//! Validates all used crates and extern libraries and loads their metadata use crate::dynamic_lib::DynamicLibrary; use crate::locator::{CrateError, CrateLocator, CratePaths}; use crate::rmeta::{CrateDep, CrateMetadata, CrateNumMap, CrateRoot, MetadataBlob}; use rustc_ast::expand::allocator::AllocatorKind; use rustc_ast::{self as ast, *}; use rustc_data_structures::fx::FxHashSet; use rustc_data_structures::svh::Svh; use rustc_data_structures::sync::Lrc; use rustc_expand::base::SyntaxExtension; use rustc_hir::def_id::{CrateNum, LocalDefId, LOCAL_CRATE}; use rustc_hir::definitions::Definitions; use rustc_index::vec::IndexVec; use rustc_middle::middle::cstore::{CrateDepKind, CrateSource, ExternCrate}; use rustc_middle::middle::cstore::{ExternCrateSource, MetadataLoaderDyn}; use rustc_middle::ty::TyCtxt; use rustc_session::config::{self, CrateType, ExternLocation}; use rustc_session::lint; use rustc_session::output::validate_crate_name; use rustc_session::search_paths::PathKind; use rustc_session::{CrateDisambiguator, Session}; use rustc_span::edition::Edition; use rustc_span::symbol::{sym, Symbol}; use rustc_span::{Span, DUMMY_SP}; use rustc_target::spec::{PanicStrategy, TargetTriple}; use proc_macro::bridge::client::ProcMacro; use std::path::Path; use std::{cmp, env, fs}; use tracing::{debug, info}; #[derive(Clone)] pub struct CStore { metas: IndexVec>>, injected_panic_runtime: Option, /// This crate needs an allocator and either provides it itself, or finds it in a dependency. /// If the above is true, then this field denotes the kind of the found allocator. allocator_kind: Option, /// This crate has a `#[global_allocator]` item. has_global_allocator: bool, } pub struct CrateLoader<'a> { // Immutable configuration. sess: &'a Session, metadata_loader: &'a MetadataLoaderDyn, local_crate_name: Symbol, // Mutable output. cstore: CStore, used_extern_options: FxHashSet, } pub enum LoadedMacro { MacroDef(ast::Item, Edition), ProcMacro(SyntaxExtension), } crate struct Library { pub source: CrateSource, pub metadata: MetadataBlob, } enum LoadResult { Previous(CrateNum), Loaded(Library), } /// A reference to `CrateMetadata` that can also give access to whole crate store when necessary. #[derive(Clone, Copy)] crate struct CrateMetadataRef<'a> { pub cdata: &'a CrateMetadata, pub cstore: &'a CStore, } impl std::ops::Deref for CrateMetadataRef<'_> { type Target = CrateMetadata; fn deref(&self) -> &Self::Target { self.cdata } } struct CrateDump<'a>(&'a CStore); impl<'a> std::fmt::Debug for CrateDump<'a> { fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { writeln!(fmt, "resolved crates:")?; // `iter_crate_data` does not allow returning values. Thus we use a mutable variable here // that aggregates the value (and any errors that could happen). let mut res = Ok(()); self.0.iter_crate_data(|cnum, data| { res = res.and( try { writeln!(fmt, " name: {}", data.name())?; writeln!(fmt, " cnum: {}", cnum)?; writeln!(fmt, " hash: {}", data.hash())?; writeln!(fmt, " reqd: {:?}", data.dep_kind())?; let CrateSource { dylib, rlib, rmeta } = data.source(); if let Some(dylib) = dylib { writeln!(fmt, " dylib: {}", dylib.0.display())?; } if let Some(rlib) = rlib { writeln!(fmt, " rlib: {}", rlib.0.display())?; } if let Some(rmeta) = rmeta { writeln!(fmt, " rmeta: {}", rmeta.0.display())?; } }, ); }); res } } impl CStore { crate fn from_tcx(tcx: TyCtxt<'_>) -> &CStore { tcx.cstore_as_any().downcast_ref::().expect("`tcx.cstore` is not a `CStore`") } fn alloc_new_crate_num(&mut self) -> CrateNum { self.metas.push(None); CrateNum::new(self.metas.len() - 1) } crate fn get_crate_data(&self, cnum: CrateNum) -> CrateMetadataRef<'_> { let cdata = self.metas[cnum] .as_ref() .unwrap_or_else(|| panic!("Failed to get crate data for {:?}", cnum)); CrateMetadataRef { cdata, cstore: self } } fn set_crate_data(&mut self, cnum: CrateNum, data: CrateMetadata) { assert!