// Copyright 2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Output a CSV file containing the output from rustc's analysis. The data is //! primarily designed to be used as input to the DXR tool, specifically its //! Rust plugin. It could also be used by IDEs or other code browsing, search, or //! cross-referencing tools. //! //! Dumping the analysis is implemented by walking the AST and getting a bunch of //! info out from all over the place. We use Def IDs to identify objects. The //! tricky part is getting syntactic (span, source text) and semantic (reference //! Def IDs) information for parts of expressions which the compiler has discarded. //! E.g., in a path `foo::bar::baz`, the compiler only keeps a span for the whole //! path and a reference to `baz`, but we want spans and references for all three //! idents. //! //! SpanUtils is used to manipulate spans. In particular, to extract sub-spans //! from spans (e.g., the span for `bar` from the above example path). //! Recorder is used for recording the output in csv format. FmtStrs separates //! the format of the output away from extracting it from the compiler. //! DumpCsvVisitor walks the AST and processes it. use super::{escape, generated_code, recorder, SaveContext, PathCollector, Data}; use session::Session; use middle::def::Def; use middle::def_id::DefId; use middle::ty; use std::fs::File; use std::hash::*; use std::collections::HashSet; use syntax::ast::{self, NodeId}; use syntax::codemap::*; use syntax::parse::token::{self, keywords}; use syntax::visit::{self, Visitor}; use syntax::print::pprust::{path_to_string, ty_to_string}; use syntax::ptr::P; use rustc_front::lowering::{lower_expr, LoweringContext}; use super::span_utils::SpanUtils; use super::recorder::{Recorder, FmtStrs}; macro_rules! down_cast_data { ($id:ident, $kind:ident, $this:ident, $sp:expr) => { let $id = if let super::Data::$kind(data) = $id { data } else { $this.sess.span_bug($sp, &format!("unexpected data kind: {:?}", $id)); } }; } pub struct DumpCsvVisitor<'l, 'tcx: 'l> { save_ctxt: SaveContext<'l, 'tcx>, sess: &'l Session, tcx: &'l ty::ctxt<'tcx>, analysis: &'l ty::CrateAnalysis<'l>, span: SpanUtils<'l>, fmt: FmtStrs<'l, 'tcx>, cur_scope: NodeId, // Set of macro definition (callee) spans, and the set // of macro use (callsite) spans. We store these to ensure // we only write one macro def per unique macro definition, and // one macro use per unique callsite span. mac_defs: HashSet, mac_uses: HashSet, } impl <'l, 'tcx> DumpCsvVisitor<'l, 'tcx> { pub fn new(tcx: &'l ty::ctxt<'tcx>, lcx: &'l LoweringContext<'l>, analysis: &'l ty::CrateAnalysis<'l>, output_file: Box) -> DumpCsvVisitor<'l, 'tcx> { let span_utils = SpanUtils::new(&tcx.sess); DumpCsvVisitor { sess: &tcx.sess, tcx: tcx, save_ctxt: SaveContext::from_span_utils(tcx, lcx, span_utils.clone()), analysis: analysis, span: span_utils.clone(), fmt: FmtStrs::new(box Recorder { out: output_file, dump_spans: false, }, span_utils, tcx), cur_scope: 0, mac_defs: HashSet::new(), mac_uses: HashSet::new(), } } fn nest(&mut self, scope_id: NodeId, f: F) where F: FnOnce(&mut DumpCsvVisitor<'l, 'tcx>) { let parent_scope = self.cur_scope; self.cur_scope = scope_id; f(self); self.cur_scope = parent_scope; } pub fn dump_crate_info(&mut self, name: &str, krate: &ast::Crate) { let source_file = self.tcx.sess.local_crate_source_file.as_ref(); let crate_root = match source_file { Some(source_file) => match source_file.file_name() { Some(_) => source_file.parent().unwrap().display().to_string(), None => source_file.display().to_string(), }, None => "".to_owned(), }; // The current crate. self.fmt.crate_str(krate.span, name, &crate_root); // Dump info about all the external crates referenced from this crate. for c in &self.save_ctxt.get_external_crates() { self.fmt.external_crate_str(krate.span, &c.name, c.number); } self.fmt.recorder.record("end_external_crates\n"); } // Return all non-empty prefixes of a path. // For each prefix, we return the span for the last segment in the prefix and // a str representation of the entire prefix. fn process_path_prefixes(&self, path: &ast::Path) -> Vec<(Span, String)> { let spans = self.span.spans_for_path_segments(path); // Paths to enums seem to not match their spans - the span includes all the // variants too. But they seem to always be at the end, so I hope we can cope with // always using the first ones. So, only error out if we don't have enough spans. // What could go wrong...? if spans.len() < path.segments.len() { if generated_code(path.span) { return vec!