// Copyright 2012-2016 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use self::Constructor::*; use self::Usefulness::*; use self::WitnessPreference::*; use rustc::middle::const_val::ConstVal; use eval::{compare_const_vals}; use rustc_const_math::ConstInt; use rustc_data_structures::fx::FxHashMap; use rustc_data_structures::indexed_vec::Idx; use pattern::{FieldPattern, Pattern, PatternKind}; use pattern::{PatternFoldable, PatternFolder}; use rustc::hir::def_id::DefId; use rustc::hir::RangeEnd; use rustc::ty::{self, AdtKind, Ty, TyCtxt, TypeFoldable}; use rustc::mir::Field; use rustc::util::common::ErrorReported; use syntax_pos::{Span, DUMMY_SP}; use arena::TypedArena; use std::cmp::{self, Ordering}; use std::fmt; use std::iter::{FromIterator, IntoIterator, repeat}; pub fn expand_pattern<'a, 'tcx>(cx: &MatchCheckCtxt<'a, 'tcx>, pat: Pattern<'tcx>) -> &'a Pattern<'tcx> { cx.pattern_arena.alloc(LiteralExpander.fold_pattern(&pat)) } struct LiteralExpander; impl<'tcx> PatternFolder<'tcx> for LiteralExpander { fn fold_pattern(&mut self, pat: &Pattern<'tcx>) -> Pattern<'tcx> { match (&pat.ty.sty, &*pat.kind) { (&ty::TyRef(_, mt), &PatternKind::Constant { ref value }) => { Pattern { ty: pat.ty, span: pat.span, kind: box PatternKind::Deref { subpattern: Pattern { ty: mt.ty, span: pat.span, kind: box PatternKind::Constant { value: value.clone() }, } } } } (_, &PatternKind::Binding { subpattern: Some(ref s), .. }) => { s.fold_with(self) } _ => pat.super_fold_with(self) } } } impl<'tcx> Pattern<'tcx> { fn is_wildcard(&self) -> bool { match *self.kind { PatternKind::Binding { subpattern: None, .. } | PatternKind::Wild => true, _ => false } } } pub struct Matrix<'a, 'tcx: 'a>(Vec>>); impl<'a, 'tcx> Matrix<'a, 'tcx> { pub fn empty() -> Self { Matrix(vec![]) } pub fn push(&mut self, row: Vec<&'a Pattern<'tcx>>) { self.0.push(row) } } /// Pretty-printer for matrices of patterns, example: /// ++++++++++++++++++++++++++ /// + _ + [] + /// ++++++++++++++++++++++++++ /// + true + [First] + /// ++++++++++++++++++++++++++ /// + true + [Second(true)] + /// ++++++++++++++++++++++++++ /// + false + [_] + /// ++++++++++++++++++++++++++ /// + _ + [_, _, ..tail] + /// ++++++++++++++++++++++++++ impl<'a, 'tcx> fmt::Debug for Matrix<'a, 'tcx> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "\n")?; let &Matrix(ref m) = self; let pretty_printed_matrix: Vec> = m.iter().map(|row| { row.iter().map(|pat| format!("{:?}", pat)).collect() }).collect(); let column_count = m.iter().map(|row| row.len()).max().unwrap_or(0); assert!(m.iter().all(|row| row.len() == column_count)); let column_widths: Vec = (0..column_count).map(|col| { pretty_printed_matrix.iter().map(|row| row[col].len()).max().unwrap_or(0) }).collect(); let total_width = column_widths.iter().cloned().sum::() + column_count * 3 + 1; let br = repeat('+').take(total_width).collect::(); write!(f, "{}\n", br)?; for row in pretty_printed_matrix { write!(f, "+")?; for (column, pat_str) in row.into_iter().enumerate() { write!(f, " ")?; write!(f, "{:1$}", pat_str, column_widths[column])?; write!(f, " +")?; } write!(f, "\n")?; write!