(self.metas[cnum].is_none(), "Overwriting crate metadata entry"); self.metas[cnum] = Some(Lrc::new(data)); } crate fn iter_crate_data(&self, mut f: impl FnMut(CrateNum, &CrateMetadata)) { for (cnum, data) in self.metas.iter_enumerated() { if let Some(data) = data { f(cnum, data); } } } fn push_dependencies_in_postorder(&self, deps: &mut Vec, cnum: CrateNum) { if !deps.contains(&cnum) { let data = self.get_crate_data(cnum); for &dep in data.dependencies().iter() { if dep != cnum { self.push_dependencies_in_postorder(deps, dep); } } deps.push(cnum); } } crate fn crate_dependencies_in_postorder(&self, cnum: CrateNum) -> Vec { let mut deps = Vec::new(); if cnum == LOCAL_CRATE { self.iter_crate_data(|cnum, _| self.push_dependencies_in_postorder(&mut deps, cnum)); } else { self.push_dependencies_in_postorder(&mut deps, cnum); } deps } fn crate_dependencies_in_reverse_postorder(&self, cnum: CrateNum) -> Vec { let mut deps = self.crate_dependencies_in_postorder(cnum); deps.reverse(); deps } crate fn injected_panic_runtime(&self) -> Option { self.injected_panic_runtime } crate fn allocator_kind(&self) -> Option { self.allocator_kind } crate fn has_global_allocator(&self) -> bool { self.has_global_allocator } } impl<'a> CrateLoader<'a> { pub fn new( sess: &'a Session, metadata_loader: &'a MetadataLoaderDyn, local_crate_name: &str, ) -> Self { CrateLoader { sess, metadata_loader, local_crate_name: Symbol::intern(local_crate_name), cstore: CStore { // We add an empty entry for LOCAL_CRATE (which maps to zero) in // order to make array indices in `metas` match with the // corresponding `CrateNum`. This first entry will always remain // `None`. metas: IndexVec::from_elem_n(None, 1), injected_panic_runtime: None, allocator_kind: None, has_global_allocator: false, }, used_extern_options: Default::default(), } } pub fn cstore(&self) -> &CStore { &self.cstore } pub fn into_cstore(self) -> CStore { self.cstore } fn existing_match(&self, name: Symbol, hash: Option, kind: PathKind) -> Option { let mut ret = None; self.cstore.iter_crate_data(|cnum, data| { if data.name() != name { tracing::trace!("{} did not match {}", data.name(), name); return; } match hash { Some(hash) if hash == data.hash() => { ret = Some(cnum); return; } Some(hash) => { debug!("actual hash {} did not match expected {}", hash, data.hash()); return; } None => {} } // When the hash is None we're dealing with a top-level dependency // in which case we may have a specification on the command line for // this library. Even though an upstream library may have loaded // something of the same name, we have to make sure it was loaded // from the exact same location as well. // // We're also sure to compare *paths*, not actual byte slices. The // `source` stores paths which are normalized which may be different // from the strings on the command line. let source = self.cstore.get_crate_data(cnum).cdata.source(); if let Some(entry) = self.sess.opts.externs.get(&name.as_str()) { // Only use `--extern crate_name=path` here, not `--extern crate_name`. if let Some(mut files) = entry.files() { if files.any(|l| { let l = fs::canonicalize(l).unwrap_or(l.clone().into()); source.dylib.as_ref().map(|p| &p.0) == Some(&l) || source.rlib.as_ref().map(|p| &p.0) == Some(&l) }) { ret = Some(cnum); } } return; } // Alright, so we've gotten this far which means that `data` has the // right name, we don't have a hash, and we don't have a --extern // pointing for ourselves. We're still not quite yet done because we // have to make sure that this crate was found in the crate lookup // path (this is a top-level dependency) as we don't want to // implicitly load anything inside the dependency lookup path. let prev_kind = source .dylib .as_ref() .or(source.rlib.as_ref()) .or(source.rmeta.as_ref()) .expect("No sources for crate") .1; if kind.matches(prev_kind) { ret = Some(cnum); } else { debug!( "failed to load existing crate {}; kind {:?} did not match prev_kind {:?