// Copyright 2014-2016 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // FIXME: The PowerPC64 ABI needs to zero or sign extend function // call parameters, but compute_abi_info() is passed LLVM types // which have no sign information. // // Alignment of 128 bit types is not currently handled, this will // need to be fixed when PowerPC vector support is added. use llvm::{Integer, Pointer, Float, Double, Struct, Array}; use trans::abi::{FnType, ArgType}; use trans::context::CrateContext; use trans::type_::Type; use std::cmp; fn align_up_to(off: usize, a: usize) -> usize { return (off + a - 1) / a * a; } fn align(off: usize, ty: Type) -> usize { let a = ty_align(ty); return align_up_to(off, a); } fn ty_align(ty: Type) -> usize { match ty.kind() { Integer => ((ty.int_width() as usize) + 7) / 8, Pointer => 8, Float => 4, Double => 8, Struct => { if ty.is_packed() { 1 } else { let str_tys = ty.field_types(); str_tys.iter().fold(1, |a, t| cmp::max(a, ty_align(*t))) } } Array => { let elt = ty.element_type(); ty_align(elt) } _ => panic!("ty_align: unhandled type") } } fn ty_size(ty: Type) -> usize { match ty.kind() { Integer => ((ty.int_width() as usize) + 7) / 8, Pointer => 8, Float => 4, Double => 8, Struct => { if ty.is_packed() { let str_tys = ty.field_types(); str_tys.iter().fold(0, |s, t| s + ty_size(*t)) } else { let str_tys = ty.field_types(); let size = str_tys.iter().fold(0, |s, t| align(s, *t) + ty_size(*t)); align(size, ty) } } Array => { let len = ty.array_length(); let elt = ty.element_type(); let eltsz = ty_size(elt); len * eltsz } _ => panic!("ty_size: unhandled type") } } fn is_homogenous_aggregate_ty(ty: Type) -> Option<(Type, u64)> { fn check_array(ty: Type) -> Option<(Type, u64)> { let len = ty.array_length() as u64; if len == 0 { return None } let elt = ty.element_type(); // if our element is an HFA/HVA, so are we; multiply members by our len is_homogenous_aggregate_ty(elt).map(|(base_ty, members)| (base_ty, len * members)) } fn check_struct(ty: Type) -> Option<(Type, u64)> { let str_tys = ty.field_types(); if str_tys.len() == 0 { return None } let mut prev_base_ty = None; let mut members = 0; for opt_homog_agg in str_tys.iter().map(|t| is_homogenous_aggregate_ty(*t)) { match (prev_base_ty, opt_homog_agg) { // field isn't itself an HFA, so we aren't either (_, None) => return None, // first field - store its type and number of members (None, Some((field_ty, field_members))) => { prev_base_ty = Some(field_ty); members = field_members; }, // 2nd or later field - give up if it's a different type; otherwise incr. members (Some(prev_ty), Some((field_ty, field_members))) => { if prev_ty != field_ty { return None; } members += field_members; } } } // Because of previous checks, we know prev_base_ty is Some(...) because // 1. str_tys has at least one element; and // 2. prev_base_ty was filled in (or we would've returned early) let (base_ty, members) = (prev_base_ty.unwrap(), members); // Ensure there is no padding. if ty_size(ty) == ty_size(base_ty) * (members as usize) { Some((base_ty, members)) } else { None } } let homog_agg = match ty.kind() { Float => Some((ty, 1)), Double => Some((ty, 1)), Array => check_array(ty), Struct => check_struct(ty), _ => None }; // Ensure we have at most eight uniquely addressable members homog_agg.and_then(|(base_ty, members)| { if members > 0 && members <= 8 { Some((base_ty, members)) } else { None } }) } fn classify_ret_ty(ccx: &CrateContext, ret: &mut ArgType) { if is_reg_ty(ret.ty) { return; } // The PowerPC64 big endian ABI doesn't return aggregates in registers if ccx.sess().target.target.target_endian == "big" { ret.make_indirect(ccx); } if let Some((base_ty, members)) = is_homogenous_aggregate_ty(ret.ty) { ret.cast = Some(Type::array(&base_ty, members)); return; } let size = ty_size(ret.ty); if size <= 16 { let llty = if size <= 1 { Type::i8(ccx) } else if size <= 2 { Type::i16(ccx) } else if size <= 4 { Type::i32(ccx) } else if size <= 8 { Type::i64(ccx) } else { Type::array(&Type::i64(ccx), ((size + 7 ) / 8 ) as u64) }; ret.cast = Some(llty); return; } ret.make_indirect(ccx); } fn classify_arg_ty(ccx: &CrateContext, arg: &mut ArgType) { if is_reg_ty(arg.ty) { return; } if let Some((base_ty, members)) = is_homogenous_aggregate_ty(arg.ty) { arg.cast = Some(Type::array(&base_ty, members)); return; } arg.cast = Some(struct_ty(ccx, arg.ty)); } fn is_reg_ty(ty: Type) -> bool { match ty.kind() { Integer | Pointer | Float | Double => true, _ => false } } fn coerce_to_long(ccx: &CrateContext, size: usize) -> Vec { let long_ty = Type::i64(ccx); let mut args = Vec::new(); let mut n = size / 64; while n > 0 { args.push(long_ty); n -= 1; } let r = size % 64; if r > 0 { args.push(Type::ix(ccx, r as u64)); } args } fn struct_ty(ccx: &CrateContext, ty: Type) -> Type { let size = ty_size(ty) * 8; Type::struct_(ccx, &coerce_to_long(ccx, size), false) } pub fn compute_abi_info(ccx: &CrateContext, fty: &mut FnType) { if fty.ret.ty != Type::void(ccx) { classify_ret_ty(ccx, &mut fty.ret); } for arg in &mut fty.args { classify_arg_ty(ccx, arg); } }