(f, "{}\n", br)?; } Ok(()) } } impl<'a, 'tcx> FromIterator>> for Matrix<'a, 'tcx> { fn from_iter>>>(iter: T) -> Self { Matrix(iter.into_iter().collect()) } } //NOTE: appears to be the only place other then InferCtxt to contain a ParamEnv pub struct MatchCheckCtxt<'a, 'tcx: 'a> { pub tcx: TyCtxt<'a, 'tcx, 'tcx>, /// The module in which the match occurs. This is necessary for /// checking inhabited-ness of types because whether a type is (visibly) /// inhabited can depend on whether it was defined in the current module or /// not. eg. `struct Foo { _private: ! }` cannot be seen to be empty /// outside it's module and should not be matchable with an empty match /// statement. pub module: DefId, pub pattern_arena: &'a TypedArena>, pub byte_array_map: FxHashMap<*const Pattern<'tcx>, Vec<&'a Pattern<'tcx>>>, } impl<'a, 'tcx> MatchCheckCtxt<'a, 'tcx> { pub fn create_and_enter( tcx: TyCtxt<'a, 'tcx, 'tcx>, module: DefId, f: F) -> R where F: for<'b> FnOnce(MatchCheckCtxt<'b, 'tcx>) -> R { let pattern_arena = TypedArena::new(); f(MatchCheckCtxt { tcx: tcx, module: module, pattern_arena: &pattern_arena, byte_array_map: FxHashMap(), }) } // convert a byte-string pattern to a list of u8 patterns. fn lower_byte_str_pattern<'p>(&mut self, pat: &'p Pattern<'tcx>) -> Vec<&'p Pattern<'tcx>> where 'a: 'p { let pattern_arena = &*self.pattern_arena; let tcx = self.tcx; self.byte_array_map.entry(pat).or_insert_with(|| { match pat.kind { box PatternKind::Constant { value: ConstVal::ByteStr(ref data) } => { data.iter().map(|c| &*pattern_arena.alloc(Pattern { ty: tcx.types.u8, span: pat.span, kind: box PatternKind::Constant { value: ConstVal::Integral(ConstInt::U8(*c)) } })).collect() } _ => span_bug!(pat.span, "unexpected byte array pattern {:?}", pat) } }).clone() } fn is_uninhabited(&self, ty: Ty<'tcx>) -> bool { if self.tcx.sess.features.borrow().never_type { ty.is_uninhabited_from(self.module, self.tcx) } else { false } } fn is_variant_uninhabited(&self, variant: &'tcx ty::VariantDef, substs: &'tcx ty::subst::Substs<'tcx>) -> bool { if self.tcx.sess.features.borrow().never_type { let forest = variant.uninhabited_from( &mut FxHashMap::default(), self.tcx, substs, AdtKind::Enum ); forest.contains(self.tcx, self.module) } else { false } } } #[derive(Clone, Debug, PartialEq)] pub enum Constructor<'tcx> { /// The constructor of all patterns that don't vary by constructor, /// e.g. struct patterns and fixed-length arrays. Single, /// Enum variants. Variant(DefId), /// Literal values. ConstantValue(ConstVal<'tcx>), /// Ranges of literal values (`2...5` and `2..5`). ConstantRange(ConstVal<'tcx>, ConstVal<'tcx>, RangeEnd), /// Array patterns of length n. Slice(usize), } impl<'tcx> Constructor<'tcx> { fn variant_index_for_adt(&self, adt: &'tcx ty::AdtDef) -> usize { match self { &Variant(vid) => adt.variant_index_with_id(vid), &Single => { assert_eq!(adt.variants.len(), 1); 0 } _ => bug!("bad constructor {:?} for adt {:?}", self, adt) } } } #[derive(Clone)] pub enum Usefulness<'tcx> { Useful, UsefulWithWitness(Vec>), NotUseful } impl<'tcx> Usefulness<'tcx> { fn is_useful(&self) -> bool { match *self { NotUseful => false, _ => true } } } #[derive(Copy, Clone)] pub enum WitnessPreference { ConstructWitness, LeaveOutWitness } #[derive(Copy, Clone, Debug)] struct PatternContext<'tcx> { ty: Ty<'tcx>, max_slice_length: usize, } /// A stack of patterns in reverse order of construction #[derive(Clone)] pub struct Witness<'tcx>(Vec>); impl<'tcx> Witness<'tcx> { pub fn single_pattern(&self) -> &Pattern<'tcx> { assert_eq!