// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. /*! This file actually contains two passes related to regions. The first pass builds up the `scope_map`, which describes the parent links in the region hierarchy. The second pass infers which types must be region parameterized. */ use driver::session::Session; use metadata::csearch; use middle::resolve; use middle::ty::{region_variance, rv_covariant, rv_invariant}; use middle::ty::{rv_contravariant, FreeRegion}; use middle::ty; use core::hashmap::{HashMap, HashSet}; use syntax::ast_map; use syntax::codemap::span; use syntax::print::pprust; use syntax::parse::token::special_idents; use syntax::{ast, visit}; pub type parent = Option; /** The region maps encode information about region relationships. - `scope_map` maps from: - an expression to the expression or block encoding the maximum (static) lifetime of a value produced by that expression. This is generally the innermost call, statement, match, or block. - a variable or binding id to the block in which that variable is declared. - `free_region_map` maps from: - a free region `a` to a list of free regions `bs` such that `a <= b for all b in bs` - the free region map is populated during type check as we check each function. See the function `relate_free_regions` for more information. */ pub struct RegionMaps { priv scope_map: HashMap, priv free_region_map: HashMap, } pub struct ctxt { sess: Session, def_map: resolve::DefMap, // Generated maps: region_maps: @mut RegionMaps, // Generally speaking, expressions are parented to their innermost // enclosing block. But some kinds of expressions serve as // parents: calls, methods, etc. In addition, some expressions // serve as parents by virtue of where they appear. For example, // the condition in a while loop is always a parent. In those // cases, we add the node id of such an expression to this set so // that when we visit it we can view it as a parent. root_exprs: @mut HashSet, // The parent scope is the innermost block, statement, call, or match // expression during the execution of which the current expression // will be evaluated. Generally speaking, the innermost parent // scope is also the closest suitable ancestor in the AST tree. // // There is a subtle point concerning call arguments. Imagine // you have a call: // // { // block a // foo( // call b // x, // y); // } // // In what lifetime are the expressions `x` and `y` evaluated? At // first, I imagine the answer was the block `a`, as the arguments // are evaluated before the call takes place. But this turns out // to be wrong. The lifetime of the call must encompass the // argument evaluation as well. // // The reason is that evaluation of an earlier argument could // create a borrow which exists during the evaluation of later // arguments. Consider this torture test, for example, // // fn test1(x: @mut ~int) { // foo(&**x, *x = ~5); // } // // Here, the first argument `&**x` will be a borrow of the `~int`, // but the second argument overwrites that very value! Bad. // (This test is borrowck-pure-scope-in-call.rs, btw) parent: parent, } pub impl RegionMaps { fn relate_free_regions(&mut self, sub: FreeRegion, sup: FreeRegion) { match self.free_region_map.find_mut(&sub) { Some(sups) => { if !sups.contains(&sup) { sups.push(sup); } return; } None => {} } debug!("relate_free_regions(sub=%?, sup=%?)", sub, sup); self.free_region_map.insert(sub, ~[sup]); } fn record_parent(&mut self, sub: ast::node_id, sup: ast::node_id) { debug!("record_parent(sub=%?, sup=%?)", sub, sup); self.scope_map.insert(sub, sup); } fn opt_encl_scope(&self, id: ast::node_id) -> Option { //! Returns the narrowest scope that encloses `id`, if any. self.scope_map.find(&id).map(|&x| *x) } fn encl_scope(&self, id: ast::node_id) -> ast::node_id { //! Returns the narrowest scope that encloses `id`, if any. match self.scope_map.find(&id) { Some(&r) => r, None => { fail!(fmt!