use super::*; use core::iter::*; #[test] fn test_zip_nth() { let xs = [0, 1, 2, 4, 5]; let ys = [10, 11, 12]; let mut it = xs.iter().zip(&ys); assert_eq!(it.nth(0), Some((&0, &10))); assert_eq!(it.nth(1), Some((&2, &12))); assert_eq!(it.nth(0), None); let mut it = xs.iter().zip(&ys); assert_eq!(it.nth(3), None); let mut it = ys.iter().zip(&xs); assert_eq!(it.nth(3), None); } #[test] fn test_zip_nth_side_effects() { let mut a = Vec::new(); let mut b = Vec::new(); let value = [1, 2, 3, 4, 5, 6] .iter() .cloned() .map(|n| { a.push(n); n * 10 }) .zip([2, 3, 4, 5, 6, 7, 8].iter().cloned().map(|n| { b.push(n * 100); n * 1000 })) .skip(1) .nth(3); assert_eq!(value, Some((50, 6000))); assert_eq!(a, vec![1, 2, 3, 4, 5]); assert_eq!(b, vec![200, 300, 400, 500, 600]); } #[test] fn test_zip_next_back_side_effects() { let mut a = Vec::new(); let mut b = Vec::new(); let mut iter = [1, 2, 3, 4, 5, 6] .iter() .cloned() .map(|n| { a.push(n); n * 10 }) .zip([2, 3, 4, 5, 6, 7, 8].iter().cloned().map(|n| { b.push(n * 100); n * 1000 })); // The second iterator is one item longer, so `next_back` is called on it // one more time. assert_eq!(iter.next_back(), Some((60, 7000))); assert_eq!(iter.next_back(), Some((50, 6000))); assert_eq!(iter.next_back(), Some((40, 5000))); assert_eq!(iter.next_back(), Some((30, 4000))); assert_eq!(a, vec![6, 5, 4, 3]); assert_eq!(b, vec![800, 700, 600, 500, 400]); } #[test] fn test_zip_nth_back_side_effects() { let mut a = Vec::new(); let mut b = Vec::new(); let value = [1, 2, 3, 4, 5, 6] .iter() .cloned() .map(|n| { a.push(n); n * 10 }) .zip([2, 3, 4, 5, 6, 7, 8].iter().cloned().map(|n| { b.push(n * 100); n * 1000 })) .nth_back(3); assert_eq!(value, Some((30, 4000))); assert_eq!(a, vec![6, 5, 4, 3]); assert_eq!(b, vec![800, 700, 600, 500, 400]); } #[test] fn test_zip_next_back_side_effects_exhausted() { let mut a = Vec::new(); let mut b = Vec::new(); let mut iter = [1, 2, 3, 4, 5, 6] .iter() .cloned() .map(|n| { a.push(n); n * 10 }) .zip([2, 3, 4].iter().cloned().map(|n| { b.push(n * 100); n * 1000 })); iter.next(); iter.next(); iter.next(); iter.next(); assert_eq!(iter.next_back(), None); assert_eq!(a, vec![1, 2, 3, 4, 6, 5]); assert_eq!(b, vec![200, 300, 400]); } #[test] fn test_zip_cloned_sideffectful() { let xs = [CountClone::new(), CountClone::new(), CountClone::new(), CountClone::new()]; let ys = [CountClone::new(), CountClone::new()]; for _ in xs.iter().cloned().zip(ys.iter().cloned()) {} assert_eq!(&xs, &[1, 1, 1, 0][..]); assert_eq!(&ys, &[1, 1][..]); let xs = [CountClone::new(), CountClone::new()]; let ys = [CountClone::new(), CountClone::new(), CountClone::new(), CountClone::new()]; for _ in xs.iter().cloned().zip(ys.iter().cloned()) {} assert_eq!(&xs, &[1, 1][..]); assert_eq!(&ys, &[1, 1, 0, 0][..]); } #[test] fn test_zip_map_sideffectful() { let mut xs = [0; 6]; let mut ys = [0; 4]; for _ in xs.iter_mut().map(|x| *x += 1).zip(ys.iter_mut().map(|y| *y += 1)) {} assert_eq!