(self.0.len(), 1); &self.0[0] } fn push_wild_constructor<'a>( mut self, cx: &MatchCheckCtxt<'a, 'tcx>, ctor: &Constructor<'tcx>, ty: Ty<'tcx>) -> Self { let sub_pattern_tys = constructor_sub_pattern_tys(cx, ctor, ty); self.0.extend(sub_pattern_tys.into_iter().map(|ty| { Pattern { ty: ty, span: DUMMY_SP, kind: box PatternKind::Wild, } })); self.apply_constructor(cx, ctor, ty) } /// Constructs a partial witness for a pattern given a list of /// patterns expanded by the specialization step. /// /// When a pattern P is discovered to be useful, this function is used bottom-up /// to reconstruct a complete witness, e.g. a pattern P' that covers a subset /// of values, V, where each value in that set is not covered by any previously /// used patterns and is covered by the pattern P'. Examples: /// /// left_ty: tuple of 3 elements /// pats: [10, 20, _] => (10, 20, _) /// /// left_ty: struct X { a: (bool, &'static str), b: usize} /// pats: [(false, "foo"), 42] => X { a: (false, "foo"), b: 42 } fn apply_constructor<'a>( mut self, cx: &MatchCheckCtxt<'a,'tcx>, ctor: &Constructor<'tcx>, ty: Ty<'tcx>) -> Self { let arity = constructor_arity(cx, ctor, ty); let pat = { let len = self.0.len(); let mut pats = self.0.drain(len-arity..).rev(); match ty.sty { ty::TyAdt(..) | ty::TyTuple(..) => { let pats = pats.enumerate().map(|(i, p)| { FieldPattern { field: Field::new(i), pattern: p } }).collect(); if let ty::TyAdt(adt, substs) = ty.sty { if adt.variants.len() > 1 { PatternKind::Variant { adt_def: adt, substs: substs, variant_index: ctor.variant_index_for_adt(adt), subpatterns: pats } } else { PatternKind::Leaf { subpatterns: pats } } } else { PatternKind::Leaf { subpatterns: pats } } } ty::TyRef(..) => { PatternKind::Deref { subpattern: pats.nth(0).unwrap() } } ty::TySlice(_) | ty::TyArray(..) => { PatternKind::Slice { prefix: pats.collect(), slice: None, suffix: vec![] } } _ => { match *ctor { ConstantValue(ref v) => PatternKind::Constant { value: v.clone() }, _ => PatternKind::Wild, } } } }; self.0.push(Pattern { ty: ty, span: DUMMY_SP, kind: Box::new(pat), }); self } } /// This determines the set of all possible constructors of a pattern matching /// values of type `left_ty`. For vectors, this would normally be an infinite set /// but is instead bounded by the maximum fixed length of slice patterns in /// the column of patterns being analyzed. /// /// This intentionally does not list ConstantValue specializations for /// non-booleans, because we currently assume that there is always a /// "non-standard constant" that matches. See issue #12483. /// /// We make sure to omit constructors that are statically impossible. eg for /// Option we do not include Some(_) in the returned list of constructors. fn all_constructors<'a, 'tcx: 'a>(cx: &mut MatchCheckCtxt<'a, 'tcx>, pcx: PatternContext<'tcx>) -> Vec> { debug!("all_constructors({:?})", pcx.ty); match pcx.ty.sty { ty::TyBool => [true, false].iter().map(|b| ConstantValue(ConstVal::Bool(*b))).collect(), ty::TySlice(ref sub_ty) => { if cx.is_uninhabited(sub_ty) { vec![Slice(0)] } else { (0..pcx.max_slice_length+1).map(|length| Slice(length)).collect() } } ty::TyArray(ref sub_ty, length) => { if length > 0 && cx.is_uninhabited(sub_ty) { vec![] } else { vec![Slice(length)] } } ty::TyAdt(def, substs) if def.is_enum() && def.variants.len() != 1 => { def.variants.iter() .filter(|v| !cx.is_variant_uninhabited(v, substs)) .map(|v| Variant(v.did)) .collect() } _ => { if cx.is_uninhabited(pcx.ty) { vec![] } else { vec![Single] } } } } fn max_slice_length<'p, 'a: 'p, 'tcx: 'a, I>( _cx: &mut MatchCheckCtxt<'a, 'tcx>, patterns: I) -> usize where I: Iterator> { // The exhaustiveness-checking paper does not include any details on // checking variable-length slice patterns. However, they