("No enclosing scope for id %?", id)); } } } fn encl_region(&self, id: ast::node_id) -> ty::Region { //! Returns the narrowest scope region that encloses `id`, if any. ty::re_scope(self.encl_scope(id)) } fn is_sub_scope(&self, sub_scope: ast::node_id, superscope: ast::node_id) -> bool { /*! * Returns true if `sub_scope` is equal to or is lexically * nested inside `superscope` and false otherwise. */ let mut sub_scope = sub_scope; while superscope != sub_scope { match self.scope_map.find(&sub_scope) { None => return false, Some(&scope) => sub_scope = scope } } return true; } fn sub_free_region(&self, sub: FreeRegion, sup: FreeRegion) -> bool { /*! * Determines whether two free regions have a subregion relationship * by walking the graph encoded in `free_region_map`. Note that * it is possible that `sub != sup` and `sub <= sup` and `sup <= sub` * (that is, the user can give two different names to the same lifetime). */ if sub == sup { return true; } // Do a little breadth-first-search here. The `queue` list // doubles as a way to detect if we've seen a particular FR // before. Note that we expect this graph to be an *extremely // shallow* tree. let mut queue = ~[sub]; let mut i = 0; while i < queue.len() { match self.free_region_map.find(&queue[i]) { Some(parents) => { for parents.each |parent| { if *parent == sup { return true; } if !queue.contains(parent) { queue.push(*parent); } } } None => {} } i += 1; } return false; } fn is_subregion_of(&self, sub_region: ty::Region, super_region: ty::Region) -> bool { /*! * Determines whether one region is a subregion of another. This is * intended to run *after inference* and sadly the logic is somewhat * duplicated with the code in infer.rs. */ debug!("is_subregion_of(sub_region=%?, super_region=%?)", sub_region, super_region); sub_region == super_region || { match (sub_region, super_region) { (_, ty::re_static) => { true } (ty::re_scope(sub_scope), ty::re_scope(super_scope)) => { self.is_sub_scope(sub_scope, super_scope) } (ty::re_scope(sub_scope), ty::re_free(ref fr)) => { self.is_sub_scope(sub_scope, fr.scope_id) } (ty::re_free(sub_fr), ty::re_free(super_fr)) => { self.sub_free_region(sub_fr, super_fr) } _ => { false } } } } fn nearest_common_ancestor(&self, scope_a: ast::node_id, scope_b: ast::node_id) -> Option { /*! * Finds the nearest common ancestor (if any) of two scopes. That * is, finds the smallest scope which is greater than or equal to * both `scope_a` and `scope_b`. */ if scope_a == scope_b { return Some(scope_a); } let a_ancestors = ancestors_of(self, scope_a); let b_ancestors = ancestors_of(self, scope_b); let mut a_index = vec::len(a_ancestors) - 1u; let mut b_index = vec::len(b_ancestors) - 1u; // Here, ~[ab]_ancestors is a vector going from narrow to broad. // The end of each vector will be the item where the scope is // defined; if there are any common ancestors, then the tails of // the vector will be the same. So basically we want to walk // backwards from the tail of each vector and find the first point // where they diverge. If one vector is a suffix of the other, // then the corresponding scope is a superscope of the other. if a_ancestors[a_index] != b_ancestors[b_index] { return None; } loop { // Loop invariant: a_ancestors[a_index] == b_ancestors[b_index] // for all indices between a_index and the end of the array if a_index == 0u { return Some(scope_a); } if b_index == 0u { return Some(scope_b); } a_index -= 1u; b_index -= 1u; if a_ancestors[a_index] != b_ancestors[b_index] { return Some(a_ancestors[a_index + 1u]); } } fn ancestors_of(self: &RegionMaps, scope: ast::node_id) -> ~[ast::node_id] { let mut result = ~[scope]; let mut scope = scope; loop { match self.scope_map.find(&scope) { None => return result, Some(&superscope) => { result.push(superscope); scope = superscope; } } } } } } /// Extracts that current parent from cx, failing if there is none. pub fn parent_id(cx: ctxt, span: span) -> ast::node_id { match cx.parent { None => { cx.sess.span_bug(span, "crate should not be parent here"); } Some(parent_id) => { parent_id } } } /// Records the current parent (if any) as the parent of `child_id`. pub fn record_parent(cx: ctxt, child_id: ast::node_id) { for cx.parent.each |parent_id| { cx.region_maps.record_parent(child_id, *parent_id); } } pub fn resolve_block(blk: &ast::blk, cx: ctxt, visitor: visit::vt) { // Record the parent of this block. record_parent(cx, blk.node.id); // Descend. let new_cx: ctxt = ctxt {parent: Some(blk.node.id),.. cx}; visit::visit_block(blk, new_cx, visitor); } pub