(&xs, &[1, 1, 1, 1, 1, 0]); assert_eq!(&ys, &[1, 1, 1, 1]); let mut xs = [0; 4]; let mut ys = [0; 6]; for _ in xs.iter_mut().map(|x| *x += 1).zip(ys.iter_mut().map(|y| *y += 1)) {} assert_eq!(&xs, &[1, 1, 1, 1]); assert_eq!(&ys, &[1, 1, 1, 1, 0, 0]); } #[test] fn test_zip_map_rev_sideffectful() { let mut xs = [0; 6]; let mut ys = [0; 4]; { let mut it = xs.iter_mut().map(|x| *x += 1).zip(ys.iter_mut().map(|y| *y += 1)); it.next_back(); } assert_eq!(&xs, &[0, 0, 0, 1, 1, 1]); assert_eq!(&ys, &[0, 0, 0, 1]); let mut xs = [0; 6]; let mut ys = [0; 4]; { let mut it = xs.iter_mut().map(|x| *x += 1).zip(ys.iter_mut().map(|y| *y += 1)); (&mut it).take(5).count(); it.next_back(); } assert_eq!(&xs, &[1, 1, 1, 1, 1, 1]); assert_eq!(&ys, &[1, 1, 1, 1]); } #[test] fn test_zip_nested_sideffectful() { let mut xs = [0; 6]; let ys = [0; 4]; { // test that it has the side effect nested inside enumerate let it = xs.iter_mut().map(|x| *x = 1).enumerate().zip(&ys); it.count(); } assert_eq!(&xs, &[1, 1, 1, 1, 1, 0]); } #[test] fn test_zip_nth_back_side_effects_exhausted() { let mut a = Vec::new(); let mut b = Vec::new(); let mut iter = [1, 2, 3, 4, 5, 6] .iter() .cloned() .map(|n| { a.push(n); n * 10 }) .zip([2, 3, 4].iter().cloned().map(|n| { b.push(n * 100); n * 1000 })); iter.next(); iter.next(); iter.next(); iter.next(); assert_eq!(iter.nth_back(0), None); assert_eq!(a, vec![1, 2, 3, 4, 6, 5]); assert_eq!(b, vec![200, 300, 400]); } #[test] fn test_zip_trusted_random_access_composition() { let a = [0, 1, 2, 3, 4]; let b = a; let c = a; let a = a.iter().copied(); let b = b.iter().copied(); let mut c = c.iter().copied(); c.next(); let mut z1 = a.zip(b); assert_eq!(z1.next().unwrap(), (0, 0)); let mut z2 = z1.zip(c); fn assert_trusted_random_access(_a: &T) {} assert_trusted_random_access(&z2); assert_eq!(z2.next().unwrap(), ((1, 1), 1)); } #[test] fn test_double_ended_zip() { let xs = [1, 2, 3, 4, 5, 6]; let ys = [1, 2, 3, 7]; let a = xs.iter().cloned(); let b = ys.iter().cloned(); let mut it = a.zip(b); assert_eq!(it.next(), Some((1, 1))); assert_eq!(it.next(), Some((2, 2))); assert_eq!(it.next_back(), Some((4, 7))); assert_eq!(it.next_back(), Some((3, 3))); assert_eq!(it.next(), None); } #[test] fn test_issue_82282() { fn overflowed_zip(arr: &[i32]) -> impl Iterator { static UNIT_EMPTY_ARR: [(); 0] = []; let mapped = arr.into_iter().map(|i| *i); let mut zipped = mapped.zip(UNIT_EMPTY_ARR.iter()); zipped.next(); zipped } let arr = [1, 2, 3]; let zip = overflowed_zip(&arr).zip(overflowed_zip(&arr)); assert_eq!(zip.size_hint(), (0, Some(0))); for _ in zip { panic!(); } } #[test] fn test_issue_82291() { use std::cell::Cell; let mut v1 = [()]; let v2 = [()]; let called = Cell::new(0); let mut zip = v1 .iter_mut() .map(|r| { called.set(called.get() + 1); r }) .zip(&v2); zip.next_back(); assert_eq!(called.get(), 1); zip.next(); assert_eq!(called.get(), 1); }