are matched // by an infinite collection of fixed-length array patterns. // // Checking the infinite set directly would take an infinite amount // of time. However, it turns out that for each finite set of // patterns `P`, all sufficiently large array lengths are equivalent: // // Each slice `s` with a "sufficiently-large" length `l ≥ L` that applies // to exactly the subset `Pₜ` of `P` can be transformed to a slice // `sₘ` for each sufficiently-large length `m` that applies to exactly // the same subset of `P`. // // Because of that, each witness for reachability-checking from one // of the sufficiently-large lengths can be transformed to an // equally-valid witness from any other length, so we only have // to check slice lengths from the "minimal sufficiently-large length" // and below. // // Note that the fact that there is a *single* `sₘ` for each `m` // not depending on the specific pattern in `P` is important: if // you look at the pair of patterns // `[true, ..]` // `[.., false]` // Then any slice of length ≥1 that matches one of these two // patterns can be be trivially turned to a slice of any // other length ≥1 that matches them and vice-versa - for // but the slice from length 2 `[false, true]` that matches neither // of these patterns can't be turned to a slice from length 1 that // matches neither of these patterns, so we have to consider // slices from length 2 there. // // Now, to see that that length exists and find it, observe that slice // patterns are either "fixed-length" patterns (`[_, _, _]`) or // "variable-length" patterns (`[_, .., _]`). // // For fixed-length patterns, all slices with lengths *longer* than // the pattern's length have the same outcome (of not matching), so // as long as `L` is greater than the pattern's length we can pick // any `sₘ` from that length and get the same result. // // For variable-length patterns, the situation is more complicated, // because as seen above the precise value of `sₘ` matters. // // However, for each variable-length pattern `p` with a prefix of length // `plₚ` and suffix of length `slₚ`, only the first `plₚ` and the last // `slₚ` elements are examined. // // Therefore, as long as `L` is positive (to avoid concerns about empty // types), all elements after the maximum prefix length and before // the maximum suffix length are not examined by any variable-length // pattern, and therefore can be added/removed without affecting // them - creating equivalent patterns from any sufficiently-large // length. // // Of course, if fixed-length patterns exist, we must be sure // that our length is large enough to miss them all, so // we can pick `L = max(FIXED_LEN+1 ∪ {max(PREFIX_LEN) + max(SUFFIX_LEN)})` // // for example, with the above pair of patterns, all elements // but the first and last can be added/removed, so any // witness of length ≥2 (say, `[false, false, true]`) can be // turned to a witness from any other length ≥2. let mut max_prefix_len = 0; let mut max_suffix_len = 0; let mut max_fixed_len = 0; for row in patterns { match *row.kind { PatternKind::Constant { value: ConstVal::ByteStr(ref data) } => { max_fixed_len = cmp::max(max_fixed_len, data.len()); } PatternKind::Slice { ref prefix, slice: None, ref suffix } => { let fixed_len = prefix.len() + suffix.len(); max_fixed_len = cmp::max(max_fixed_len, fixed_len); } PatternKind::Slice { ref prefix, slice: Some(_), ref suffix } => { max_prefix_len = cmp::max(max_prefix_len, prefix.len()); max_suffix_len = cmp::max(max_suffix_len, suffix.len()); } _ => {} } } cmp::max(max_fixed_len + 1, max_prefix_len + max_suffix_len) } /// Algorithm from http://moscova.inria.fr/~maranget/papers/warn/index.html /// The algorithm from the paper has been modified to correctly handle empty /// types. The changes are: /// (0) We don't exit early if the pattern matrix has zero rows. We just /// continue to recurse over columns. /// (1) all_constructors will only return constructors that are statically /// possible. eg. it will only return Ok for Result /// /// Whether a vector `v` of patterns is 'useful' in relation to a set of such /// vectors `m` is defined as there being a set of inputs that will match `v` /// but not any of the sets in `m`. /// /// This is used both for reachability checking (if a pattern isn't useful in /// relation to preceding patterns, it is not reachable) and exhaustiveness /// checking (if a wildcard pattern is useful in relation to a matrix, the /// matrix isn't exhaustive). pub fn is_useful<'p, 'a: 'p, 'tcx: 'a>(cx: &mut MatchCheckCtxt<'a, 'tcx>, matrix: &Matrix<'p, 'tcx>, v: &[&'p Pattern<'tcx>], witness: WitnessPreference) -> Usefulness<'tcx> { let &Matrix(ref rows) = matrix; debug!("is_useful({:?}, {:?})", matrix, v); // The base case. We are pattern-matching on () and the return value is // based on whether our matrix has a row or not. // NOTE: This could potentially be optimized by checking rows.is_empty() // first and then, if v is non-empty, the return value is based on whether // the type of the tuple we're checking is inhabited or not. if v.is_empty() { return if rows.is_empty() { match witness { ConstructWitness => UsefulWithWitness(vec![Witness(vec![])]), LeaveOutWitness => Useful, } } else { NotUseful } }; assert!(rows.iter().all(|r| r.len() == v.len())); let pcx = PatternContext { ty: rows.iter().map(|r| r[0].ty).find(|ty| !ty.references_error()) .unwrap_or(v[0].ty), max_slice_length: max_slice_length(cx, rows.iter().map(|r| r[0]).chain(Some(v[0]))) }; debug!("is_useful_expand_first_col: pcx={:?}, expanding {:?}", pcx, v[0]); if let Some(constructors) = pat_constructors(cx, v[0], pcx) { debug!("is_useful - expanding constructors: {:?}", constructors); constructors.into_iter().map(|c| is_useful_specialized(cx, matrix, v, c.clone(), pcx.ty, witness) ).find(|result| result.is_useful()).unwrap_or(NotUseful) } else { debug!("is_useful - expanding wildcard"); let used_ctors: Vec = rows.iter().flat_map(|row| { pat_constructors(cx, row[0], pcx).unwrap_or(vec![]) }).collect(); debug!("used_ctors = {:?}", used_ctors); let all_ctors = all_constructors(cx, pcx); debug!("all_ctors = {:?}", all_ctors); let missing_ctors: Vec = all_ctors.iter().filter(|c| { !used_ctors.contains(*c) }).cloned().collect(); // `missing_ctors` is the set of constructors from the same type as the // first column of `matrix` that are matched only by wildcard patterns // from the first column. // // Therefore, if there is some pattern that is unmatched by `matrix`, // it will still be unmatched if the first constructor is replaced by // any of the constructors in `missing_ctors` // // However, if our scrutinee is *privately* an empty enum, we // must treat it as though it had an "unknown" constructor (in // that case, all other patterns obviously can't be variants) // to avoid exposing its emptyness. See the `match_privately_empty` // test for details. // // FIXME: currently the only way I know of something can // be a privately-empty enum is when the never_type // feature flag is not present, so this is only // needed for that case. let is_privately_empty = all_ctors.is_empty() && !cx.is_uninhabited(pcx.ty); debug!