(); } error!("Mis-calculated spans for path '{}'. Found {} spans, expected {}. Found spans:", path_to_string(path), spans.len(), path.segments.len()); for s in &spans { let loc = self.sess.codemap().lookup_char_pos(s.lo); error!(" '{}' in {}, line {}", self.span.snippet(*s), loc.file.name, loc.line); } return vec!(); } let mut result: Vec<(Span, String)> = vec!(); let mut segs = vec!(); for (i, (seg, span)) in path.segments.iter().zip(&spans).enumerate() { segs.push(seg.clone()); let sub_path = ast::Path { span: *span, // span for the last segment global: path.global, segments: segs, }; let qualname = if i == 0 && path.global { format!("::{}", path_to_string(&sub_path)) } else { path_to_string(&sub_path) }; result.push((*span, qualname)); segs = sub_path.segments; } result } // The global arg allows us to override the global-ness of the path (which // actually means 'does the path start with `::`', rather than 'is the path // semantically global). We use the override for `use` imports (etc.) where // the syntax is non-global, but the semantics are global. fn write_sub_paths(&mut self, path: &ast::Path, global: bool) { let sub_paths = self.process_path_prefixes(path); for (i, &(ref span, ref qualname)) in sub_paths.iter().enumerate() { let qualname = if i == 0 && global && !path.global { format!("::{}", qualname) } else { qualname.clone() }; self.fmt.sub_mod_ref_str(path.span, *span, &qualname, self.cur_scope); } } // As write_sub_paths, but does not process the last ident in the path (assuming it // will be processed elsewhere). See note on write_sub_paths about global. fn write_sub_paths_truncated(&mut self, path: &ast::Path, global: bool) { let sub_paths = self.process_path_prefixes(path); let len = sub_paths.len(); if len <= 1 { return; } let sub_paths = &sub_paths[..len-1]; for (i, &(ref span, ref qualname)) in sub_paths.iter().enumerate() { let qualname = if i == 0 && global && !path.global { format!("::{}", qualname) } else { qualname.clone() }; self.fmt.sub_mod_ref_str(path.span, *span, &qualname, self.cur_scope); } } // As write_sub_paths, but expects a path of the form module_path::trait::method // Where trait could actually be a struct too. fn write_sub_path_trait_truncated(&mut self, path: &ast::Path) { let sub_paths = self.process_path_prefixes(path); let len = sub_paths.len(); if len <= 1 { return; } let sub_paths = &sub_paths[.. (len-1)]; // write the trait part of the sub-path let (ref span, ref qualname) = sub_paths[len-2]; self.fmt.sub_type_ref_str(path.span, *span, &qualname); // write the other sub-paths if len <= 2 { return; } let sub_paths = &sub_paths[..len-2]; for &(ref span, ref qualname) in sub_paths { self.fmt.sub_mod_ref_str(path.span, *span, &qualname, self.cur_scope); } } // looks up anything, not just a type fn lookup_type_ref(&self, ref_id: NodeId) -> Option { if !self.tcx.def_map.borrow().contains_key(&ref_id) { self.sess.bug(&format!("def_map has no key for {} in lookup_type_ref", ref_id)); } let def = self.tcx.def_map.borrow().get(&ref_id).unwrap().full_def(); match def { Def::PrimTy(..) => None, Def::SelfTy(..) => None, _ => Some(def.def_id()), } } fn lookup_def_kind(&self, ref_id: NodeId, span: Span) -> Option { let def_map = self.tcx.def_map.borrow(); if !def_map.contains_key(&ref_id) { self.sess.span_bug(span, &format!("def_map has no key for {} in lookup_def_kind", ref_id)); } let def = def_map.get(&ref_id).unwrap().full_def(); match def { Def::Mod(_) | Def::ForeignMod(_) => Some(recorder::ModRef), Def::Struct(..) => Some(recorder::TypeRef), Def::Enum(..) | Def::TyAlias(..) | Def::AssociatedTy(..) | Def::Trait(_) => Some(recorder::TypeRef), Def::Static(_, _) | Def::Const(_) | Def::AssociatedConst(..) | Def::Local(..) | Def::Variant(..) | Def::Upvar(..) => Some(recorder::VarRef), Def::Fn(..) => Some(recorder::FnRef), Def::SelfTy(..) | Def::Label(_) | Def::TyParam(..) | Def::Method(..) | Def::PrimTy(_) | Def::Err => { self.sess.span_bug(span, &format!