// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // The Rust abstract syntax tree. use codemap::{span, spanned}; use abi::AbiSet; use opt_vec::OptVec; use core::cast; use core::option::{None, Option, Some}; use core::to_bytes; use core::to_bytes::IterBytes; use core::to_str::ToStr; use std::serialize::{Encodable, Decodable, Encoder, Decoder}; // an identifier contains an index into the interner // table and a SyntaxContext to track renaming and // macro expansion per Flatt et al., "Macros // That Work Together" #[deriving(Eq)] pub struct ident { repr: Name, ctxt: SyntaxContext } // a SyntaxContext represents a chain of macro-expandings // and renamings. Each macro expansion corresponds to // a fresh uint // I'm representing this syntax context as an index into // a table, in order to work around a compiler bug // that's causing unreleased memory to cause core dumps // and also perhaps to save some work in destructor checks. // the special uint '0' will be used to indicate an empty // syntax context // this uint is a reference to a table stored in thread-local // storage. pub type SyntaxContext = uint; pub type SCTable = ~[SyntaxContext_]; pub static empty_ctxt : uint = 0; #[deriving(Eq)] #[auto_encode] #[auto_decode] pub enum SyntaxContext_ { EmptyCtxt, Mark (Mrk,SyntaxContext), // flattening the name and syntaxcontext into the rename... // HIDDEN INVARIANTS: // 1) the first name in a Rename node // can only be a programmer-supplied name. // 2) Every Rename node with a given Name in the // "to" slot must have the same name and context // in the "from" slot. In essence, they're all // pointers to a single "rename" event node. Rename (ident,Name,SyntaxContext) } // a name represents an identifier pub type Name = uint; // a mark represents a unique id associated // with a macro expansion pub type Mrk = uint; impl Encodable for ident { fn encode(&self, s: &mut S) { unsafe { let intr = match local_data::local_data_get(interner_key!()) { None => fail!("encode: TLS interner not set up"), Some(intr) => intr }; s.emit_str(*(*intr).get(*self)); } } } impl Decodable for ident { fn decode(d: &mut D) -> ident { let intr = match unsafe { local_data::local_data_get(interner_key!()) } { None => fail!("decode: TLS interner not set up"), Some(intr) => intr }; (*intr).intern(d.read_str()) } } #[cfg(stage0)] impl to_bytes::IterBytes for ident { fn iter_bytes(&self, lsb0: bool, f: to_bytes::Cb) { self.repr.iter_bytes(lsb0, f) } } #[cfg(not(stage0))] impl to_bytes::IterBytes for ident { fn iter_bytes(&self, lsb0: bool, f: to_bytes::Cb) -> bool { self.repr.iter_bytes(lsb0, f) } } // Functions may or may not have names. pub type fn_ident = Option; #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct Lifetime { id: node_id, span: span, ident: ident } #[cfg(stage0)] impl to_bytes::IterBytes for Lifetime { fn iter_bytes(&self, lsb0: bool, f: to_bytes::Cb) { to_bytes::iter_bytes_3(&self.id, &self.span, &self.ident, lsb0, f) } } #[cfg(not(stage0))] impl to_bytes::IterBytes for Lifetime { fn iter_bytes(&self, lsb0: bool, f: to_bytes::Cb) -> bool { to_bytes::iter_bytes_3(&self.id, &self.span, &self.ident, lsb0, f) } } // a "Path" is essentially Rust's notion of a name; // for instance: core::cmp::Eq . It's represented // as a sequence of identifiers, along with a bunch // of supporting information. #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct Path { span: span, global: bool, idents: ~[ident], rp: Option<@Lifetime>, types: ~[@Ty], } pub type crate_num = int; pub type node_id = int; #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct def_id { crate: crate_num, node: node_id, } pub static local_crate: crate_num = 0; pub static crate_node_id: node_id = 0; #[auto_encode] #[auto_decode] #[deriving(Eq)] // The AST represents all type param bounds as types. // typeck::collect::compute_bounds matches these against // the "special" built-in traits (see middle::lang_items) and // detects Copy, Send, Owned, and Const. pub enum TyParamBound { TraitTyParamBound(@trait_ref), RegionTyParamBound } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct TyParam { ident: ident, id: node_id, bounds: @OptVec } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct Generics { lifetimes: OptVec, ty_params: OptVec } pub impl Generics { fn is_parameterized(&self) -> bool { self.lifetimes.len() + self.ty_params.len() > 0 } fn is_lt_parameterized(&self) -> bool { self.lifetimes.len() > 0 } fn is_type_parameterized(&self) -> bool { self.ty_params.len() > 0 } } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum def { def_fn(def_id, purity), def_static_method(/* method */ def_id, /* trait */ Option, purity), def_self(node_id, bool /* is_implicit */), def_self_ty(/* trait id */ node_id), def_mod(def_id), def_foreign_mod(def_id), def_const(def_id), def_arg(node_id, bool /* is_mutbl */), def_local(node_id, bool /* is_mutbl */), def_variant(def_id /* enum */, def_id /* variant */), def_ty(def_id), def_trait(def_id), def_prim_ty(prim_ty), def_ty_param(def_id, uint), def_binding(node_id, binding_mode), def_use(def_id), def_upvar(node_id, // id of closed over var @def, // closed over def node_id, // expr node that creates the closure node_id), // id for the block/body of the closure expr def_struct(def_id), def_typaram_binder(node_id), /* struct, impl or trait with ty params */ def_region(node_id), def_label(node_id) } // The set of meta_items that define the compilation environment of the crate, // used to drive conditional compilation pub type crate_cfg = ~[@meta_item]; pub type crate = spanned; #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct crate_ { module: _mod, attrs: ~[attribute], config: crate_cfg, } pub type meta_item = spanned; #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum meta_item_ { meta_word(@~str), meta_list(@~str, ~[@meta_item]), meta_name_value(@~str, lit), } pub type blk = spanned; #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct blk_ { view_items: ~[@view_item], stmts: ~[@stmt], expr: Option<@expr>, id: node_id, rules: blk_check_mode, } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct pat { id: node_id, node: pat_, span: span, } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct field_pat { ident: ident, pat: @pat, } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum binding_mode { bind_by_copy, bind_by_ref(mutability), bind_infer } #[cfg(stage0)] impl to_bytes::IterBytes for binding_mode { fn iter_bytes(&self, lsb0: bool, f: to_bytes::Cb) { match *self { bind_by_copy => 0u8.iter_bytes(lsb0, f), bind_by_ref(ref m) => to_bytes::iter_bytes_2(&1u8, m, lsb0, f), bind_infer => 2u8.iter_bytes(lsb0, f), } } } #[cfg(not(stage0))] impl to_bytes::IterBytes for binding_mode { fn iter_bytes(&self, lsb0: bool, f: to_bytes::Cb) -> bool { match *self { bind_by_copy => 0u8.iter_bytes(lsb0, f), bind_by_ref(ref m) => to_bytes::iter_bytes_2(&1u8, m, lsb0, f), bind_infer => 2u8.iter_bytes(lsb0, f), } } } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum pat_ { pat_wild, // A pat_ident may either be a new bound variable, // or a nullary enum (in which case the second field // is None). // In the nullary enum case, the parser can't determine // which it is. The resolver determines this, and // records this pattern's node_id in an auxiliary // set (of "pat_idents that refer to nullary enums") pat_ident(binding_mode, @Path, Option<@pat>), pat_enum(@Path, Option<~[@pat]>), /* "none" means a * pattern where * we don't bind the fields to names */ pat_struct(@Path, ~[field_pat], bool), pat_tup(~[@pat]), pat_box(@pat), pat_uniq(@pat), pat_region(@pat), // borrowed pointer pattern pat_lit(@expr), pat_range(@expr, @expr), // [a, b, ..i, y, z] is represented as // pat_vec(~[a, b], Some(i), ~[y, z]) pat_vec(~[@pat], Option<@pat>, ~[@pat]) } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum mutability { m_mutbl, m_imm, m_const, } #[cfg(stage0)] impl to_bytes::IterBytes for mutability { fn iter_bytes(&self, lsb0: bool, f: to_bytes::Cb) { (*self as