fn resolve_arm(arm: &ast::arm, cx: ctxt, visitor: visit::vt) { visit::visit_arm(arm, cx, visitor); } pub fn resolve_pat(pat: @ast::pat, cx: ctxt, visitor: visit::vt) { match pat.node { ast::pat_ident(*) => { let defn_opt = cx.def_map.find(&pat.id); match defn_opt { Some(&ast::def_variant(_,_)) => { /* Nothing to do; this names a variant. */ } _ => { /* This names a local. Bind it to the containing scope. */ record_parent(cx, pat.id); } } } _ => { /* no-op */ } } visit::visit_pat(pat, cx, visitor); } pub fn resolve_stmt(stmt: @ast::stmt, cx: ctxt, visitor: visit::vt) { match stmt.node { ast::stmt_decl(*) => { visit::visit_stmt(stmt, cx, visitor); } // This code has to be kept consistent with trans::base::trans_stmt ast::stmt_expr(_, stmt_id) | ast::stmt_semi(_, stmt_id) => { record_parent(cx, stmt_id); let mut expr_cx = cx; expr_cx.parent = Some(stmt_id); visit::visit_stmt(stmt, expr_cx, visitor); } ast::stmt_mac(*) => cx.sess.bug(~"unexpanded macro") } } pub fn resolve_expr(expr: @ast::expr, cx: ctxt, visitor: visit::vt) { record_parent(cx, expr.id); let mut new_cx = cx; match expr.node { // Calls or overloadable operators // FIXME #3387 // ast::expr_index(*) | ast::expr_binary(*) | // ast::expr_unary(*) | ast::expr_call(*) | ast::expr_method_call(*) => { debug!("node %d: %s", expr.id, pprust::expr_to_str(expr, cx.sess.intr())); new_cx.parent = Some(expr.id); } ast::expr_match(*) => { debug!("node %d: %s", expr.id, pprust::expr_to_str(expr, cx.sess.intr())); new_cx.parent = Some(expr.id); } ast::expr_while(cond, _) => { new_cx.root_exprs.insert(cond.id); } _ => {} }; if new_cx.root_exprs.contains(&expr.id) { new_cx.parent = Some(expr.id); } visit::visit_expr(expr, new_cx, visitor); } pub fn resolve_local(local: @ast::local, cx: ctxt, visitor: visit::vt) { record_parent(cx, local.node.id); visit::visit_local(local, cx, visitor); } pub fn resolve_item(item: @ast::item, cx: ctxt, visitor: visit::vt) { // Items create a new outer block scope as far as we're concerned. let new_cx: ctxt = ctxt {parent: None,.. cx}; visit::visit_item(item, new_cx, visitor); } pub fn resolve_fn(fk: &visit::fn_kind, decl: &ast::fn_decl, body: &ast::blk, sp: span, id: ast::node_id, cx: ctxt, visitor: visit::vt) { let fn_cx = match *fk { visit::fk_item_fn(*) | visit::fk_method(*) => { // Top-level functions are a root scope. ctxt {parent: Some(id),.. cx} } visit::fk_anon(*) | visit::fk_fn_block(*) => { // Closures continue with the inherited scope. cx } }; // Record the ID of `self`. match *fk { visit::fk_method(_, _, method) => { cx.region_maps.record_parent(method.self_id, body.node.id); } _ => {} } debug!("visiting fn with body %d. cx.parent: %? \ fn_cx.parent: %?", body.node.id, cx.parent, fn_cx.parent); for decl.inputs.each |input| { cx.region_maps.record_parent(input.id, body.node.id); } visit::visit_fn(fk, decl, body, sp, id, fn_cx, visitor); } pub fn resolve_crate(sess: Session, def_map: resolve::DefMap, crate: @ast::crate) -> @mut RegionMaps { let region_maps = @mut RegionMaps { scope_map: HashMap::new(), free_region_map: HashMap::new() }; let cx: ctxt = ctxt {sess: sess, def_map: def_map, region_maps: region_maps, root_exprs: @mut HashSet::new(), parent: None}; let visitor = visit::mk_vt(@visit::Visitor { visit_block: resolve_block, visit_item: resolve_item, visit_fn: resolve_fn, visit_arm: resolve_arm, visit_pat: resolve_pat, visit_stmt: resolve_stmt, visit_expr: resolve_expr, visit_local: resolve_local, .. *visit::default_visitor() }); visit::visit_crate(crate, cx, visitor); return region_maps; } // ___________________________________________________________________________ // Determining region parameterization // // Infers which type defns must be region parameterized---this is done // by scanning their contents to see whether they reference a region // type, directly or indirectly. This is a fixed-point computation. // // We do it in two passes. First we walk the AST and construct a map // from each type defn T1 to other defns which make use of it. For example, // if we have a type like: // // type S = *int; // type T = S; // // Then there would be a map entry from S to T. During the same walk, // we also construct add any types that reference regions to a set and // a worklist. We can then process the worklist, propagating indirect // dependencies until a fixed point is reached. pub type region_paramd_items = @mut HashMap; #[deriving(Eq)] pub struct region_dep { ambient_variance: region_variance, id: ast::node_id } pub type dep_map = @mut HashMap; pub struct DetermineRpCtxt { sess: Session, ast_map: ast_map::map, def_map: resolve::DefMap, region_paramd_items: region_paramd_items, dep_map: dep_map, worklist: ~[ast::node_id], // the innermost enclosing item id item_id: ast::node_id, // true when we are within an item but not within a method. // see long discussion on region_is_relevant(). anon_implies_rp: bool, // encodes the context of the current type; invariant if // mutable, covariant otherwise ambient_variance: region_variance, } pub fn join_variance(variance1: region_variance, variance2: region_variance) -> region_variance { match (variance1, variance2) { (rv_invariant, _) => {rv_invariant} (_, rv_invariant) => {rv_invariant} (rv_covariant, rv_contravariant) => {rv_invariant} (rv_contravariant, rv_covariant) => {rv_invariant} (rv_covariant, rv_covariant) => {rv_covariant} (rv_contravariant, rv_contravariant) => {rv_contravariant} } } /// Combines the ambient variance with the variance of a /// particular site to yield the final variance of the reference. /// /// Example: if we are checking function arguments then the ambient /// variance is contravariant. If we then find a `&'r T` pointer, `r` /// appears in a co-variant position. This implies that this /// occurrence of `r` is contra-variant with respect to the current /// item, and hence the function returns `rv_contravariant`. pub fn add_variance(ambient_variance: region_variance, variance: region_variance) -> region_variance { match (ambient_variance, variance) { (rv_invariant, _) => rv_invariant, (_, rv_invariant) => rv_invariant, (rv_covariant, c) => c, (c, rv_covariant) => c, (rv_contravariant, rv_contravariant) => rv_covariant } } pub impl DetermineRpCtxt { fn add_variance(&self, variance: region_variance) -> region_variance { add_variance(self.ambient_variance, variance) } /// Records that item `id` is region-parameterized with the /// variance `variance`. If `id` was already parameterized, then /// the new variance is joined with the old variance. fn add_rp(&mut self, id: ast::node_id, variance: region_variance) { assert!(id != 0); let old_variance = self.region_paramd_items.find(&id). map_consume(|x| *x); let joined_variance = match old_variance { None => variance, Some(v) => join_variance(v, variance) }; debug!("add_rp() variance for %s: %? == %? ^ %?", ast_map::node_id_to_str(self.ast_map, id, self.sess.parse_sess.interner), joined_variance, old_variance, variance); if Some(joined_variance) != old_variance { let region_paramd_items = self.region_paramd_items; region_paramd_items.insert(id, joined_variance); self.worklist.push(id); } } /// Indicates that the region-parameterization of the current item /// is dependent on the region-parameterization of the item /// `from`. Put another way, it indicates that the current item /// contains a value of type `from`, so if `from` is /// region-parameterized, so is the current item. fn add_dep(&mut self, from: ast::node_id) { debug!("add dependency from %d -> %d (%s -> %s) with variance %?", from, self.item_id, ast_map::node_id_to_str(self.ast_map, from, self.sess.parse_sess.interner), ast_map::node_id_to_str(self.ast_map, self.item_id, self.sess.parse_sess.interner), copy self.ambient_variance); let vec = match self.dep_map.find(&from) { Some(&vec) => vec, None => { let vec = @mut ~[]; let dep_map = self.dep_map; dep_map.insert(from, vec); vec } }; let dep = region_dep { ambient_variance: self.ambient_variance, id: self.item_id }; if !vec.contains(&dep) { vec.push(dep); } } // Determines whether a reference to a region that appears in the // AST implies that the enclosing type is region-parameterized (RP). // This point is subtle. Here are some examples to make it more // concrete. // // 1. impl foo for &int { ... } // 2. impl foo for &'self int { ... } // 3. impl foo for bar { fn m(@self) -> &'self int { ... } } // 4. impl foo for bar { fn m(&self) -> &'self int { ... } } // 5. impl foo for bar { fn