("lookup_def_kind for unexpected item: {:?}", def)); } } } fn process_formals(&mut self, formals: &Vec, qualname: &str) { for arg in formals { self.visit_pat(&arg.pat); let mut collector = PathCollector::new(); collector.visit_pat(&arg.pat); let span_utils = self.span.clone(); for &(id, ref p, _, _) in &collector.collected_paths { let typ = self.tcx.node_types().get(&id).unwrap().to_string(); // get the span only for the name of the variable (I hope the path is only ever a // variable name, but who knows?) self.fmt.formal_str(p.span, span_utils.span_for_last_ident(p.span), id, qualname, &path_to_string(p), &typ); } } } fn process_method(&mut self, sig: &ast::MethodSig, body: Option<&ast::Block>, id: ast::NodeId, name: ast::Name, span: Span) { debug!("process_method: {}:{}", id, name); if let Some(method_data) = self.save_ctxt.get_method_data(id, name, span) { if body.is_some() { self.fmt.method_str(span, Some(method_data.span), method_data.id, &method_data.qualname, method_data.declaration, method_data.scope); self.process_formals(&sig.decl.inputs, &method_data.qualname); } else { self.fmt.method_decl_str(span, Some(method_data.span), method_data.id, &method_data.qualname, method_data.scope); } self.process_generic_params(&sig.generics, span, &method_data.qualname, id); } // walk arg and return types for arg in &sig.decl.inputs { self.visit_ty(&arg.ty); } if let ast::FunctionRetTy::Ty(ref ret_ty) = sig.decl.output { self.visit_ty(ret_ty); } // walk the fn body if let Some(body) = body { self.nest(id, |v| v.visit_block(body)); } } fn process_trait_ref(&mut self, trait_ref: &ast::TraitRef) { let trait_ref_data = self.save_ctxt.get_trait_ref_data(trait_ref, self.cur_scope); if let Some(trait_ref_data) = trait_ref_data { self.fmt.ref_str(recorder::TypeRef, trait_ref.path.span, Some(trait_ref_data.span), trait_ref_data.ref_id, trait_ref_data.scope); visit::walk_path(self, &trait_ref.path); } } fn process_struct_field_def(&mut self, field: &ast::StructField, parent_id: NodeId) { let field_data = self.save_ctxt.get_field_data(field, parent_id); if let Some(field_data) = field_data { self.fmt.field_str(field.span, Some(field_data.span), field_data.id, &field_data.name, &field_data.qualname, &field_data.type_value, field_data.scope); } } // Dump generic params bindings, then visit_generics fn process_generic_params(&mut self, generics: &ast::Generics, full_span: Span, prefix: &str, id: NodeId) { // We can't only use visit_generics since we don't have spans for param // bindings, so we reparse the full_span to get those sub spans. // However full span is the entire enum/fn/struct block, so we only want // the first few to match the number of generics we're looking for. let param_sub_spans = self.span.spans_for_ty_params(full_span, (generics.ty_params.len() as isize)); for (param, param_ss) in generics.ty_params.iter().zip(param_sub_spans) { // Append $id to name to make sure each one is unique let name = format!("{}::{}${}", prefix, escape(self.span.snippet(param_ss)), id); self.fmt.typedef_str(full_span, Some(param_ss), param.id, &name, ""); } self.visit_generics(generics); } fn process_fn(&mut self, item: &ast::Item, decl: &ast::FnDecl, ty_params: &ast::Generics, body: &ast::Block) { if let Some(fn_data) = self.save_ctxt.get_item_data(item) { down_cast_data!(fn_data, FunctionData, self, item.span); self.fmt.fn_str(item.span, Some(fn_data.span), fn_data.id, &fn_data.qualname, fn_data.scope); self.process_formals(&decl.inputs, &fn_data.qualname); self.process_generic_params(ty_params, item.span, &fn_data.qualname, item.id); } for arg in &decl.inputs { self.visit_ty(&arg.ty); } if let ast::FunctionRetTy::Ty(ref ret_ty) = decl.output { self.visit_ty(&ret_ty); } self.nest(item.id, |v| v.visit_block(&body)); } fn process_static_or_const_item(&mut self, item: &ast::Item, typ: &ast::Ty, expr: &ast::Expr) { if let Some(var_data) = self.save_ctxt.get_item_data(item) { down_cast_data!