in bounds { if let TraitTyParamBound(ref poly, TraitBoundModifier::Maybe) = *bound { let mut err = self.err_handler().struct_span_err(poly.span, &format!("`?Trait` is not permitted in {}", where_)); if is_trait { err.note(&format!("traits are `?{}` by default", poly.trait_ref.path)); } err.emit(); } } } /// matches '-' lit | lit (cf. parser::Parser::parse_pat_literal_maybe_minus), /// or path for ranges. /// /// FIXME: do we want to allow expr -> pattern conversion to create path expressions? /// That means making this work: /// /// ```rust,ignore (FIXME) /// struct S; /// macro_rules! m { /// ($a:expr) => { /// let $a = S; /// } /// } /// m!(S); /// ``` fn check_expr_within_pat(&self, expr: &Expr, allow_paths: bool) { match expr.node { ExprKind::Lit(..) => {} ExprKind::Path(..) if allow_paths => {} ExprKind::Unary(UnOp::Neg, ref inner) if match inner.node { ExprKind::Lit(_) => true, _ => false } => {} _ => self.err_handler().span_err(expr.span, "arbitrary expressions aren't allowed \ in patterns") } } } impl<'a> Visitor<'a> for AstValidator<'a> { fn visit_expr(&mut self, expr: &'a Expr) { match expr.node { ExprKind::InlineAsm(..) if !self.session.target.target.options.allow_asm => { span_err!(self.session, expr.span, E0472, "asm! is unsupported on this target"); } _ => {} } visit::walk_expr(self, expr) } fn visit_ty(&mut self, ty: &'a Ty) { match ty.node { TyKind::BareFn(ref bfty) => { self.check_decl_no_pat(&bfty.decl, |span, _| { struct_span_err!(self.session, span, E0561, "patterns aren't allowed in function pointer types").emit(); }); } TyKind::TraitObject(ref bounds, ..) => { let mut any_lifetime_bounds = false; for bound in bounds { if let RegionTyParamBound(ref lifetime) = *bound { if any_lifetime_bounds { span_err!(self.session, lifetime.span, E0226, "only a single explicit lifetime bound is permitted"); break; } any_lifetime_bounds = true; } } self.no_questions_in_bounds(bounds, "trait object types", false); } TyKind::ImplTrait(ref bounds) => { if !bounds.iter() .any(|b| if let TraitTyParamBound(..) = *b { true } else { false }) { self.err_handler().span_err(ty.span, "at least one trait must be specified"); } } _ => {} } visit::walk_ty(self, ty) } fn visit_use_tree(&mut self, use_tree: &'a UseTree, id: NodeId, _nested: bool) { // Check if the path in this `use` is not generic, such as `use foo::bar;` While this // can't happen normally thanks to the parser, a generic might sneak in if the `use` is // built using a macro. // // macro_use foo { // ($p:path) => { use $p; } // } // foo!(bar::baz); use_tree.prefix.segments.iter().find(|segment| { segment.parameters.is_some() }).map(|segment| { self.err_handler().span_err(segment.parameters.as_ref().unwrap().span(), "generic arguments in import path"); }); visit::walk_use_tree(self, use_tree, id); } fn visit_label(&mut self, label: &'a Label) { self.check_label(label.ident, label.span); visit::walk_label(self, label); } fn visit_lifetime(&mut self, lifetime: &'a Lifetime) { self.check_lifetime(lifetime); visit::walk_lifetime(self, lifetime); } fn visit_item(&mut self, item: &'a Item) { match item.node { ItemKind::Impl(unsafety, polarity, _, _, Some(..), ref ty, ref impl_items) => { self.invalid_visibility(&item.vis, item.span, None); if ty.node == TyKind::Err { self.err_handler() .struct_span_err(item.span, "`impl Trait for .. {}` is an obsolete syntax") .help("use `auto trait Trait {}` instead").emit(); } if unsafety == Unsafety::Unsafe && polarity == ImplPolarity::Negative { span_err!