m(&self) -> &int { ... } } // // In case 1, the anonymous region is being referenced, // but it appears in a context where the anonymous region // resolves to self, so the impl foo is RP. // // In case 2, the self parameter is written explicitly. // // In case 3, the method refers to the region `self`, so that // implies that the impl must be region parameterized. (If the // type bar is not region parameterized, that is an error, because // the self region is effectively unconstrained, but that is // detected elsewhere). // // In case 4, the method refers to the region `self`, but the // `self` region is bound by the `&self` receiver, and so this // does not require that `bar` be RP. // // In case 5, the anonymous region is referenced, but it // bound by the method, so it does not refer to self. This impl // need not be region parameterized. // // Normally, & or &self implies that the enclosing item is RP. // However, within a function, & is always bound. Within a method // with &self type, &self is also bound. We detect those last two // cases via flags (anon_implies_rp and self_implies_rp) that are // true when the anon or self region implies RP. fn region_is_relevant(&self, r: Option<@ast::Lifetime>) -> bool { match r { None => { self.anon_implies_rp } Some(ref l) if l.ident == special_idents::static => { false } Some(ref l) if l.ident == special_idents::self_ => { true } Some(_) => { false } } } fn with(@mut self, item_id: ast::node_id, anon_implies_rp: bool, f: &fn()) { let old_item_id = self.item_id; let old_anon_implies_rp = self.anon_implies_rp; self.item_id = item_id; self.anon_implies_rp = anon_implies_rp; debug!("with_item_id(%d, %b)", item_id, anon_implies_rp); let _i = ::util::common::indenter(); f(); self.item_id = old_item_id; self.anon_implies_rp = old_anon_implies_rp; } fn with_ambient_variance(@mut self, variance: region_variance, f: &fn()) { let old_ambient_variance = self.ambient_variance; self.ambient_variance = self.add_variance(variance); f(); self.ambient_variance = old_ambient_variance; } } pub fn determine_rp_in_item(item: @ast::item, cx: @mut DetermineRpCtxt, visitor: visit::vt<@mut DetermineRpCtxt>) { do cx.with(item.id, true) { visit::visit_item(item, cx, visitor); } } pub fn determine_rp_in_fn(fk: &visit::fn_kind, decl: &ast::fn_decl, body: &ast::blk, _: span, _: ast::node_id, cx: @mut DetermineRpCtxt, visitor: visit::vt<@mut DetermineRpCtxt>) { do cx.with(cx.item_id, false) { do cx.with_ambient_variance(rv_contravariant) { for decl.inputs.each |a| { (visitor.visit_ty)(a.ty, cx, visitor); } } (visitor.visit_ty)(decl.output, cx, visitor); let generics = visit::generics_of_fn(fk); (visitor.visit_generics)(&generics, cx, visitor); (visitor.visit_block)(body, cx, visitor); } } pub fn determine_rp_in_ty_method(ty_m: &ast::ty_method, cx: @mut DetermineRpCtxt, visitor: visit::vt<@mut DetermineRpCtxt>) { do cx.with(cx.item_id, false) { visit::visit_ty_method(ty_m, cx, visitor); } } pub fn determine_rp_in_ty(ty: @ast::Ty, cx: @mut DetermineRpCtxt, visitor: visit::vt<@mut DetermineRpCtxt>) { // we are only interested in types that will require an item to // be region-parameterized. if cx.item_id is zero, then this type // is not a member of a type defn nor is it a constitutent of an // impl etc. So we can ignore it and its components. if cx.item_id == 0 { return; } // if this type directly references a region pointer like &'r ty, // add to the worklist/set. Note that &'r ty is contravariant with // respect to &r, because &'r ty can be used whereever a *smaller* // region is expected (and hence is a supertype of those // locations) let sess = cx.sess; match ty.node { ast::ty_rptr(r, _) => { debug!("referenced rptr type %s", pprust::ty_to_str(ty, sess.intr())); if cx.region_is_relevant(r) { cx.add_rp(cx.item_id, cx.add_variance(rv_contravariant)) } } ast::ty_closure(ref f) => { debug!