(var_data, VariableData, self, item.span); self.fmt.static_str(item.span, Some(var_data.span), var_data.id, &var_data.name, &var_data.qualname, &var_data.value, &var_data.type_value, var_data.scope); } self.visit_ty(&typ); self.visit_expr(expr); } fn process_const(&mut self, id: ast::NodeId, name: ast::Name, span: Span, typ: &ast::Ty, expr: &ast::Expr) { let qualname = format!("::{}", self.tcx.map.path_to_string(id)); let sub_span = self.span.sub_span_after_keyword(span, keywords::Const); self.fmt.static_str(span, sub_span, id, &name.as_str(), &qualname, &self.span.snippet(expr.span), &ty_to_string(&*typ), self.cur_scope); // walk type and init value self.visit_ty(typ); self.visit_expr(expr); } fn process_struct(&mut self, item: &ast::Item, def: &ast::VariantData, ty_params: &ast::Generics) { let qualname = format!("::{}", self.tcx.map.path_to_string(item.id)); let val = self.span.snippet(item.span); let sub_span = self.span.sub_span_after_keyword(item.span, keywords::Struct); self.fmt.struct_str(item.span, sub_span, item.id, def.id(), &qualname, self.cur_scope, &val); // fields for field in def.fields() { self.process_struct_field_def(field, item.id); self.visit_ty(&field.node.ty); } self.process_generic_params(ty_params, item.span, &qualname, item.id); } fn process_enum(&mut self, item: &ast::Item, enum_definition: &ast::EnumDef, ty_params: &ast::Generics) { let enum_data = self.save_ctxt.get_item_data(item); let enum_data = match enum_data { None => return, Some(data) => data, }; down_cast_data!(enum_data, EnumData, self, item.span); self.fmt.enum_str(item.span, Some(enum_data.span), enum_data.id, &enum_data.qualname, enum_data.scope, &enum_data.value); for variant in &enum_definition.variants { let name = &variant.node.name.name.as_str(); let mut qualname = enum_data.qualname.clone(); qualname.push_str("::"); qualname.push_str(name); let val = self.span.snippet(variant.span); match variant.node.data { ast::VariantData::Struct(..) => { self.fmt.struct_variant_str(variant.span, self.span.span_for_first_ident(variant.span), variant.node.data.id(), &qualname, &enum_data.qualname, &val, enum_data.scope); } _ => { self.fmt.tuple_variant_str(variant.span, self.span.span_for_first_ident(variant.span), variant.node.data.id(), name, &qualname, &enum_data.qualname, &val, enum_data.scope); } } for field in variant.node.data.fields() { self.process_struct_field_def(field, variant.node.data.id()); self.visit_ty(&*field.node.ty); } } self.process_generic_params(ty_params, item.span, &enum_data.qualname, enum_data.id); } fn process_impl(&mut self, item: &ast::Item, type_parameters: &ast::Generics, trait_ref: &Option, typ: &ast::Ty, impl_items: &[P]) { let mut has_self_ref = false; if let Some(impl_data) = self.save_ctxt.get_item_data(item) { down_cast_data!(impl_data, ImplData, self, item.span); if let Some(ref self_ref) = impl_data.self_ref { has_self_ref = true; self.fmt.ref_str(recorder::TypeRef, item.span, Some(self_ref.span), self_ref.ref_id, self_ref.scope); } if let Some(ref trait_ref_data) = impl_data.trait_ref { self.fmt.ref_str(recorder::TypeRef, item.span, Some(trait_ref_data.span), trait_ref_data.ref_id, trait_ref_data.scope); visit::walk_path(self, &trait_ref.as_ref().unwrap().path); } self.fmt.impl_str(item.span, Some(impl_data.span), impl_data.id, impl_data.self_ref.map(|data| data.ref_id), impl_data.trait_ref.map(|data| data.ref_id), impl_data.scope); } if !has_self_ref { self.visit_ty(&typ); } self.process_generic_params(type_parameters, item.span, "", item.id); for impl_item in impl_items { self.visit_impl_item(impl_item); } } fn process_trait(&mut self, item: &ast::Item, generics: &ast::Generics, trait_refs: &ast::TyParamBounds, methods: &[P]) { let qualname = format!