("missing_ctors={:?} is_privately_empty={:?}", missing_ctors, is_privately_empty); if missing_ctors.is_empty() && !is_privately_empty { all_ctors.into_iter().map(|c| { is_useful_specialized(cx, matrix, v, c.clone(), pcx.ty, witness) }).find(|result| result.is_useful()).unwrap_or(NotUseful) } else { let matrix = rows.iter().filter_map(|r| { if r[0].is_wildcard() { Some(r[1..].to_vec()) } else { None } }).collect(); match is_useful(cx, &matrix, &v[1..], witness) { UsefulWithWitness(pats) => { let cx = &*cx; let new_witnesses = if used_ctors.is_empty() { // All constructors are unused. Add wild patterns // rather than each individual constructor pats.into_iter().map(|mut witness| { witness.0.push(Pattern { ty: pcx.ty, span: DUMMY_SP, kind: box PatternKind::Wild, }); witness }).collect() } else { pats.into_iter().flat_map(|witness| { missing_ctors.iter().map(move |ctor| { witness.clone().push_wild_constructor(cx, ctor, pcx.ty) }) }).collect() }; UsefulWithWitness(new_witnesses) } result => result } } } } fn is_useful_specialized<'p, 'a:'p, 'tcx: 'a>( cx: &mut MatchCheckCtxt<'a, 'tcx>, &Matrix(ref m): &Matrix<'p, 'tcx>, v: &[&'p Pattern<'tcx>], ctor: Constructor<'tcx>, lty: Ty<'tcx>, witness: WitnessPreference) -> Usefulness<'tcx> { debug!("is_useful_specialized({:?}, {:?}, {:?})", v, ctor, lty); let sub_pat_tys = constructor_sub_pattern_tys(cx, &ctor, lty); let wild_patterns_owned: Vec<_> = sub_pat_tys.iter().map(|ty| { Pattern { ty: ty, span: DUMMY_SP, kind: box PatternKind::Wild, } }).collect(); let wild_patterns: Vec<_> = wild_patterns_owned.iter().collect(); let matrix = Matrix(m.iter().flat_map(|r| { specialize(cx, &r, &ctor, &wild_patterns) }).collect()); match specialize(cx, v, &ctor, &wild_patterns) { Some(v) => match is_useful(cx, &matrix, &v, witness) { UsefulWithWitness(witnesses) => UsefulWithWitness( witnesses.into_iter() .map(|witness| witness.apply_constructor(cx, &ctor, lty)) .collect() ), result => result }, None => NotUseful } } /// Determines the constructors that the given pattern can be specialized to. /// /// In most cases, there's only one constructor that a specific pattern /// represents, such as a specific enum variant or a specific literal value. /// Slice patterns, however, can match slices of different lengths. For instance, /// `[a, b, ..tail]` can match a slice of length 2, 3, 4 and so on. /// /// Returns None in case of a catch-all, which can't be specialized. fn pat_constructors<'tcx>(_cx: &mut MatchCheckCtxt, pat: &Pattern<'tcx>, pcx: PatternContext) -> Option>> { match *pat.kind { PatternKind::Binding { .. } | PatternKind::Wild => None, PatternKind::Leaf { .. } | PatternKind::Deref { .. } => Some(vec![Single]), PatternKind::Variant { adt_def, variant_index, .. } => Some(vec![Variant(adt_def.variants[variant_index].did)]), PatternKind::Constant { ref value } => Some(vec![ConstantValue(value.clone())]), PatternKind::Range { ref lo, ref hi, ref end } => Some(vec![ConstantRange(lo.clone(), hi.clone(), end.clone())]), PatternKind::Array { .. } => match pcx.ty.sty { ty::TyArray(_, length) => Some(vec![Slice(length)]), _ => span_bug!(pat.span, "bad ty {:?