// Copyright 2017 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use borrow_check::borrow_set::BorrowSet; use borrow_check::location::LocationTable; use rustc::hir::def_id::DefId; use rustc::mir::{ClosureRegionRequirements, ClosureOutlivesSubject, Mir}; use rustc::infer::InferCtxt; use rustc::ty::{self, RegionKind, RegionVid}; use rustc::util::nodemap::FxHashMap; use std::collections::BTreeSet; use std::fmt::Debug; use std::io; use transform::MirSource; use util::liveness::{LivenessResults, LocalSet}; use dataflow::FlowAtLocation; use dataflow::MaybeInitializedPlaces; use dataflow::move_paths::MoveData; use util as mir_util; use util::pretty::{self, ALIGN}; use self::mir_util::PassWhere; mod constraint_generation; pub mod explain_borrow; crate mod region_infer; mod renumber; mod subtype_constraint_generation; crate mod type_check; mod universal_regions; use self::region_infer::RegionInferenceContext; use self::universal_regions::UniversalRegions; /// Rewrites the regions in the MIR to use NLL variables, also /// scraping out the set of universal regions (e.g., region parameters) /// declared on the function. That set will need to be given to /// `compute_regions`. pub(in borrow_check) fn replace_regions_in_mir<'cx, 'gcx, 'tcx>( infcx: &InferCtxt<'cx, 'gcx, 'tcx>, def_id: DefId, param_env: ty::ParamEnv<'tcx>, mir: &mut Mir<'tcx>, ) -> UniversalRegions<'tcx> { debug!("replace_regions_in_mir(def_id={:?})", def_id); // Compute named region information. This also renumbers the inputs/outputs. let universal_regions = UniversalRegions::new(infcx, def_id, param_env); // Replace all remaining regions with fresh inference variables. renumber::renumber_mir(infcx, mir); let source = MirSource::item(def_id); mir_util::dump_mir(infcx.tcx, None, "renumber", &0, source, mir, |_, _| Ok(())); universal_regions } /// Computes the (non-lexical) regions from the input MIR. /// /// This may result in errors being reported. pub(in borrow_check) fn compute_regions<'cx, 'gcx, 'tcx>( infcx: &InferCtxt<'cx, 'gcx, 'tcx>, def_id: DefId, universal_regions: UniversalRegions<'tcx>, mir: &Mir<'tcx>, _location_table: &LocationTable, param_env: ty::ParamEnv<'gcx>, flow_inits: &mut FlowAtLocation>, move_data: &MoveData<'tcx>, _borrow_set: &BorrowSet<'tcx>, ) -> ( RegionInferenceContext<'tcx>, Option>, ) { // Run the MIR type-checker. let liveness = &LivenessResults::compute(mir); let constraint_sets = &type_check::type_check( infcx, param_env, mir, def_id, &universal_regions, &liveness, flow_inits, move_data, ); // Create the region inference context, taking ownership of the region inference // data that was contained in `infcx`. let var_origins = infcx.take_region_var_origins(); let mut regioncx = RegionInferenceContext::new(var_origins, universal_regions, mir); subtype_constraint_generation::generate(&mut regioncx, mir, constraint_sets); // Generate non-subtyping constraints. constraint_generation::generate_constraints(infcx, &mut regioncx, &mir); // Solve the region constraints. let closure_region_requirements = regioncx.solve(infcx, &mir, def_id); // Dump MIR results into a file, if that is enabled. This let us // write unit-tests, as well as helping with debugging. dump_mir_results( infcx, liveness, MirSource::item(def_id), &mir, ®ioncx, &closure_region_requirements, ); // We also have a `#[rustc_nll]` annotation that causes us to dump // information dump_annotation(infcx, &mir, def_id, ®ioncx, &closure_region_requirements); (regioncx, closure_region_requirements) } fn dump_mir_results<'a, 'gcx, 'tcx>( infcx: &InferCtxt<'a, 'gcx, 'tcx>, liveness: &LivenessResults, source: MirSource, mir: &Mir<'tcx>, regioncx: &RegionInferenceContext, closure_region_requirements: &Option, ) { if !mir_util::dump_enabled(infcx.tcx, "nll", source) { return; } let regular_liveness_per_location: FxHashMap<_, _> = mir.basic_blocks() .indices() .flat_map(|bb| { let mut results = vec![]; liveness .regular .simulate_block(&mir, bb, |location, local_set| { results.push((location, local_set.clone())); }); results }) .collect(); let drop_liveness_per_location: FxHashMap<_, _> = mir.basic_blocks() .indices() .flat_map(|bb| { let mut results = vec![]; liveness .drop .simulate_block(&mir, bb, |location, local_set| { results.push((location, local_set.clone())); }); results }) .collect(); mir_util::dump_mir(infcx.tcx, None, "nll", &0, source, mir, |pass_where, out| { match pass_where { // Before the CFG, dump out the values for each region variable. PassWhere::BeforeCFG => { regioncx.dump_mir(out)?; if let Some(closure_region_requirements) = closure_region_requirements { writeln!