}", name, kind, prev_kind ); } }); ret } fn verify_no_symbol_conflicts(&self, root: &CrateRoot<'_>) -> Result<(), CrateError> { // Check for (potential) conflicts with the local crate if self.local_crate_name == root.name() && self.sess.local_crate_disambiguator() == root.disambiguator() { return Err(CrateError::SymbolConflictsCurrent(root.name())); } // Check for conflicts with any crate loaded so far let mut res = Ok(()); self.cstore.iter_crate_data(|_, other| { if other.name() == root.name() && // same crate-name other.disambiguator() == root.disambiguator() && // same crate-disambiguator other.hash() != root.hash() { // but different SVH res = Err(CrateError::SymbolConflictsOthers(root.name())); } }); res } fn register_crate( &mut self, host_lib: Option, root: Option<&CratePaths>, lib: Library, dep_kind: CrateDepKind, name: Symbol, ) -> Result { let _prof_timer = self.sess.prof.generic_activity("metadata_register_crate"); let Library { source, metadata } = lib; let crate_root = metadata.get_root(); let host_hash = host_lib.as_ref().map(|lib| lib.metadata.get_root().hash()); self.verify_no_symbol_conflicts(&crate_root)?; let private_dep = self.sess.opts.externs.get(&name.as_str()).map(|e| e.is_private_dep).unwrap_or(false); // Claim this crate number and cache it let cnum = self.cstore.alloc_new_crate_num(); info!( "register crate `{}` (cnum = {}. private_dep = {})", crate_root.name(), cnum, private_dep ); // Maintain a reference to the top most crate. // Stash paths for top-most crate locally if necessary. let crate_paths; let root = if let Some(root) = root { root } else { crate_paths = CratePaths::new(crate_root.name(), source.clone()); &crate_paths }; let cnum_map = self.resolve_crate_deps(root, &crate_root, &metadata, cnum, dep_kind)?; let raw_proc_macros = if crate_root.is_proc_macro_crate() { let temp_root; let (dlsym_source, dlsym_root) = match &host_lib { Some(host_lib) => (&host_lib.source, { temp_root = host_lib.metadata.get_root(); &temp_root }), None => (&source, &crate_root), }; let dlsym_dylib = dlsym_source.dylib.as_ref().expect("no dylib for a proc-macro crate"); Some(self.dlsym_proc_macros(&dlsym_dylib.0, dlsym_root.disambiguator())?) } else { None }; let crate_metadata = CrateMetadata::new( self.sess, metadata, crate_root, raw_proc_macros, cnum, cnum_map, dep_kind, source, private_dep, host_hash, ); self.cstore.set_crate_data(cnum, crate_metadata); Ok(cnum) } fn load_proc_macro<'b>( &self, locator: &mut CrateLocator<'b>, path_kind: PathKind, ) -> Result)>, CrateError> where 'a: 'b, { // Use a new crate locator so trying to load a proc macro doesn't affect the error // message we emit let mut proc_macro_locator = locator.clone(); // Try to load a proc macro proc_macro_locator.is_proc_macro = Some(true); // Load the proc macro crate for the target let (locator, target_result) = if self.sess.opts.debugging_opts.dual_proc_macros { proc_macro_locator.reset(); let result = match self.load(&mut proc_macro_locator)? { Some(LoadResult::Previous(cnum)) => { return Ok(Some((LoadResult::Previous(cnum), None))); } Some(LoadResult::Loaded(library)) => Some(LoadResult::Loaded(library)), None => return Ok(None), }; locator.hash = locator.host_hash; // Use the locator when looking for the host proc macro crate, as that is required // so we want it to affect the error message (locator, result) } else { (&mut proc_macro_locator, None) }; // Load the proc macro crate for the host locator.reset(); locator.is_proc_macro = Some(true); locator.target = &self.sess.host; locator.triple = TargetTriple::from_triple(config::host_triple()); locator.filesearch = self.sess.host_filesearch(path_kind); let host_result = match self.load(locator)? { Some(host_result) => host_result, None => return Ok(None), }; Ok(Some(if self.sess.opts.debugging_opts.dual_proc_macros { let host_result = match host_result { LoadResult::Previous(..) => { panic!