(self.session, item.span, E0198, "negative impls cannot be unsafe"); } for impl_item in impl_items { self.invalid_visibility(&impl_item.vis, impl_item.span, None); if let ImplItemKind::Method(ref sig, _) = impl_item.node { self.check_trait_fn_not_const(sig.constness); } } } ItemKind::Impl(unsafety, polarity, defaultness, _, None, _, _) => { self.invalid_visibility(&item.vis, item.span, Some("place qualifiers on individual impl items instead")); if unsafety == Unsafety::Unsafe { span_err!(self.session, item.span, E0197, "inherent impls cannot be unsafe"); } if polarity == ImplPolarity::Negative { self.err_handler().span_err(item.span, "inherent impls cannot be negative"); } if defaultness == Defaultness::Default { self.err_handler().span_err(item.span, "inherent impls cannot be default"); } } ItemKind::ForeignMod(..) => { self.invalid_visibility(&item.vis, item.span, Some("place qualifiers on individual foreign items \ instead")); } ItemKind::Enum(ref def, _) => { for variant in &def.variants { self.invalid_non_exhaustive_attribute(variant); for field in variant.node.data.fields() { self.invalid_visibility(&field.vis, field.span, None); } } } ItemKind::Trait(is_auto, _, ref generics, ref bounds, ref trait_items) => { if is_auto == IsAuto::Yes { // Auto traits cannot have generics, super traits nor contain items. if generics.is_parameterized() { struct_span_err!(self.session, item.span, E0567, "auto traits cannot have generic parameters").emit(); } if !bounds.is_empty() { struct_span_err!(self.session, item.span, E0568, "auto traits cannot have super traits").emit(); } if !trait_items.is_empty() { struct_span_err!(self.session, item.span, E0380, "auto traits cannot have methods or associated items").emit(); } } self.no_questions_in_bounds(bounds, "supertraits", true); for trait_item in trait_items { if let TraitItemKind::Method(ref sig, ref block) = trait_item.node { self.check_trait_fn_not_const(sig.constness); if block.is_none() { self.check_decl_no_pat(&sig.decl, |span, mut_ident| { if mut_ident { self.session.buffer_lint( lint::builtin::PATTERNS_IN_FNS_WITHOUT_BODY, trait_item.id, span, "patterns aren't allowed in methods without bodies"); } else { struct_span_err!(self.session, span, E0642, "patterns aren't allowed in methods without bodies").emit(); } }); } } } } ItemKind::TraitAlias(Generics { ref params, .. }, ..) => { for param in params { if let GenericParam::Type(TyParam { ref bounds, ref default, span, .. }) = *param { if !bounds.is_empty() { self.err_handler().span_err(span, "type parameters on the left side of a \ trait alias cannot be bounded"); } if !default.is_none() { self.err_handler().span_err(span, "type parameters on the left side of a \ trait alias cannot have defaults"); } } } } ItemKind::Mod(_) => { // Ensure that `path` attributes on modules are recorded as used (c.f. #35584). attr::first_attr_value_str_by_name(&item.attrs, "path"); if attr::contains_name(&item.attrs, "warn_directory_ownership") { let lint = lint::builtin::LEGACY_DIRECTORY_OWNERSHIP; let msg = "cannot declare a new module at this location"; self.session.buffer_lint(lint, item.id, item.span, msg); } } ItemKind::Union(ref vdata, _) => { if !vdata.is_struct() { self.err_handler().span_err(item.span, "tuple and unit unions are not permitted"); } if vdata.fields().len() == 0 { self.err_handler().span_err(item.span, "unions cannot have zero fields"); } } _ => {} } visit::walk_item(self, item) } fn visit_foreign_item(&mut self, fi: &'a ForeignItem) { match fi.node { ForeignItemKind::Fn(ref decl, _) => { self.check_decl_no_pat(decl, |span, _| { struct_span_err!