// Copyright 2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use bitvec::BitMatrix; use std::cell::RefCell; use std::fmt::Debug; use std::mem; #[derive(Clone)] pub struct TransitiveRelation { // List of elements. This is used to map from a T to a usize. We // expect domain to be small so just use a linear list versus a // hashmap or something. elements: Vec, // List of base edges in the graph. Require to compute transitive // closure. edges: Vec, // This is a cached transitive closure derived from the edges. // Currently, we build it lazilly and just throw out any existing // copy whenever a new edge is added. (The RefCell is to permit // the lazy computation.) This is kind of silly, except for the // fact its size is tied to `self.elements.len()`, so I wanted to // wait before building it up to avoid reallocating as new edges // are added with new elements. Perhaps better would be to ask the // user for a batch of edges to minimize this effect, but I // already wrote the code this way. :P -nmatsakis closure: RefCell>, } #[derive(Clone, PartialEq, PartialOrd)] struct Index(usize); #[derive(Clone, PartialEq)] struct Edge { source: Index, target: Index, } impl TransitiveRelation { pub fn new() -> TransitiveRelation { TransitiveRelation { elements: vec![], edges: vec![], closure: RefCell::new(None), } } fn index(&self, a: &T) -> Option { self.elements.iter().position(|e| *e == *a).map(Index) } fn add_index(&mut self, a: T) -> Index { match self.index(&a) { Some(i) => i, None => { self.elements.push(a); // if we changed the dimensions, clear the cache *self.closure.borrow_mut() = None; Index(self.elements.len() - 1) } } } /// Indicate that `a < b` (where `<` is this relation) pub fn add(&mut self, a: T, b: T) { let a = self.add_index(a); let b = self.add_index(b); let edge = Edge { source: a, target: b, }; if !self.edges.contains(&edge) { self.edges.push(edge); // added an edge, clear the cache *self.closure.borrow_mut() = None; } } /// Check whether `a < target` (transitively) pub fn contains(&self, a: &T, b: &T) -> bool { match (self.index(a), self.index(b)) { (Some(a), Some(b)) => self.with_closure(|closure| closure.contains(a.0, b.0)), (None, _) | (_, None) => false, } } /// Picks what I am referring to as the "postdominating" /// upper-bound for `a` and `b`. This is usually the least upper /// bound, but in cases where there is no single least upper /// bound, it is the "mutual immediate postdominator", if you /// imagine a graph where `a < b` means `a -> b`. /// /// This function is needed because region inference currently /// requires that we produce a single "UB", and there is no best /// choice for the LUB. Rather than pick arbitrarily, I pick a /// less good, but predictable choice. This should help ensure /// that region inference yields predictable results (though it /// itself is not fully sufficient). /// /// Examples are probably clearer than any prose I could write /// (there are corresponding tests below, btw). In each case, /// the query is `postdom_upper_bound(a, b)`: /// /// ```text /// // returns Some(x), which is also LUB /// a -> a1 -> x /// ^ /// | /// b -> b1 ---+ /// /// // returns Some(x), which is not LUB (there is none) /// // diagonal edges run left-to-right /// a -> a1 -> x /// \/ ^ /// /\ | /// b -> b1 ---+ /// /// // returns None /// a -> a1 /// b -> b1 /// ``` pub fn postdom_upper_bound(&self, a: &T, b: &T) -> Option<&T> { let mut mubs = self.minimal_upper_bounds(a, b); loop { match mubs.len() { 0 => return None, 1 => return Some(mubs[0]), _ => { let m = mubs.pop().unwrap(); let n = mubs.pop().unwrap(); mubs.extend(self.minimal_upper_bounds(n, m)); } } } } /// Returns the set of bounds `X` such that: /// /// - `a < X` and `b < X` /// - there is no `Y != X` such that `a < Y` and `Y < X` /// - except for the case where `X < a` (i.e., a strongly connected /// component in the graph). In that case, the smallest /// representative of the SCC is returned (as determined by the /// internal indices). /// /// Note that this set can, in principle, have any size. pub fn minimal_upper_bounds(&self, a: &T, b: &T) -> Vec<&T> { let (mut a, mut b) = match (self.index(a), self.index(b)) { (Some(a), Some(b)) => (a, b), (None, _) | (_, None) => { return vec![]; } }; // in some cases, there are some arbitrary choices to be made; // it doesn't really matter what we pick, as long as we pick // the same thing consistently when queried, so ensure that // (a, b) are in a consistent relative order if a > b { mem::swap(&mut a, &mut b); } let lub_indices = self.with_closure(|closure| { // Easy case is when either a < b or b < a: if closure.contains(a.0, b.0) { return vec![b.0]; } if closure.contains(b.0, a.0) { return vec![a.0]; } // Otherwise, the tricky part is that there may be some c // where a < c and b < c. In fact, there may be many such // values. So here is what we do: // // 