("host and target proc macros must be loaded in lock-step") } LoadResult::Loaded(library) => library, }; (target_result.unwrap(), Some(host_result)) } else { (host_result, None) })) } fn resolve_crate<'b>( &'b mut self, name: Symbol, span: Span, dep_kind: CrateDepKind, dep: Option<(&'b CratePaths, &'b CrateDep)>, ) -> CrateNum { if dep.is_none() { self.used_extern_options.insert(name); } self.maybe_resolve_crate(name, dep_kind, dep) .unwrap_or_else(|err| err.report(self.sess, span)) } fn maybe_resolve_crate<'b>( &'b mut self, name: Symbol, mut dep_kind: CrateDepKind, dep: Option<(&'b CratePaths, &'b CrateDep)>, ) -> Result { info!("resolving crate `{}`", name); if !name.as_str().is_ascii() { return Err(CrateError::NonAsciiName(name)); } let (root, hash, host_hash, extra_filename, path_kind) = match dep { Some((root, dep)) => ( Some(root), Some(dep.hash), dep.host_hash, Some(&dep.extra_filename[..]), PathKind::Dependency, ), None => (None, None, None, None, PathKind::Crate), }; let result = if let Some(cnum) = self.existing_match(name, hash, path_kind) { (LoadResult::Previous(cnum), None) } else { info!("falling back to a load"); let mut locator = CrateLocator::new( self.sess, self.metadata_loader, name, hash, host_hash, extra_filename, false, // is_host path_kind, root, Some(false), // is_proc_macro ); match self.load(&mut locator)? { Some(res) => (res, None), None => { dep_kind = CrateDepKind::MacrosOnly; match self.load_proc_macro(&mut locator, path_kind)? { Some(res) => res, None => return Err(locator.into_error()), } } } }; match result { (LoadResult::Previous(cnum), None) => { let data = self.cstore.get_crate_data(cnum); if data.is_proc_macro_crate() { dep_kind = CrateDepKind::MacrosOnly; } data.update_dep_kind(|data_dep_kind| cmp::max(data_dep_kind, dep_kind)); Ok(cnum) } (LoadResult::Loaded(library), host_library) => { self.register_crate(host_library, root, library, dep_kind, name) } _ => panic!(), } } fn load(&self, locator: &mut CrateLocator<'_>) -> Result, CrateError> { let library = match locator.maybe_load_library_crate()? { Some(library) => library, None => return Ok(None), }; // In the case that we're loading a crate, but not matching // against a hash, we could load a crate which has the same hash // as an already loaded crate. If this is the case prevent // duplicates by just using the first crate. // // Note that we only do this for target triple crates, though, as we // don't want to match a host crate against an equivalent target one // already loaded. let root = library.metadata.get_root(); Ok(Some(if locator.triple == self.sess.opts.target_triple { let mut result = LoadResult::Loaded(library); self.cstore.iter_crate_data(|cnum, data| { if data.name() == root.name() && root.hash() == data.hash() { assert!(locator.hash.is_none()); info!("load success, going to previous cnum: {}", cnum); result = LoadResult::Previous(cnum); } }); result } else { LoadResult::Loaded(library) })) } fn update_extern_crate(&self, cnum: CrateNum, extern_crate: ExternCrate) { let cmeta = self.cstore.get_crate_data(cnum); if cmeta.update_extern_crate(extern_crate) { // Propagate the extern crate info to dependencies if it was updated. let extern_crate = ExternCrate { dependency_of: cnum, ..extern_crate }; for &dep_cnum in cmeta.dependencies().iter() { self.update_extern_crate(dep_cnum, extern_crate); } } } // Go through the crate metadata and load any crates that it references fn resolve_crate_deps( &mut self, root: &CratePaths, crate_root: &CrateRoot<'_>, metadata: &MetadataBlob, krate: CrateNum, dep_kind: CrateDepKind, ) -> Result { debug!("resolving deps of external crate"); if crate_root.is_proc_macro_crate() { return Ok(CrateNumMap::new()); } // The map from crate numbers in the crate we're resolving to local crate numbers. // We map 0 and all other holes in the map to our parent crate. The "additional" // self-dependencies should be harmless. let deps = crate_root.decode_crate_deps(metadata); let mut crate_num_map = CrateNumMap::with_capacity(1 + deps.len()); crate_num_map.push(krate); for dep in deps { info!