(self.session, span, E0130, "patterns aren't allowed in foreign function declarations") .span_label(span, "pattern not allowed in foreign function").emit(); }); } ForeignItemKind::Static(..) | ForeignItemKind::Ty => {} } visit::walk_foreign_item(self, fi) } fn visit_vis(&mut self, vis: &'a Visibility) { match *vis { Visibility::Restricted { ref path, .. } => { path.segments.iter().find(|segment| segment.parameters.is_some()).map(|segment| { self.err_handler().span_err(segment.parameters.as_ref().unwrap().span(), "generic arguments in visibility path"); }); } _ => {} } visit::walk_vis(self, vis) } fn visit_generics(&mut self, g: &'a Generics) { let mut seen_non_lifetime_param = false; let mut seen_default = None; for param in &g.params { match (param, seen_non_lifetime_param) { (&GenericParam::Lifetime(ref ld), true) => { self.err_handler() .span_err(ld.lifetime.span, "lifetime parameters must be leading"); }, (&GenericParam::Lifetime(_), false) => {} _ => { seen_non_lifetime_param = true; } } if let GenericParam::Type(ref ty_param @ TyParam { default: Some(_), .. }) = *param { seen_default = Some(ty_param.span); } else if let Some(span) = seen_default { self.err_handler() .span_err(span, "type parameters with a default must be trailing"); break } } for predicate in &g.where_clause.predicates { if let WherePredicate::EqPredicate(ref predicate) = *predicate { self.err_handler().span_err(predicate.span, "equality constraints are not yet \ supported in where clauses (#20041)"); } } visit::walk_generics(self, g) } fn visit_pat(&mut self, pat: &'a Pat) { match pat.node { PatKind::Lit(ref expr) => { self.check_expr_within_pat(expr, false); } PatKind::Range(ref start, ref end, _) => { self.check_expr_within_pat(start, true); self.check_expr_within_pat(end, true); } _ => {} } visit::walk_pat(self, pat) } } // Bans nested `impl Trait`, e.g. `impl Into`. // Nested `impl Trait` _is_ allowed in associated type position, // e.g `impl Iterator` struct NestedImplTraitVisitor<'a> { session: &'a Session, outer_impl_trait: Option, } impl<'a> NestedImplTraitVisitor<'a> { fn with_impl_trait(&mut self, outer_impl_trait: Option, f: F) where F: FnOnce(&mut NestedImplTraitVisitor<'a>) { let old_outer_impl_trait = self.outer_impl_trait; self.outer_impl_trait = outer_impl_trait; f(self); self.outer_impl_trait = old_outer_impl_trait; } } impl<'a> Visitor<'a> for NestedImplTraitVisitor<'a> { fn visit_ty(&mut self, t: &'a Ty) { if let TyKind::ImplTrait(_) = t.node { if let Some(outer_impl_trait) = self.outer_impl_trait { struct_span_err!(self.session, t.span, E0666, "nested `impl Trait` is not allowed") .span_label(outer_impl_trait, "outer `impl Trait`") .span_label(t.span, "devilishly nested `impl Trait` here") .emit(); } self.with_impl_trait(Some(t.span), |this| visit::walk_ty(this, t)); } else { visit::walk_ty(self, t); } } fn visit_path_parameters(&mut self, _: Span, path_parameters: &'a PathParameters) { match *path_parameters { PathParameters::AngleBracketed(ref params) => { for type_ in ¶ms.types { self.visit_ty(type_); } for type_binding in ¶ms.bindings { // Type bindings such as `Item=impl Debug` in `Iterator` // are allowed to contain nested `impl Trait`. self.with_impl_trait(None, |this| visit::walk_ty(this, &type_binding.ty)); } } PathParameters::Parenthesized(ref params) => { for type_ in ¶ms.inputs { self.visit_ty(type_); } if let Some(ref type_) = params.output { // `-> Foo` syntax is essentially an associated type binding, // so it is also allowed to contain nested `impl Trait`. self.with_impl_trait(None, |this| visit::walk_ty(this, type_)); } } } } } pub fn check_crate(session: &Session, krate: &Crate) { visit::walk_crate( &mut NestedImplTraitVisitor { session, outer_impl_trait: None, }, krate); visit::walk_crate(&mut AstValidator { session: session }, krate) }