u8).iter_bytes(lsb0, f) } } #[cfg(not(stage0))] impl to_bytes::IterBytes for mutability { fn iter_bytes(&self, lsb0: bool, f: to_bytes::Cb) -> bool { (*self as u8).iter_bytes(lsb0, f) } } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum Sigil { BorrowedSigil, OwnedSigil, ManagedSigil } #[cfg(stage0)] impl to_bytes::IterBytes for Sigil { fn iter_bytes(&self, lsb0: bool, f: to_bytes::Cb) { (*self as uint).iter_bytes(lsb0, f) } } #[cfg(not(stage0))] impl to_bytes::IterBytes for Sigil { fn iter_bytes(&self, lsb0: bool, f: to_bytes::Cb) -> bool { (*self as uint).iter_bytes(lsb0, f) } } impl ToStr for Sigil { fn to_str(&self) -> ~str { match *self { BorrowedSigil => ~"&", OwnedSigil => ~"~", ManagedSigil => ~"@" } } } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum vstore { // FIXME (#3469): Change uint to @expr (actually only constant exprs) vstore_fixed(Option), // [1,2,3,4] vstore_uniq, // ~[1,2,3,4] vstore_box, // @[1,2,3,4] vstore_slice(Option<@Lifetime>) // &'foo? [1,2,3,4] } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum expr_vstore { expr_vstore_uniq, // ~[1,2,3,4] expr_vstore_box, // @[1,2,3,4] expr_vstore_mut_box, // @mut [1,2,3,4] expr_vstore_slice, // &[1,2,3,4] expr_vstore_mut_slice, // &mut [1,2,3,4] } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum binop { add, subtract, mul, div, rem, and, or, bitxor, bitand, bitor, shl, shr, eq, lt, le, ne, ge, gt, } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum unop { box(mutability), uniq(mutability), deref, not, neg } pub type stmt = spanned; #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum stmt_ { stmt_decl(@decl, node_id), // expr without trailing semi-colon (must have unit type): stmt_expr(@expr, node_id), // expr with trailing semi-colon (may have any type): stmt_semi(@expr, node_id), // bool: is there a trailing sem-colon? stmt_mac(mac, bool), } // FIXME (pending discussion of #1697, #2178...): local should really be // a refinement on pat. #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct local_ { is_mutbl: bool, ty: @Ty, pat: @pat, init: Option<@expr>, id: node_id, } pub type local = spanned; pub type decl = spanned; #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum decl_ { decl_local(~[@local]), decl_item(@item), } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct arm { pats: ~[@pat], guard: Option<@expr>, body: blk, } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct field_ { mutbl: mutability, ident: ident, expr: @expr, } pub type field = spanned; #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum blk_check_mode { default_blk, unsafe_blk, } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct expr { id: node_id, // Extra node ID is only used for index, assign_op, unary, binary, method // call callee_id: node_id, node: expr_, span: span, } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum CallSugar { NoSugar, DoSugar, ForSugar } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum expr_ { expr_vstore(@expr, expr_vstore), expr_vec(~[@expr], mutability), expr_call(@expr, ~[@expr], CallSugar), expr_method_call(@expr, ident, ~[@Ty], ~[@expr], CallSugar), expr_tup(~[@expr]), expr_binary(binop, @expr, @expr), expr_unary(unop, @expr), expr_lit(@lit), expr_cast(@expr, @Ty), expr_if(@expr, blk, Option<@expr>), expr_while(@expr, blk), /* Conditionless loop (can be exited with break, cont, or ret) Same semantics as while(true) { body }, but typestate knows that the (implicit) condition is always true. */ expr_loop(blk, Option), expr_match(@expr, ~[arm]), expr_fn_block(fn_decl, blk), // Inner expr is always an expr_fn_block. We need the wrapping node to // easily type this (a function returning nil on the inside but bool on // the outside). expr_loop_body(@expr), // Like expr_loop_body but for 'do' blocks expr_do_body(@expr), expr_block(blk), expr_copy(@expr), expr_assign(@expr, @expr), expr_assign_op(binop, @expr, @expr), expr_field(@expr, ident, ~[@Ty]), expr_index(@expr, @expr), expr_path(@Path), /// The special identifier `self`. expr_self, expr_addr_of(mutability, @expr), expr_break(Option), expr_again(Option), expr_ret(Option<@expr>), expr_log(@expr, @expr), expr_inline_asm(inline_asm), expr_mac(mac), // A struct literal expression. expr_struct(@Path, ~[field], Option<@expr>), // A vector literal constructed from one repeated element. expr_repeat(@expr /* element */, @expr /* count */, mutability), // No-op: used solely so we can pretty-print faithfully expr_paren(@expr) } // When the main rust parser encounters a syntax-extension invocation, it // parses the arguments to the invocation as a token-tree. This is a very // loose structure, such that all sorts of different AST-fragments can // be passed to syntax extensions using a uniform type. // // If the syntax extension is an MBE macro, it will attempt to match its // LHS "matchers" against the provided token tree, and if it finds a // match, will transcribe the RHS token tree, splicing in any captured // macro_parser::matched_nonterminals into the tt_nonterminals it finds. // // The RHS of an MBE macro is the only place a tt_nonterminal or tt_seq // makes any real sense. You could write them elsewhere but nothing // else knows what to do with them, so you'll probably get a syntax // error. // #[auto_encode] #[auto_decode] #[deriving(Eq)] #[doc="For macro invocations; parsing is delegated to the macro"] pub enum token_tree { // a single token tt_tok(span, ::parse::token::Token), // a delimited sequence (the delimiters appear as the first // and last elements of the vector) tt_delim(~[token_tree]), // These only make sense for right-hand-sides of MBE macros: // a kleene-style repetition sequence with a span, a tt_forest, // an optional separator (?), and a boolean where true indicates // zero or more (*), and false indicates one or more (+). tt_seq(span, ~[token_tree], Option<::parse::token::Token>, bool), // a syntactic variable that will be filled in by macro expansion. tt_nonterminal(span, ident) } // // Matchers are nodes defined-by and recognized-by the main rust parser and // language, but they're only ever found inside syntax-extension invocations; // indeed, the only thing that ever _activates_ the rules in the rust parser // for parsing a matcher is a matcher looking for the 'matchers' nonterminal // itself. Matchers represent a small sub-language for pattern-matching // token-trees, and are thus primarily used by the macro-defining extension // itself. // // match_tok // --------- // // A matcher that matches a single token, denoted by the token itself. So // long as there's no $ involved. // // // match_seq // --------- // // A matcher that matches a sequence of sub-matchers, denoted various // possible ways: // // $(M)* zero or more Ms // $(M)+ one or more Ms // $(M),+ one or more comma-separated Ms // $(A B C);* zero or more semi-separated 'A B C' seqs // // // match_nonterminal // ----------------- // // A matcher that matches one of a few interesting named rust // nonterminals, such as types, expressions, items, or raw token-trees. A // black-box matcher on expr, for example, binds an expr to a given ident, // and that ident can re-occur as an interpolation in the RHS of a // macro-by-example rule. For example: // // $foo:expr => 1 + $foo // interpolate an expr // $foo:tt => $foo // interpolate a token-tree // $foo:tt => bar! $foo // only other valid interpolation // // is in arg position for another // // macro // // As a final, horrifying aside, note that macro-by-example's input is // also matched by one of these matchers. Holy self-referential! It is matched // by an match_seq, specifically this one: // // $( $lhs:matchers => $rhs:tt );+ // // If you understand that, you have closed to loop and understand the whole // macro system. Congratulations. // pub type matcher = spanned; #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum matcher_ { // match one token match_tok(::parse::token::Token), // match repetitions of a sequence: body, separator, zero ok?, // lo, hi