( "resolving dep crate {} hash: `{}` extra filename: `{}`", dep.name, dep.hash, dep.extra_filename ); let dep_kind = match dep_kind { CrateDepKind::MacrosOnly => CrateDepKind::MacrosOnly, _ => dep.kind, }; let cnum = self.maybe_resolve_crate(dep.name, dep_kind, Some((root, &dep)))?; crate_num_map.push(cnum); } debug!("resolve_crate_deps: cnum_map for {:?} is {:?}", krate, crate_num_map); Ok(crate_num_map) } fn dlsym_proc_macros( &self, path: &Path, disambiguator: CrateDisambiguator, ) -> Result<&'static [ProcMacro], CrateError> { // Make sure the path contains a / or the linker will search for it. let path = env::current_dir().unwrap().join(path); let lib = match DynamicLibrary::open(&path) { Ok(lib) => lib, Err(s) => return Err(CrateError::DlOpen(s)), }; let sym = self.sess.generate_proc_macro_decls_symbol(disambiguator); let decls = unsafe { let sym = match lib.symbol(&sym) { Ok(f) => f, Err(s) => return Err(CrateError::DlSym(s)), }; *(sym as *const &[ProcMacro]) }; // Intentionally leak the dynamic library. We can't ever unload it // since the library can make things that will live arbitrarily long. std::mem::forget(lib); Ok(decls) } fn inject_panic_runtime(&mut self, krate: &ast::Crate) { // If we're only compiling an rlib, then there's no need to select a // panic runtime, so we just skip this section entirely. let any_non_rlib = self.sess.crate_types().iter().any(|ct| *ct != CrateType::Rlib); if !any_non_rlib { info!("panic runtime injection skipped, only generating rlib"); return; } // If we need a panic runtime, we try to find an existing one here. At // the same time we perform some general validation of the DAG we've got // going such as ensuring everything has a compatible panic strategy. // // The logic for finding the panic runtime here is pretty much the same // as the allocator case with the only addition that the panic strategy // compilation mode also comes into play. let desired_strategy = self.sess.panic_strategy(); let mut runtime_found = false; let mut needs_panic_runtime = self.sess.contains_name(&krate.attrs, sym::needs_panic_runtime); self.cstore.iter_crate_data(|cnum, data| { needs_panic_runtime = needs_panic_runtime || data.needs_panic_runtime(); if data.is_panic_runtime() { // Inject a dependency from all #![needs_panic_runtime] to this // #![panic_runtime] crate. self.inject_dependency_if(cnum, "a panic runtime", &|data| { data.needs_panic_runtime() }); runtime_found = runtime_found || data.dep_kind() == CrateDepKind::Explicit; } }); // If an explicitly linked and matching panic runtime was found, or if // we just don't need one at all, then we're done here and there's // nothing else to do. if !needs_panic_runtime || runtime_found { return; } // By this point we know that we (a) need a panic runtime and (b) no // panic runtime was explicitly linked. Here we just load an appropriate // default runtime for our panic strategy and then inject the // dependencies. // // We may resolve to an already loaded crate (as the crate may not have // been explicitly linked prior to this) and we may re-inject // dependencies again, but both of those situations are fine. // // Also note that we have yet to perform validation of the crate graph // in terms of everyone has a compatible panic runtime format, that's // performed later as part of the `dependency_format` module. let name = match desired_strategy { PanicStrategy::Unwind => sym::panic_unwind, PanicStrategy::Abort => sym::panic_abort, }; info!("panic runtime not found -- loading {}", name); let cnum = self.resolve_crate(name, DUMMY_SP, CrateDepKind::Implicit, None); let data = self.cstore.get_crate_data(cnum); // Sanity check the loaded crate to ensure it is indeed a panic runtime // and the panic strategy is indeed what we thought it was. if !data.is_panic_runtime() { self.sess.err(&format!