1. Find the vector `[X | a < X && b < X]` of all values // `X` where `a < X` and `b < X`. In terms of the // graph, this means all values reachable from both `a` // and `b`. Note that this vector is also a set, but we // use the term vector because the order matters // to the steps below. // - This vector contains upper bounds, but they are // not minimal upper bounds. So you may have e.g. // `[x, y, tcx, z]` where `x < tcx` and `y < tcx` and // `z < x` and `z < y`: // // z --+---> x ----+----> tcx // | | // | | // +---> y ----+ // // In this case, we really want to return just `[z]`. // The following steps below achieve this by gradually // reducing the list. // 2. Pare down the vector using `pare_down`. This will // remove elements from the vector that can be reached // by an earlier element. // - In the example above, this would convert `[x, y, // tcx, z]` to `[x, y, z]`. Note that `x` and `y` are // still in the vector; this is because while `z < x` // (and `z < y`) holds, `z` comes after them in the // vector. // 3. Reverse the vector and repeat the pare down process. // - In the example above, we would reverse to // `[z, y, x]` and then pare down to `[z]`. // 4. Reverse once more just so that we yield a vector in // increasing order of index. Not necessary, but why not. // // I believe this algorithm yields a minimal set. The // argument is that, after step 2, we know that no element // can reach its successors (in the vector, not the graph). // After step 3, we know that no element can reach any of // its predecesssors (because of step 2) nor successors // (because we just called `pare_down`) let mut candidates = closure.intersection(a.0, b.0); // (1) pare_down(&mut candidates, closure); // (2) candidates.reverse(); // (3a) pare_down(&mut candidates, closure); // (3b) candidates }); lub_indices.into_iter() .rev() // (4) .map(|i| &self.elements[i]) .collect() } fn with_closure(&self, op: OP) -> R where OP: FnOnce(&BitMatrix) -> R { let mut closure_cell = self.closure.borrow_mut(); let mut closure = closure_cell.take(); if closure.is_none() { closure = Some(self.compute_closure()); } let result = op(closure.as_ref().unwrap()); *closure_cell = closure; result } fn compute_closure(&self) -> BitMatrix { let mut matrix = BitMatrix::new(self.elements.len(), self.elements.len()); let mut changed = true; while changed { changed = false; for edge in self.edges.iter() { // add an edge from S -> T changed |= matrix.add(edge.source.0, edge.target.0); // add all outgoing edges from T into S changed |= matrix.merge(edge.target.0, edge.source.0); } } matrix } } /// Pare down is used as a step in the LUB computation. It edits the /// candidates array in place by removing any element j for which /// there exists an earlier element i j. That is, /// after you run `pare_down`, you know that for all elements that /// remain in candidates, they cannot reach any of the elements that /// come after them. /// /// Examples follow. Assume that a -> b -> c and x -> y -> z. /// /// - Input: `[a, b, x]`. Output: `[a, x]`. /// - Input: `[b, a, x]`. Output: `[b, a, x]`. /// - Input: `[a, x, b, y]`. Output: `[a, x]`. fn pare_down(candidates: &mut Vec, closure: &BitMatrix) { let mut i = 0; while i < candidates.len() { let candidate_i = candidates[i]; i += 1; let mut j = i; let mut dead = 0; while j < candidates.len() { let candidate_j = candidates[j]; if closure.contains(candidate_i, candidate_j) { // If `i` can reach `j`, then we can remove `j`. So just // mark it as dead and move on; subsequent indices will be // shifted into its place. dead += 1; } else { candidates[j - dead] = candidate_j; } j += 1; } candidates.truncate(j - dead); } } #[test] fn test_one_step() { let mut relation = TransitiveRelation::new(); relation.add("a", "b"); relation.add("a", "c"); assert!(relation.contains(&"a", &"c")); assert!(relation.contains(&"a", &"b")); assert!(!relation.contains(&"b", &"a")); assert!(!relation.contains(&"a", &"d")); } #[test] fn test_many_steps() { let mut relation = TransitiveRelation::new(); relation.add("a", "b"); relation.add("a", "c"); relation.add("a", "f"); relation.add("b", "c"); relation.add("b", "d"); relation.add("b", "e"); relation.add("e", "g"); assert!(relation.contains(&"a", &"b")); assert!(relation.contains(&"a", &"c")); assert!(relation.contains(&"a", &"d")); assert!(relation.contains(&"a", &"e")); assert!(relation.contains(&"a", &"f")); assert!(relation.contains(&"a", &"g")); assert!(relation.contains(&"b", &"g")); assert!(!relation.contains(&"a", &"x")); assert!