("referenced fn type: %s", pprust::ty_to_str(ty, sess.intr())); match f.region { Some(_) => { if cx.region_is_relevant(f.region) { cx.add_rp(cx.item_id, cx.add_variance(rv_contravariant)) } } None => { if f.sigil == ast::BorrowedSigil && cx.anon_implies_rp { cx.add_rp(cx.item_id, cx.add_variance(rv_contravariant)); } } } } _ => {} } // if this references another named type, add the dependency // to the dep_map. If the type is not defined in this crate, // then check whether it is region-parameterized and consider // that as a direct dependency. match ty.node { ast::ty_path(path, id) => { match cx.def_map.find(&id) { Some(&ast::def_ty(did)) | Some(&ast::def_trait(did)) | Some(&ast::def_struct(did)) => { if did.crate == ast::local_crate { if cx.region_is_relevant(path.rp) { cx.add_dep(did.node); } } else { let cstore = sess.cstore; match csearch::get_region_param(cstore, did) { None => {} Some(variance) => { debug!("reference to external, rp'd type %s", pprust::ty_to_str(ty, sess.intr())); if cx.region_is_relevant(path.rp) { cx.add_rp(cx.item_id, cx.add_variance(variance)) } } } } } _ => {} } } _ => {} } match ty.node { ast::ty_box(mt) | ast::ty_uniq(mt) | ast::ty_vec(mt) | ast::ty_rptr(_, mt) | ast::ty_ptr(mt) => { visit_mt(mt, cx, visitor); } ast::ty_path(path, _) => { // type parameters are---for now, anyway---always invariant do cx.with_ambient_variance(rv_invariant) { for path.types.each |tp| { (visitor.visit_ty)(*tp, cx, visitor); } } } ast::ty_closure(@ast::TyClosure {decl: ref decl, _}) | ast::ty_bare_fn(@ast::TyBareFn {decl: ref decl, _}) => { // fn() binds the & region, so do not consider &T types that // appear *inside* a fn() type to affect the enclosing item: do cx.with(cx.item_id, false) { // parameters are contravariant do cx.with_ambient_variance(rv_contravariant) { for decl.inputs.each |a| { (visitor.visit_ty)(a.ty, cx, visitor); } } (visitor.visit_ty)(decl.output, cx, visitor); } } _ => { visit::visit_ty(ty, cx, visitor); } } fn visit_mt(mt: ast::mt, cx: @mut DetermineRpCtxt, visitor: visit::vt<@mut DetermineRpCtxt>) { // mutability is invariant if mt.mutbl == ast::m_mutbl { do cx.with_ambient_variance(rv_invariant) { (visitor.visit_ty)(mt.ty, cx, visitor); } } else { (visitor.visit_ty)(mt.ty, cx, visitor); } } } pub fn determine_rp_in_struct_field( cm: @ast::struct_field, cx: @mut DetermineRpCtxt, visitor: visit::vt<@mut DetermineRpCtxt>) { match cm.node.kind { ast::named_field(_, ast::struct_mutable, _) => { do cx.with_ambient_variance(rv_invariant) { visit::visit_struct_field(cm, cx, visitor); } } ast::named_field(_, ast::struct_immutable, _) | ast::unnamed_field => { visit::visit_struct_field(cm, cx, visitor); } } } pub fn determine_rp_in_crate(sess: Session, ast_map: ast_map::map, def_map: resolve::DefMap, crate: @ast::crate) -> region_paramd_items { let cx = @mut DetermineRpCtxt { sess: sess, ast_map: ast_map, def_map: def_map, region_paramd_items: @mut HashMap::new(), dep_map: @mut HashMap::new(), worklist: ~[], item_id: 0, anon_implies_rp: false, ambient_variance: rv_covariant }; // Gather up the base set, worklist and dep_map let visitor = visit::mk_vt(@visit::Visitor { visit_fn: determine_rp_in_fn, visit_item: determine_rp_in_item, visit_ty: determine_rp_in_ty, visit_ty_method: determine_rp_in_ty_method, visit_struct_field: determine_rp_in_struct_field, .. *visit::default_visitor() }); visit::visit_crate(crate, cx, visitor); // Propagate indirect dependencies // // Each entry in the worklist is the id of an item C whose region // parameterization has been updated. So we pull ids off of the // worklist, find the current variance, and then iterate through // all of the dependent items (that is, those items that reference // C). For each dependent item D, we combine the variance of C // with the ambient variance where the reference occurred and then // update the region-parameterization of D to reflect the result. { let cx = &mut *cx; while cx.worklist.len() != 0 { let c_id = cx.worklist.pop(); let c_variance = *cx.region_paramd_items.get(&c_id); debug!("popped %d from worklist", c_id); match cx.dep_map.find(&c_id) { None => {} Some(deps) => { for deps.each |dep| { let v = add_variance(dep.ambient_variance, c_variance); cx.add_rp(dep.id, v); } } } } } debug!("%s", { debug!("Region variance results:"); let region_paramd_items = cx.region_paramd_items; for region_paramd_items.each |&key, &value| { debug!("item %? (%s) is parameterized with variance %?", key, ast_map::node_id_to_str(ast_map, key, sess.parse_sess.interner), value); } "----" }); // return final set return cx.region_paramd_items; }