} for array pattern", pcx.ty) }, PatternKind::Slice { ref prefix, ref slice, ref suffix } => { let pat_len = prefix.len() + suffix.len(); if slice.is_some() { Some((pat_len..pcx.max_slice_length+1).map(Slice).collect()) } else { Some(vec![Slice(pat_len)]) } } } } /// This computes the arity of a constructor. The arity of a constructor /// is how many subpattern patterns of that constructor should be expanded to. /// /// For instance, a tuple pattern (_, 42, Some([])) has the arity of 3. /// A struct pattern's arity is the number of fields it contains, etc. fn constructor_arity(_cx: &MatchCheckCtxt, ctor: &Constructor, ty: Ty) -> usize { debug!("constructor_arity({:?}, {:?})", ctor, ty); match ty.sty { ty::TyTuple(ref fs, _) => fs.len(), ty::TySlice(..) | ty::TyArray(..) => match *ctor { Slice(length) => length, ConstantValue(_) => 0, _ => bug!("bad slice pattern {:?} {:?}", ctor, ty) }, ty::TyRef(..) => 1, ty::TyAdt(adt, _) => { adt.variants[ctor.variant_index_for_adt(adt)].fields.len() } _ => 0 } } /// This computes the types of the sub patterns that a constructor should be /// expanded to. /// /// For instance, a tuple pattern (43u32, 'a') has sub pattern types [u32, char]. fn constructor_sub_pattern_tys<'a, 'tcx: 'a>(cx: &MatchCheckCtxt<'a, 'tcx>, ctor: &Constructor, ty: Ty<'tcx>) -> Vec> { debug!("constructor_sub_pattern_tys({:?}, {:?})", ctor, ty); match ty.sty { ty::TyTuple(ref fs, _) => fs.into_iter().map(|t| *t).collect(), ty::TySlice(ty) | ty::TyArray(ty, _) => match *ctor { Slice(length) => repeat(ty).take(length).collect(), ConstantValue(_) => vec![], _ => bug!("bad slice pattern {:?} {:?}", ctor, ty) }, ty::TyRef(_, ref ty_and_mut) => vec![ty_and_mut.ty], ty::TyAdt(adt, substs) => { adt.variants[ctor.variant_index_for_adt(adt)].fields.iter().map(|field| { let is_visible = adt.is_enum() || field.vis.is_accessible_from(cx.module, cx.tcx); if is_visible { field.ty(cx.tcx, substs) } else { // Treat all non-visible fields as nil. They // can't appear in any other pattern from // this match (because they are private), // so their type does not matter - but // we don't want to know they are // uninhabited. cx.tcx.mk_nil() } }).collect() } _ => vec![], } } fn slice_pat_covered_by_constructor(_tcx: TyCtxt, _span: Span, ctor: &Constructor, prefix: &[Pattern], slice: &Option, suffix: &[Pattern]) -> Result { let data = match *ctor { ConstantValue(ConstVal::ByteStr(ref data)) => data, _ => bug!() }; let pat_len = prefix.len() + suffix.len(); if data.len() < pat_len || (slice.is_none() && data.len() > pat_len) { return Ok(false); } for (ch, pat) in data[..prefix.len()].iter().zip(prefix).chain( data[data.len()-suffix.len()..].iter().zip(suffix)) { match pat.kind { box PatternKind::Constant { ref value } => match *value { ConstVal::Integral(ConstInt::U8(u)) => { if u != *ch { return Ok(false); } }, _ => span_bug!(pat.span, "bad const u8 {:?}", value) }, _ => {} } } Ok(true) } fn range_covered_by_constructor(tcx: TyCtxt, span: Span, ctor: &Constructor, from: &ConstVal, to: &ConstVal, end: RangeEnd) -> Result { let cmp_from = |c_from| Ok(compare_const_vals(tcx, span, c_from, from)? != Ordering::Less); let cmp_to = |c_to| compare_const_vals(tcx, span, c_to, to); match *ctor { ConstantValue(ref value) => { let to = cmp_to(value)?; let end = (to != Ordering::Greater) || (end == RangeEnd::Excluded && to == Ordering::Equal); Ok(cmp_from(value)? && end) }, ConstantRange(ref from, ref to, RangeEnd::Included) => { let to = cmp_to(to)?; let end = (to != Ordering::Greater) || (end == RangeEnd::Excluded && to == Ordering::Equal); Ok(cmp_from(from)? && end) }, ConstantRange(ref from, ref to, RangeEnd::Excluded) => { let to = cmp_to(to)?; let end = (to == Ordering::Less) || (end == RangeEnd::Excluded && to == Ordering::Equal); Ok(cmp_from(from)? && end) } Single => Ok(true), _ => bug!