(!relation.contains(&"b", &"f")); } #[test] fn mubs_triange() { let mut relation = TransitiveRelation::new(); relation.add("a", "tcx"); relation.add("b", "tcx"); assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"tcx"]); } #[test] fn mubs_best_choice1() { // 0 -> 1 <- 3 // | ^ | // | | | // +--> 2 <--+ // // mubs(0,3) = [1] // This tests a particular state in the algorithm, in which we // need the second pare down call to get the right result (after // intersection, we have [1, 2], but 2 -> 1). let mut relation = TransitiveRelation::new(); relation.add("0", "1"); relation.add("0", "2"); relation.add("2", "1"); relation.add("3", "1"); relation.add("3", "2"); assert_eq!(relation.minimal_upper_bounds(&"0", &"3"), vec![&"2"]); } #[test] fn mubs_best_choice2() { // 0 -> 1 <- 3 // | | | // | v | // +--> 2 <--+ // // mubs(0,3) = [2] // Like the precedecing test, but in this case intersection is [2, // 1], and hence we rely on the first pare down call. let mut relation = TransitiveRelation::new(); relation.add("0", "1"); relation.add("0", "2"); relation.add("1", "2"); relation.add("3", "1"); relation.add("3", "2"); assert_eq!(relation.minimal_upper_bounds(&"0", &"3"), vec![&"1"]); } #[test] fn mubs_no_best_choice() { // in this case, the intersection yields [1, 2], and the "pare // down" calls find nothing to remove. let mut relation = TransitiveRelation::new(); relation.add("0", "1"); relation.add("0", "2"); relation.add("3", "1"); relation.add("3", "2"); assert_eq!(relation.minimal_upper_bounds(&"0", &"3"), vec![&"1", &"2"]); } #[test] fn mubs_best_choice_scc() { let mut relation = TransitiveRelation::new(); relation.add("0", "1"); relation.add("0", "2"); relation.add("1", "2"); relation.add("2", "1"); relation.add("3", "1"); relation.add("3", "2"); assert_eq!(relation.minimal_upper_bounds(&"0", &"3"), vec![&"1"]); } #[test] fn pdub_crisscross() { // diagonal edges run left-to-right // a -> a1 -> x // \/ ^ // /\ | // b -> b1 ---+ let mut relation = TransitiveRelation::new(); relation.add("a", "a1"); relation.add("a", "b1"); relation.add("b", "a1"); relation.add("b", "b1"); relation.add("a1", "x"); relation.add("b1", "x"); assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"a1", &"b1"]); assert_eq!(relation.postdom_upper_bound(&"a", &"b"), Some(&"x")); } #[test] fn pdub_crisscross_more() { // diagonal edges run left-to-right // a -> a1 -> a2 -> a3 -> x // \/ \/ ^ // /\ /\ | // b -> b1 -> b2 ---------+ let mut relation = TransitiveRelation::new(); relation.add("a", "a1"); relation.add("a", "b1"); relation.add("b", "a1"); relation.add("b", "b1"); relation.add("a1", "a2"); relation.add("a1", "b2"); relation.add("b1", "a2"); relation.add("b1", "b2"); relation.add("a2", "a3"); relation.add("a3", "x"); relation.add("b2", "x"); assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"a1", &"b1"]); assert_eq!(relation.minimal_upper_bounds(&"a1", &"b1"), vec![&"a2", &"b2"]); assert_eq!(relation.postdom_upper_bound(&"a", &"b"), Some(&"x")); } #[test] fn pdub_lub() { // a -> a1 -> x // ^ // | // b -> b1 ---+ let mut relation = TransitiveRelation::new(); relation.add("a", "a1"); relation.add("b", "b1"); relation.add("a1", "x"); relation.add("b1", "x"); assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"x"]); assert_eq!(relation.postdom_upper_bound(&"a", &"b"), Some(&"x")); } #[test] fn mubs_intermediate_node_on_one_side_only() { // a -> c -> d // ^ // | // b // "digraph { a -> c -> d; b -> d; }", let mut relation = TransitiveRelation::new(); relation.add("a", "c"); relation.add("c", "d"); relation.add("b", "d"); assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"d"]); } #[test] fn mubs_scc_1() { // +-------------+ // | +----+ | // | v | | // a -> c -> d <-+ // ^ // | // b // "digraph { a -> c -> d; d -> c; a -> d; b -> d; }", let mut relation = TransitiveRelation::new(); relation.add("a", "c"); relation.add("c", "d"); relation.add("d", "c"); relation.add("a", "d"); relation.add("b", "d"); assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"c"]); } #[test] fn mubs_scc_2() { // +----+ // v | // a -> c -> d // ^ ^ // | | // +--- b // "digraph { a -> c -> d; d -> c; b -> d; b -> c; }", let mut relation = TransitiveRelation::new(); relation.add("a", "c"); relation.add("c", "d"); relation.add("d", "c"); relation.add("b", "d"); relation.add("b", "c"); assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"c"]); } #[test] fn mubs_scc_3() { // +---------+ // v | // a -> c -> d -> e // ^ ^ // | | // b ---+ // "digraph { a -> c -> d -> e -> c; b -> d; b -> e; }", let mut relation = TransitiveRelation::new(); relation.add("a", "c"); relation.add("c", "d"); relation.add("d", "e"); relation.add("e", "c"); relation.add("b", "d"); relation.add("b", "e"); assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"c"]); } #[test] fn mubs_scc_4() { // +---------+ // v | // a -> c -> d -> e // | ^ ^ // +---------+ | // | // b ---+ // "digraph { a -> c -> d -> e -> c; a -> d; b -> e; }" let mut relation = TransitiveRelation::new(); relation.add("a", "c"); relation.add("c", "d"); relation.add("d", "e"); relation.add("e", "c"); relation.add("a", "d"); relation.add("b", "e"); assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"c"]); }