("the crate `{}` is not a panic runtime", name)); } if data.panic_strategy() != desired_strategy { self.sess.err(&format!( "the crate `{}` does not have the panic \ strategy `{}`", name, desired_strategy.desc() )); } self.cstore.injected_panic_runtime = Some(cnum); self.inject_dependency_if(cnum, "a panic runtime", &|data| data.needs_panic_runtime()); } fn inject_profiler_runtime(&mut self, krate: &ast::Crate) { if (self.sess.opts.debugging_opts.instrument_coverage || self.sess.opts.debugging_opts.profile || self.sess.opts.cg.profile_generate.enabled()) && !self.sess.opts.debugging_opts.no_profiler_runtime { info!("loading profiler"); if self.sess.contains_name(&krate.attrs, sym::no_core) { self.sess.err( "`profiler_builtins` crate (required by compiler options) \ is not compatible with crate attribute `#![no_core]`", ); } let name = sym::profiler_builtins; let cnum = self.resolve_crate(name, DUMMY_SP, CrateDepKind::Implicit, None); let data = self.cstore.get_crate_data(cnum); // Sanity check the loaded crate to ensure it is indeed a profiler runtime if !data.is_profiler_runtime() { self.sess.err("the crate `profiler_builtins` is not a profiler runtime"); } } } fn inject_allocator_crate(&mut self, krate: &ast::Crate) { self.cstore.has_global_allocator = match &*global_allocator_spans(&self.sess, krate) { [span1, span2, ..] => { self.sess .struct_span_err(*span2, "cannot define multiple global allocators") .span_label(*span2, "cannot define a new global allocator") .span_label(*span1, "previous global allocator defined here") .emit(); true } spans => !spans.is_empty(), }; // Check to see if we actually need an allocator. This desire comes // about through the `#![needs_allocator]` attribute and is typically // written down in liballoc. let mut needs_allocator = self.sess.contains_name(&krate.attrs, sym::needs_allocator); self.cstore.iter_crate_data(|_, data| { needs_allocator = needs_allocator || data.needs_allocator(); }); if !needs_allocator { return; } // At this point we've determined that we need an allocator. Let's see // if our compilation session actually needs an allocator based on what // we're emitting. let all_rlib = self.sess.crate_types().iter().all(|ct| matches!(*ct, CrateType::Rlib)); if all_rlib { return; } // Ok, we need an allocator. Not only that but we're actually going to // create an artifact that needs one linked in. Let's go find the one // that we're going to link in. // // First up we check for global allocators. Look at the crate graph here // and see what's a global allocator, including if we ourselves are a // global allocator. let mut global_allocator = self.cstore.has_global_allocator.then(|| Symbol::intern("this crate")); self.cstore.iter_crate_data(|_, data| { if !data.has_global_allocator() { return; } match global_allocator { Some(other_crate) => { self.sess.err(&format!( "the `#[global_allocator]` in {} \ conflicts with global \ allocator in: {}", other_crate, data.name() )); } None => global_allocator = Some(data.name()), } }); if global_allocator.is_some() { self.cstore.allocator_kind = Some(AllocatorKind::Global); return; } // Ok we haven't found a global allocator but we still need an // allocator. At this point our allocator request is typically fulfilled // by the standard library, denoted by the `#![default_lib_allocator]` // attribute. let mut has_default = self.sess.contains_name(&krate.attrs, sym::default_lib_allocator); self.cstore.iter_crate_data(|_, data| { if data.has_default_lib_allocator() { has_default = true; } }); if !has_default { self.sess.err( "no global memory allocator found but one is \ required; link to std or \ add `#[global_allocator]` to a static item \ that implements the GlobalAlloc trait.", ); } self.cstore.allocator_kind = Some(AllocatorKind::Default); } fn inject_dependency_if( &self, krate: CrateNum, what: &str, needs_dep: &dyn Fn(&CrateMetadata) -> bool, ) { // don't perform this validation if the session has errors, as one of // those errors may indicate a circular dependency which could cause // this to stack overflow. if self.sess.has_errors() { return; } // Before we inject any dependencies, make sure we don't inject a // circular dependency by validating that this crate doesn't // transitively depend on any crates satisfying `needs_dep`. for dep in self.cstore.crate_dependencies_in_reverse_postorder(krate) { let data = self.cstore.get_crate_data(dep); if needs_dep(&data) { self.sess.err(&format!