("::{}", self.tcx.map.path_to_string(item.id)); let val = self.span.snippet(item.span); let sub_span = self.span.sub_span_after_keyword(item.span, keywords::Trait); self.fmt.trait_str(item.span, sub_span, item.id, &qualname, self.cur_scope, &val); // super-traits for super_bound in trait_refs.iter() { let trait_ref = match *super_bound { ast::TraitTyParamBound(ref trait_ref, _) => { trait_ref } ast::RegionTyParamBound(..) => { continue; } }; let trait_ref = &trait_ref.trait_ref; match self.lookup_type_ref(trait_ref.ref_id) { Some(id) => { let sub_span = self.span.sub_span_for_type_name(trait_ref.path.span); self.fmt.ref_str(recorder::TypeRef, trait_ref.path.span, sub_span, id, self.cur_scope); self.fmt.inherit_str(trait_ref.path.span, sub_span, id, item.id); } None => (), } } // walk generics and methods self.process_generic_params(generics, item.span, &qualname, item.id); for method in methods { self.visit_trait_item(method) } } // `item` is the module in question, represented as an item. fn process_mod(&mut self, item: &ast::Item) { if let Some(mod_data) = self.save_ctxt.get_item_data(item) { down_cast_data!(mod_data, ModData, self, item.span); self.fmt.mod_str(item.span, Some(mod_data.span), mod_data.id, &mod_data.qualname, mod_data.scope, &mod_data.filename); } } fn process_path(&mut self, id: NodeId, path: &ast::Path, ref_kind: Option) { let path_data = self.save_ctxt.get_path_data(id, path); if generated_code(path.span) && path_data.is_none() { return; } let path_data = match path_data { Some(pd) => pd, None => { self.tcx.sess.span_bug(path.span, &format!("Unexpected def kind while looking up path in \ `{}`", self.span.snippet(path.span))) } }; match path_data { Data::VariableRefData(ref vrd) => { self.fmt.ref_str(ref_kind.unwrap_or(recorder::VarRef), path.span, Some(vrd.span), vrd.ref_id, vrd.scope); } Data::TypeRefData(ref trd) => { self.fmt.ref_str(recorder::TypeRef, path.span, Some(trd.span), trd.ref_id, trd.scope); } Data::MethodCallData(ref mcd) => { self.fmt.meth_call_str(path.span, Some(mcd.span), mcd.ref_id, mcd.decl_id, mcd.scope); } Data::FunctionCallData(fcd) => { self.fmt.fn_call_str(path.span, Some(fcd.span), fcd.ref_id, fcd.scope); } _ => { self.sess.span_bug(path.span, &format!("Unexpected data: {:?}", path_data)); } } // Modules or types in the path prefix. let def_map = self.tcx.def_map.borrow(); let def = def_map.get(&id).unwrap().full_def(); match def { Def::Method(did) => { let ti = self.tcx.impl_or_trait_item(did); if let ty::MethodTraitItem(m) = ti { if m.explicit_self == ty::ExplicitSelfCategory::Static { self.write_sub_path_trait_truncated(path); } } } Def::Local(..) | Def::Static(_,_) | Def::Const(..) | Def::AssociatedConst(..) | Def::Struct(..) | Def::Variant(..) | Def::Fn(..) => self.write_sub_paths_truncated(path, false), _ => {} } } fn process_struct_lit(&mut self, ex: &ast::Expr, path: &ast::Path, fields: &Vec, variant: ty::VariantDef, base: &Option>) { self.write_sub_paths_truncated(path, false); if let Some(struct_lit_data) = self.save_ctxt.get_expr_data(ex) { down_cast_data!(struct_lit_data, TypeRefData, self, ex.span); self.fmt.ref_str(recorder::TypeRef, ex.span, Some(struct_lit_data.span), struct_lit_data.ref_id, struct_lit_data.scope); let scope = self.save_ctxt.enclosing_scope(ex.id); for field in fields { if let Some(field_data) = self.save_ctxt .get_field_ref_data(field, variant, scope) { self.fmt.ref_str(recorder::VarRef, field.ident.span, Some(field_data.span), field_data.ref_id, field_data.scope); } self.visit_expr(&field.expr) } } walk_list!(self, visit_expr, base); } fn process_method_call(&mut self, ex: &ast::Expr, args: &Vec>) { if let Some(call_data) = self.save_ctxt.get_expr_data(ex) { down_cast_data!(call_data, MethodCallData, self, ex.span); self.fmt.meth_call_str(ex.span, Some(call_data.span), call_data.ref_id, call_data.decl_id, call_data.scope); } // walk receiver and args walk_list!