// Copyright 2012-2016 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use std::fmt; use std::iter; use std::marker::PhantomData; use std::mem; use std::ops::{Deref, DerefMut, Range}; use std::slice; use bitslice::{BitSlice, Word}; use bitslice::{bitwise, Union, Subtract, Intersect}; use indexed_vec::Idx; /// Represents a set (or packed family of sets), of some element type /// E, where each E is identified by some unique index type `T`. /// /// In other words, `T` is the type used to index into the bitvector /// this type uses to represent the set of object it holds. #[derive(Eq, PartialEq)] pub struct IdxSetBuf { _pd: PhantomData, bits: Vec, } impl Clone for IdxSetBuf { fn clone(&self) -> Self { IdxSetBuf { _pd: PhantomData, bits: self.bits.clone() } } } // pnkfelix wants to have this be `IdxSet([Word]) and then pass // around `&mut IdxSet` or `&IdxSet`. // // WARNING: Mapping a `&IdxSetBuf` to `&IdxSet` (at least today) // requires a transmute relying on representation guarantees that may // not hold in the future. /// Represents a set (or packed family of sets), of some element type /// E, where each E is identified by some unique index type `T`. /// /// In other words, `T` is the type used to index into the bitslice /// this type uses to represent the set of object it holds. pub struct IdxSet { _pd: PhantomData, bits: [Word], } impl fmt::Debug for IdxSetBuf { fn fmt(&self, w: &mut fmt::Formatter) -> fmt::Result { w.debug_list() .entries(self.iter()) .finish() } } impl fmt::Debug for IdxSet { fn fmt(&self, w: &mut fmt::Formatter) -> fmt::Result { w.debug_list() .entries(self.iter()) .finish() } } impl IdxSetBuf { fn new(init: Word, universe_size: usize) -> Self { let bits_per_word = mem::size_of::() * 8; let num_words = (universe_size + (bits_per_word - 1)) / bits_per_word; IdxSetBuf { _pd: Default::default(), bits: vec![init; num_words], } } /// Creates set holding every element whose index falls in range 0..universe_size. pub fn new_filled(universe_size: usize) -> Self { Self::new(!0, universe_size) } /// Creates set holding no elements. pub fn new_empty(universe_size: usize) -> Self { Self::new(0, universe_size) } } impl IdxSet { unsafe fn from_slice(s: &[Word]) -> &Self { mem::transmute(s) // (see above WARNING) } unsafe fn from_slice_mut(s: &mut [Word]) -> &mut Self { mem::transmute(s) // (see above WARNING) } } impl Deref for IdxSetBuf { type Target = IdxSet; fn deref(&self) -> &IdxSet { unsafe { IdxSet::from_slice(&self.bits) } } } impl DerefMut for IdxSetBuf { fn deref_mut(&mut self) -> &mut IdxSet { unsafe { IdxSet::from_slice_mut(&mut self.bits) } } } impl IdxSet { pub fn to_owned(&self) -> IdxSetBuf { IdxSetBuf { _pd: Default::default(), bits: self.bits.to_owned(), } } /// Removes all elements pub fn clear(&mut self) { for b in &mut self.bits { *b = 0; } } /// Removes `elem` from the set `self`; returns true iff this changed `self`. pub fn remove(&mut self, elem: &T) -> bool { self.bits.clear_bit(elem.index()) } /// Adds `elem` to the set `self`; returns true iff this changed `self`. pub fn add(&mut self, elem: &T) -> bool { self.bits.set_bit(elem.index()) } pub fn range(&self, elems: &Range) -> &Self { let elems = elems.start.index()..elems.end.index(); unsafe { Self::from_slice(&self.bits[elems]) } } pub fn range_mut(&mut self, elems: &Range) -> &mut Self { let elems = elems.start.index()..elems.end.index(); unsafe { Self::from_slice_mut(&mut self.bits[elems]) } } /// Returns true iff set `self` contains `elem`. pub fn contains(&self, elem: &T) -> bool { self.bits.get_bit(elem.index()) } pub fn words(&self) -> &[Word] { &self.bits } pub fn words_mut(&mut self) -> &mut [Word] { &mut self.bits } pub fn clone_from(&mut self, other: &IdxSet) { self.words_mut().clone_from_slice(other.words()); } pub fn union(&mut self, other: &IdxSet) -> bool { bitwise(self.words_mut(), other.words(), &Union) } pub fn subtract(&mut self, other: &IdxSet) -> bool { bitwise(self.words_mut(), other.words(), &Subtract) } pub fn intersect(&mut self, other: &IdxSet) -> bool { bitwise(self.words_mut(), other.words(), &Intersect) } pub fn iter(&self) -> Iter { Iter { cur: None, iter: self.words().iter().enumerate(), _pd: PhantomData, } } /// Calls `f` on each index value held in this set, up to the /// bound `max_bits` on the size of universe of indexes. pub fn each_bit(&self, max_bits: usize, f: F) where F: FnMut(T) { each_bit(self, max_bits, f) } /// Removes all elements from this set. pub fn reset_to_empty(&mut self) { for word in self.words_mut() { *word = 0; } } pub fn elems(&self, universe_size: usize) -> Elems { Elems { i: 0, set: self, universe_size: universe_size } } } pub struct Elems<'a, T: Idx> { i: usize, set: &'a IdxSet, universe_size: usize } impl<'a, T: Idx> Iterator for Elems<'a, T> { type Item = T; fn next(&mut self) -> Option { if self.i >= self.universe_size { return None; } let mut i = self.i; loop { if i >= self.universe_size { self.i = i; // (mark iteration as complete.) return None; } if self.set.contains(&T::new(i)) { self.i = i + 1; // (next element to start at.) return Some(T::new(i)); } i = i + 1; } } } fn each_bit(words: &IdxSet, max_bits: usize, mut f: F) where F: FnMut(T) { let usize_bits: usize = mem::size_of::() * 8; for (word_index, &word) in words.words().iter().enumerate() { if word != 0 { let base_index = word_index * usize_bits; for offset in 0..usize_bits { let bit = 1 << offset; if (word & bit) != 0 { // NB: we round up the total number of bits // that we store in any given bit set so that // it is an even multiple of usize::BITS. This // means that there may be some stray bits at // the end that do not correspond to any // actual value; that's why we first check // that we are in range of bits_per_block. let bit_index = base_index + offset as usize; if bit_index >= max_bits { return; } else { f(Idx::new(bit_index)); } } } } } } pub struct Iter<'a, T: Idx> { cur: Option<(Word, usize)>, iter: iter::Enumerate>, _pd: PhantomData, } impl<'a, T: Idx> Iterator for Iter<'a, T> { type Item = T; fn next(&mut self) -> Option { let word_bits = mem::size_of::() * 8; loop { if let Some((ref mut word, offset)) = self.cur { let bit_pos = word.trailing_zeros() as usize; if bit_pos != word_bits { let bit = 1 << bit_pos; *word ^= bit; return Some(T::new(bit_pos + offset)) } } match self.iter.next() { Some((i, word)) => self.cur = Some((*word, word_bits * i)), None => return None, } } } }