(out, "|")?; writeln!(out, "| Free Region Constraints")?; for_each_region_constraint(closure_region_requirements, &mut |msg| { writeln!(out, "| {}", msg) })?; } } // Before each basic block, dump out the values // that are live on entry to the basic block. PassWhere::BeforeBlock(bb) => { let s = live_variable_set(&liveness.regular.ins[bb], &liveness.drop.ins[bb]); writeln!(out, " | Live variables on entry to {:?}: {}", bb, s)?; } PassWhere::BeforeLocation(location) => { let s = live_variable_set( ®ular_liveness_per_location[&location], &drop_liveness_per_location[&location], ); writeln!( out, "{:ALIGN$} | Live variables on entry to {:?}: {}", "", location, s, ALIGN = ALIGN )?; } PassWhere::AfterLocation(_) | PassWhere::AfterCFG => {} } Ok(()) }); // Also dump the inference graph constraints as a graphviz file. let _: io::Result<()> = do_catch! {{ let mut file = pretty::create_dump_file(infcx.tcx, "regioncx.dot", None, "nll", &0, source)?; regioncx.dump_graphviz(&mut file)?; }}; } fn dump_annotation<'a, 'gcx, 'tcx>( infcx: &InferCtxt<'a, 'gcx, 'tcx>, mir: &Mir<'tcx>, mir_def_id: DefId, regioncx: &RegionInferenceContext, closure_region_requirements: &Option, ) { let tcx = infcx.tcx; let base_def_id = tcx.closure_base_def_id(mir_def_id); if !tcx.has_attr(base_def_id, "rustc_regions") { return; } // When the enclosing function is tagged with `#[rustc_regions]`, // we dump out various bits of state as warnings. This is useful // for verifying that the compiler is behaving as expected. These // warnings focus on the closure region requirements -- for // viewing the intraprocedural state, the -Zdump-mir output is // better. if let Some(closure_region_requirements) = closure_region_requirements { let mut err = tcx.sess .diagnostic() .span_note_diag(mir.span, "External requirements"); regioncx.annotate(&mut err); err.note(&format!( "number of external vids: {}", closure_region_requirements.num_external_vids )); // Dump the region constraints we are imposing *between* those // newly created variables. for_each_region_constraint(closure_region_requirements, &mut |msg| { err.note(msg); Ok(()) }).unwrap(); err.emit(); } else { let mut err = tcx.sess .diagnostic() .span_note_diag(mir.span, "No external requirements"); regioncx.annotate(&mut err); err.emit(); } } fn for_each_region_constraint( closure_region_requirements: &ClosureRegionRequirements, with_msg: &mut dyn FnMut(&str) -> io::Result<()>, ) -> io::Result<()> { for req in &closure_region_requirements.outlives_requirements { let subject: &dyn Debug = match &req.subject { ClosureOutlivesSubject::Region(subject) => subject, ClosureOutlivesSubject::Ty(ty) => ty, }; with_msg(&format!( "where {:?}: {:?}", subject, req.outlived_free_region, ))?; } Ok(()) } /// Right now, we piggy back on the `ReVar` to store our NLL inference /// regions. These are indexed with `RegionVid`. This method will /// assert that the region is a `ReVar` and extract its internal index. /// This is reasonable because in our MIR we replace all universal regions /// with inference variables. pub trait ToRegionVid { fn to_region_vid(self) -> RegionVid; } impl<'tcx> ToRegionVid for &'tcx RegionKind { fn to_region_vid(self) -> RegionVid { if let ty::ReVar(vid) = self { *vid } else { bug!("region is not an ReVar: {:?}", self) } } } impl ToRegionVid for RegionVid { fn to_region_vid(self) -> RegionVid { self } } fn live_variable_set(regular: &LocalSet, drops: &LocalSet) -> String { // sort and deduplicate: let all_locals: BTreeSet<_> = regular.iter().chain(drops.iter()).collect(); // construct a string with each local, including `(drop)` if it is // only dropped, versus a regular use. let mut string = String::new(); for local in all_locals { string.push_str(&format!("{:?}", local)); if !regular.contains(&local) { assert!(drops.contains(&local)); string.push_str(" (drop)"); } string.push_str(", "); } let len = if string.is_empty() { 0 } else { string.len() - 2 }; format!("[{}]", &string[..len]) }