(self, visit_expr, args); } fn process_pat(&mut self, p: &ast::Pat) { match p.node { ast::PatStruct(ref path, ref fields, _) => { visit::walk_path(self, path); let adt = self.tcx.node_id_to_type(p.id).ty_adt_def().unwrap(); let def = self.tcx.def_map.borrow()[&p.id].full_def(); let variant = adt.variant_of_def(def); for &Spanned { node: ref field, span } in fields { let sub_span = self.span.span_for_first_ident(span); if let Some(f) = variant.find_field_named(field.ident.name) { self.fmt.ref_str(recorder::VarRef, span, sub_span, f.did, self.cur_scope); } self.visit_pat(&field.pat); } } _ => visit::walk_pat(self, p), } } fn process_var_decl(&mut self, p: &ast::Pat, value: String) { // The local could declare multiple new vars, we must walk the // pattern and collect them all. let mut collector = PathCollector::new(); collector.visit_pat(&p); self.visit_pat(&p); for &(id, ref p, immut, _) in &collector.collected_paths { let value = if immut == ast::Mutability::Immutable { value.to_string() } else { "".to_string() }; let types = self.tcx.node_types(); let typ = types.get(&id).map(|t| t.to_string()).unwrap_or(String::new()); // Get the span only for the name of the variable (I hope the path // is only ever a variable name, but who knows?). let sub_span = self.span.span_for_last_ident(p.span); // Rust uses the id of the pattern for var lookups, so we'll use it too. self.fmt.variable_str(p.span, sub_span, id, &path_to_string(p), &value, &typ); } } /// Extract macro use and definition information from the AST node defined /// by the given NodeId, using the expansion information from the node's /// span. /// /// If the span is not macro-generated, do nothing, else use callee and /// callsite spans to record macro definition and use data, using the /// mac_uses and mac_defs sets to prevent multiples. fn process_macro_use(&mut self, span: Span, id: NodeId) { let data = match self.save_ctxt.get_macro_use_data(span, id) { None => return, Some(data) => data, }; let mut hasher = SipHasher::new(); data.callee_span.hash(&mut hasher); let hash = hasher.finish(); let qualname = format!("{}::{}", data.name, hash); // Don't write macro definition for imported macros if !self.mac_defs.contains(&data.callee_span) && !data.imported { self.mac_defs.insert(data.callee_span); if let Some(sub_span) = self.span.span_for_macro_def_name(data.callee_span) { self.fmt.macro_str(data.callee_span, sub_span, data.name.clone(), qualname.clone()); } } if !self.mac_uses.contains(&data.span) { self.mac_uses.insert(data.span); if let Some(sub_span) = self.span.span_for_macro_use_name(data.span) { self.fmt.macro_use_str(data.span, sub_span, data.name, qualname, data.scope); } } } } impl<'l, 'tcx, 'v> Visitor<'v> for DumpCsvVisitor<'l, 'tcx> { fn visit_item(&mut self, item: &ast::Item) { use syntax::ast::ItemKind::*; self.process_macro_use(item.span, item.id); match item.node { Use(ref use_item) => { match use_item.node { ast::ViewPathSimple(ident, ref path) => { let sub_span = self.span.span_for_last_ident(path.span); let mod_id = match self.lookup_type_ref(item.id) { Some(def_id) => { match self.lookup_def_kind(item.id, path.span) { Some(kind) => self.fmt.ref_str(kind, path.span, sub_span, def_id, self.cur_scope), None => {} } Some(def_id) } None => None, }; // 'use' always introduces an alias, if there is not an explicit // one, there is an implicit one. let sub_span = match self.span.sub_span_after_keyword(use_item.span, keywords::As) { Some(sub_span) => Some(sub_span), None => sub_span, }; self.fmt.use_alias_str(path.span, sub_span, item.id, mod_id, &ident.name.as_str(), self.cur_scope); self.write_sub_paths_truncated(path, true); } ast::ViewPathGlob(ref path) => { // Make a comma-separated list of names of imported modules. let mut name_string = String::new(); let glob_map = &self.analysis.glob_map; let glob_map = glob_map.as_ref().unwrap(); if glob_map.contains_key(&item.id) { for n in glob_map.get(&item.id).unwrap() { if !name_string.is_empty() { name_string.push_str(", "); } name_string.push_str(&n.as_str()); } } let sub_span = self.span .sub_span_of_token(path.span, token::BinOp(token::Star)); self.fmt.use_glob_str(path.span, sub_span, item.id, &name_string, self.cur_scope); self.write_sub_paths(path, true); } ast::ViewPathList(ref path, ref list) => { for plid in list { match plid.node { ast::PathListIdent { id, .. } => { match self.lookup_type_ref(id) { Some(def_id) => match self.lookup_def_kind(id, plid.span) { Some(kind) => { self.fmt.ref_str(kind, plid.span, Some(plid.span), def_id, self.cur_scope); } None => (), }, None => (), } } ast::PathListMod { .. } => (), } } self.write_sub_paths(path, true); } } } ExternCrate(ref s) => { let location = match *s { Some(s) => s.to_string(), None => item.ident.to_string(), }; let alias_span = self.span.span_for_last_ident(item.span); let cnum = match self.sess.cstore.extern_mod_stmt_cnum(item.id) { Some(cnum) => cnum, None => 0, }; self.fmt.extern_crate_str(item.span, alias_span, item.id, cnum, &item.ident.name.as_str(), &location, self.cur_scope); } Fn(ref decl, _, _, _, ref ty_params, ref body) => self.process_fn(item, &**decl, ty_params, &**body), Static(ref typ, _, ref expr) => self.process_static_or_const_item(item, typ, expr), Const(ref typ, ref expr) => self.process_static_or_const_item(item, &typ, &expr), Struct(ref def, ref ty_params) => self.process_struct(item, def, ty_params), Enum(ref def, ref ty_params) => self.process_enum(item, def, ty_params), Impl(_, _, ref ty_params, ref trait_ref, ref typ, ref impl_items) => { self.process_impl(item, ty_params, trait_ref, &typ, impl_items) } Trait(_, ref generics, ref trait_refs, ref methods) => self.process_trait(item, generics, trait_refs, methods), Mod(ref m) => { self.process_mod(item); self.nest(item.id, |v| visit::walk_mod(v, m)); } Ty(ref ty, ref ty_params) => { let qualname = format!("::{}", self.tcx.map.path_to_string(item.id)); let value = ty_to_string(&**ty); let sub_span = self.span.sub_span_after_keyword(item.span, keywords::Type); self.fmt.typedef_str(item.span, sub_span, item.id, &qualname, &value); self.visit_ty(&**ty); self.process_generic_params(ty_params, item.span, &qualname, item.id); } Mac(_) => (), _ => visit::walk_item(self, item), } } fn visit_generics(&mut self, generics: &ast::Generics) { for param in generics.ty_params.iter() { for bound in param.bounds.iter() { if let ast::TraitTyParamBound(ref trait_ref, _) = *bound { self.process_trait_ref(&trait_ref.trait_ref); } } if let Some(ref ty) = param.default { self.visit_ty(&**ty); } } } fn visit_trait_item(&mut self, trait_item: &ast::TraitItem) { self.process_macro_use(trait_item.span, trait_item.id); match trait_item.node { ast::ConstTraitItem(ref ty, Some(ref expr)) => { self.process_const(trait_item.id, trait_item.ident.name, trait_item.span, &*ty, &*expr); } ast::MethodTraitItem(ref sig, ref body) => { self.process_method(sig, body.as_ref().map(|x| &**x), trait_item.id, trait_item.ident.name, trait_item.span); } ast::ConstTraitItem(_, None) | ast::TypeTraitItem(..) => {} } } fn visit_impl_item(&mut self, impl_item: &ast::ImplItem) { self.process_macro_use(impl_item.span, impl_item.id); match impl_item.node { ast::ImplItemKind::Const(ref ty, ref expr) => { self.process_const(impl_item.id, impl_item.ident.name, impl_item.span, &ty, &expr); } ast::ImplItemKind::Method(ref sig, ref body) => { self.process_method(sig, Some(body), impl_item.id, impl_item.ident.name, impl_item.span); } ast::ImplItemKind::Type(_) | ast::ImplItemKind::Macro(_) => {} } } fn visit_ty(&mut self, t: &ast::Ty) { self.process_macro_use(t.span, t.id); match t.node { ast::TyKind::Path(_, ref path) => { match self.lookup_type_ref(t.id) { Some(id) => { let sub_span = self.span.sub_span_for_type_name(t.span); self.fmt.ref_str(recorder::TypeRef, t.span, sub_span, id, self.cur_scope); } None => (), } self.write_sub_paths_truncated(path, false); visit::walk_path(self, path); } _ => visit::walk_ty(self, t), } } fn visit_expr(&mut self, ex: &ast::Expr) { self.process_macro_use(ex.span, ex.id); match ex.node { ast::ExprKind::Call(ref _f, ref _args) => { // Don't need to do anything for function calls, // because just walking the callee path does what we want. visit::walk_expr(self, ex); } ast::ExprKind::Path(_, ref path) => { self.process_path(ex.id, path, None); visit::walk_expr(self, ex); } ast::ExprKind::Struct(ref path, ref fields, ref base) => { let hir_expr = lower_expr(self.save_ctxt.lcx, ex); let adt = self.tcx.expr_ty(&hir_expr).ty_adt_def().unwrap(); let def = self.tcx.resolve_expr(&hir_expr); self.process_struct_lit(ex, path, fields, adt.variant_of_def(def), base) } ast::ExprKind::MethodCall(_, _, ref args) => self.process_method_call(ex, args), ast::ExprKind::Field(ref sub_ex, _) => { self.visit_expr(&sub_ex); if let Some(field_data) = self.save_ctxt.get_expr_data(ex) { down_cast_data!