( "the crate `{}` cannot depend \ on a crate that needs {}, but \ it depends on `{}`", self.cstore.get_crate_data(krate).name(), what, data.name() )); } } // All crates satisfying `needs_dep` do not explicitly depend on the // crate provided for this compile, but in order for this compilation to // be successfully linked we need to inject a dependency (to order the // crates on the command line correctly). self.cstore.iter_crate_data(|cnum, data| { if !needs_dep(data) { return; } info!("injecting a dep from {} to {}", cnum, krate); data.add_dependency(krate); }); } fn report_unused_deps(&mut self, krate: &ast::Crate) { // Make a point span rather than covering the whole file let span = krate.span.shrink_to_lo(); // Complain about anything left over for (name, entry) in self.sess.opts.externs.iter() { if let ExternLocation::FoundInLibrarySearchDirectories = entry.location { // Don't worry about pathless `--extern foo` sysroot references continue; } if !self.used_extern_options.contains(&Symbol::intern(name)) { self.sess.parse_sess.buffer_lint( lint::builtin::UNUSED_CRATE_DEPENDENCIES, span, ast::CRATE_NODE_ID, &format!( "external crate `{}` unused in `{}`: remove the dependency or add `use {} as _;`", name, self.local_crate_name, name), ); } } } pub fn postprocess(&mut self, krate: &ast::Crate) { self.inject_profiler_runtime(krate); self.inject_allocator_crate(krate); self.inject_panic_runtime(krate); info!("{:?}", CrateDump(&self.cstore)); self.report_unused_deps(krate); } pub fn process_extern_crate( &mut self, item: &ast::Item, definitions: &Definitions, def_id: LocalDefId, ) -> CrateNum { match item.kind { ast::ItemKind::ExternCrate(orig_name) => { debug!( "resolving extern crate stmt. ident: {} orig_name: {:?}", item.ident, orig_name ); let name = match orig_name { Some(orig_name) => { validate_crate_name(self.sess, &orig_name.as_str(), Some(item.span)); orig_name } None => item.ident.name, }; let dep_kind = if self.sess.contains_name(&item.attrs, sym::no_link) { CrateDepKind::MacrosOnly } else { CrateDepKind::Explicit }; let cnum = self.resolve_crate(name, item.span, dep_kind, None); let path_len = definitions.def_path(def_id).data.len(); self.update_extern_crate( cnum, ExternCrate { src: ExternCrateSource::Extern(def_id.to_def_id()), span: item.span, path_len, dependency_of: LOCAL_CRATE, }, ); cnum } _ => bug!(), } } pub fn process_path_extern(&mut self, name: Symbol, span: Span) -> CrateNum { let cnum = self.resolve_crate(name, span, CrateDepKind::Explicit, None); self.update_extern_crate( cnum, ExternCrate { src: ExternCrateSource::Path, span, // to have the least priority in `update_extern_crate` path_len: usize::MAX, dependency_of: LOCAL_CRATE, }, ); cnum } pub fn maybe_process_path_extern(&mut self, name: Symbol) -> Option { self.maybe_resolve_crate(name, CrateDepKind::Explicit, None).ok() } } fn global_allocator_spans(sess: &Session, krate: &ast::Crate) -> Vec { struct Finder<'a> { sess: &'a Session, name: Symbol, spans: Vec, } impl<'ast, 'a> visit::Visitor<'ast> for Finder<'a> { fn visit_item(&mut self, item: &'ast ast::Item) { if item.ident.name == self.name && self.sess.contains_name(&item.attrs, sym::rustc_std_internal_symbol) { self.spans.push(item.span); } visit::walk_item(self, item) } } let name = Symbol::intern(&AllocatorKind::Global.fn_name(sym::alloc)); let mut f = Finder { sess, name, spans: Vec::new() }; visit::walk_crate(&mut f, krate); f.spans }