(), } } fn patterns_for_variant<'p, 'a: 'p, 'tcx: 'a>( subpatterns: &'p [FieldPattern<'tcx>], wild_patterns: &[&'p Pattern<'tcx>]) -> Vec<&'p Pattern<'tcx>> { let mut result = wild_patterns.to_owned(); for subpat in subpatterns { result[subpat.field.index()] = &subpat.pattern; } debug!("patterns_for_variant({:?}, {:?}) = {:?}", subpatterns, wild_patterns, result); result } /// This is the main specialization step. It expands the first pattern in the given row /// into `arity` patterns based on the constructor. For most patterns, the step is trivial, /// for instance tuple patterns are flattened and box patterns expand into their inner pattern. /// /// OTOH, slice patterns with a subslice pattern (..tail) can be expanded into multiple /// different patterns. /// Structure patterns with a partial wild pattern (Foo { a: 42, .. }) have their missing /// fields filled with wild patterns. fn specialize<'p, 'a: 'p, 'tcx: 'a>( cx: &mut MatchCheckCtxt<'a, 'tcx>, r: &[&'p Pattern<'tcx>], constructor: &Constructor, wild_patterns: &[&'p Pattern<'tcx>]) -> Option>> { let pat = &r[0]; let head: Option> = match *pat.kind { PatternKind::Binding { .. } | PatternKind::Wild => { Some(wild_patterns.to_owned()) }, PatternKind::Variant { adt_def, variant_index, ref subpatterns, .. } => { let ref variant = adt_def.variants[variant_index]; if *constructor == Variant(variant.did) { Some(patterns_for_variant(subpatterns, wild_patterns)) } else { None } } PatternKind::Leaf { ref subpatterns } => { Some(patterns_for_variant(subpatterns, wild_patterns)) } PatternKind::Deref { ref subpattern } => { Some(vec![subpattern]) } PatternKind::Constant { ref value } => { match *constructor { Slice(..) => match *value { ConstVal::ByteStr(ref data) => { if wild_patterns.len() == data.len() { Some(cx.lower_byte_str_pattern(pat)) } else { None } } _ => span_bug!(pat.span, "unexpected const-val {:?} with ctor {:?}", value, constructor) }, _ => { match range_covered_by_constructor( cx.tcx, pat.span, constructor, value, value, RangeEnd::Included ) { Ok(true) => Some(vec![]), Ok(false) => None, Err(ErrorReported) => None, } } } } PatternKind::Range { ref lo, ref hi, ref end } => { match range_covered_by_constructor( cx.tcx, pat.span, constructor, lo, hi, end.clone() ) { Ok(true) => Some(vec![]), Ok(false) => None, Err(ErrorReported) => None, } } PatternKind::Array { ref prefix, ref slice, ref suffix } | PatternKind::Slice { ref prefix, ref slice, ref suffix } => { match *constructor { Slice(..) => { let pat_len = prefix.len() + suffix.len(); if let Some(slice_count) = wild_patterns.len().checked_sub(pat_len) { if slice_count == 0 || slice.is_some() { Some( prefix.iter().chain( wild_patterns.iter().map(|p| *p) .skip(prefix.len()) .take(slice_count) .chain( suffix.iter() )).collect()) } else { None } } else { None } } ConstantValue(..) => { match slice_pat_covered_by_constructor( cx.tcx, pat.span, constructor, prefix, slice, suffix ) { Ok(true) => Some(vec![]), Ok(false) => None, Err(ErrorReported) => None } } _ => span_bug!(pat.span, "unexpected ctor {:?} for slice pat", constructor) } } }; debug!("specialize({:?}, {:?}) = {:?}", r[0], wild_patterns, head); head.map(|mut head| { head.extend_from_slice(&r[1 ..]); head }) }