(field_data, VariableRefData, self, ex.span); self.fmt.ref_str(recorder::VarRef, ex.span, Some(field_data.span), field_data.ref_id, field_data.scope); } } ast::ExprKind::TupField(ref sub_ex, idx) => { self.visit_expr(&**sub_ex); let hir_node = lower_expr(self.save_ctxt.lcx, sub_ex); let ty = &self.tcx.expr_ty_adjusted(&hir_node).sty; match *ty { ty::TyStruct(def, _) => { let sub_span = self.span.sub_span_after_token(ex.span, token::Dot); self.fmt.ref_str(recorder::VarRef, ex.span, sub_span, def.struct_variant().fields[idx.node].did, self.cur_scope); } ty::TyTuple(_) => {} _ => self.sess.span_bug(ex.span, &format!("Expected struct or tuple type, found {:?}", ty)), } } ast::ExprKind::Closure(_, ref decl, ref body) => { let mut id = String::from("$"); id.push_str(&ex.id.to_string()); self.process_formals(&decl.inputs, &id); // walk arg and return types for arg in &decl.inputs { self.visit_ty(&*arg.ty); } if let ast::FunctionRetTy::Ty(ref ret_ty) = decl.output { self.visit_ty(&**ret_ty); } // walk the body self.nest(ex.id, |v| v.visit_block(&**body)); } ast::ExprKind::ForLoop(ref pattern, ref subexpression, ref block, _) | ast::ExprKind::WhileLet(ref pattern, ref subexpression, ref block, _) => { let value = self.span.snippet(mk_sp(ex.span.lo, subexpression.span.hi)); self.process_var_decl(pattern, value); visit::walk_expr(self, subexpression); visit::walk_block(self, block); } ast::ExprKind::IfLet(ref pattern, ref subexpression, ref block, ref opt_else) => { let value = self.span.snippet(mk_sp(ex.span.lo, subexpression.span.hi)); self.process_var_decl(pattern, value); visit::walk_expr(self, subexpression); visit::walk_block(self, block); opt_else.as_ref().map(|el| visit::walk_expr(self, el)); } _ => { visit::walk_expr(self, ex) } } } fn visit_mac(&mut self, mac: &ast::Mac) { // These shouldn't exist in the AST at this point, log a span bug. self.sess.span_bug(mac.span, "macro invocation should have been expanded out of AST"); } fn visit_pat(&mut self, p: &ast::Pat) { self.process_macro_use(p.span, p.id); self.process_pat(p); } fn visit_arm(&mut self, arm: &ast::Arm) { let mut collector = PathCollector::new(); for pattern in &arm.pats { // collect paths from the arm's patterns collector.visit_pat(&pattern); self.visit_pat(&pattern); } // This is to get around borrow checking, because we need mut self to call process_path. let mut paths_to_process = vec![]; // process collected paths for &(id, ref p, immut, ref_kind) in &collector.collected_paths { let def_map = self.tcx.def_map.borrow(); if !def_map.contains_key(&id) { self.sess.span_bug(p.span, &format!("def_map has no key for {} in visit_arm", id)); } let def = def_map.get(&id).unwrap().full_def(); match def { Def::Local(_, id) => { let value = if immut == ast::Mutability::Immutable { self.span.snippet(p.span).to_string() } else { "".to_string() }; assert!(p.segments.len() == 1, "qualified path for local variable def in arm"); self.fmt.variable_str(p.span, Some(p.span), id, &path_to_string(p), &value, "") } Def::Variant(..) | Def::Enum(..) | Def::TyAlias(..) | Def::Struct(..) => { paths_to_process.push((id, p.clone(), Some(ref_kind))) } // FIXME(nrc) what are these doing here? Def::Static(_, _) | Def::Const(..) | Def::AssociatedConst(..) => {} _ => error!("unexpected definition kind when processing collected paths: {:?}", def), } } for &(id, ref path, ref_kind) in &paths_to_process { self.process_path(id, path, ref_kind); } walk_list!(self, visit_expr, &arm.guard); self.visit_expr(&arm.body); } fn visit_stmt(&mut self, s: &ast::Stmt) { let id = s.node.id(); self.process_macro_use(s.span, id.unwrap()); visit::walk_stmt(self, s) } fn visit_local(&mut self, l: &ast::Local) { self.process_macro_use(l.span, l.id); let value = self.span.snippet(l.span); self.process_var_decl(&l.pat, value); // Just walk the initialiser and type (don't want to walk the pattern again). walk_list!(self, visit_ty, &l.ty); walk_list!(self, visit_expr, &l.init); } }