position-in-match-array used: match_seq(~[matcher], Option<::parse::token::Token>, bool, uint, uint), // parse a Rust NT: name to bind, name of NT, position in match array: match_nonterminal(ident, ident, uint) } pub type mac = spanned; #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum mac_ { mac_invoc_tt(@Path,~[token_tree]), // new macro-invocation } pub type lit = spanned; #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum lit_ { lit_str(@~str), lit_int(i64, int_ty), lit_uint(u64, uint_ty), lit_int_unsuffixed(i64), lit_float(@~str, float_ty), lit_float_unsuffixed(@~str), lit_nil, lit_bool(bool), } // NB: If you change this, you'll probably want to change the corresponding // type structure in middle/ty.rs as well. #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct mt { ty: @Ty, mutbl: mutability, } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct ty_field_ { ident: ident, mt: mt, } pub type ty_field = spanned; #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct ty_method { ident: ident, attrs: ~[attribute], purity: purity, decl: fn_decl, generics: Generics, self_ty: self_ty, id: node_id, span: span, } #[auto_encode] #[auto_decode] #[deriving(Eq)] // A trait method is either required (meaning it doesn't have an // implementation, just a signature) or provided (meaning it has a default // implementation). pub enum trait_method { required(ty_method), provided(@method), } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum int_ty { ty_i, ty_char, ty_i8, ty_i16, ty_i32, ty_i64, } impl ToStr for int_ty { fn to_str(&self) -> ~str { ::ast_util::int_ty_to_str(*self) } } #[cfg(stage0)] impl to_bytes::IterBytes for int_ty { fn iter_bytes(&self, lsb0: bool, f: to_bytes::Cb) { (*self as u8).iter_bytes(lsb0, f) } } #[cfg(not(stage0))] impl to_bytes::IterBytes for int_ty { fn iter_bytes(&self, lsb0: bool, f: to_bytes::Cb) -> bool { (*self as u8).iter_bytes(lsb0, f) } } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum uint_ty { ty_u, ty_u8, ty_u16, ty_u32, ty_u64, } impl ToStr for uint_ty { fn to_str(&self) -> ~str { ::ast_util::uint_ty_to_str(*self) } } #[cfg(stage0)] impl to_bytes::IterBytes for uint_ty { fn iter_bytes(&self, lsb0: bool, f: to_bytes::Cb) { (*self as u8).iter_bytes(lsb0, f) } } #[cfg(not(stage0))] impl to_bytes::IterBytes for uint_ty { fn iter_bytes(&self, lsb0: bool, f: to_bytes::Cb) -> bool { (*self as u8).iter_bytes(lsb0, f) } } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum float_ty { ty_f, ty_f32, ty_f64, } impl ToStr for float_ty { fn to_str(&self) -> ~str { ::ast_util::float_ty_to_str(*self) } } #[cfg(stage0)] impl to_bytes::IterBytes for float_ty { fn iter_bytes(&self, lsb0: bool, f: to_bytes::Cb) { (*self as u8).iter_bytes(lsb0, f) } } #[cfg(not(stage0))] impl to_bytes::IterBytes for float_ty { fn iter_bytes(&self, lsb0: bool, f: to_bytes::Cb) -> bool { (*self as u8).iter_bytes(lsb0, f) } } // NB Eq method appears below. #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct Ty { id: node_id, node: ty_, span: span, } // Not represented directly in the AST, referred to by name through a ty_path. #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum prim_ty { ty_int(int_ty), ty_uint(uint_ty), ty_float(float_ty), ty_str, ty_bool, } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum Onceness { Once, Many } impl ToStr for Onceness { fn to_str(&self) -> ~str { match *self { Once => ~"once", Many => ~"many" } } } #[cfg(stage0)] impl to_bytes::IterBytes for Onceness { fn iter_bytes(&self, lsb0: bool, f: to_bytes::Cb) { (*self as uint).iter_bytes(lsb0, f); } } #[cfg(not(stage0))] impl to_bytes::IterBytes for Onceness { fn iter_bytes(&self, lsb0: bool, f: to_bytes::Cb) -> bool { (*self as uint).iter_bytes(lsb0, f) } } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct TyClosure { sigil: Sigil, region: Option<@Lifetime>, lifetimes: OptVec, purity: purity, onceness: Onceness, decl: fn_decl } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct TyBareFn { purity: purity, abis: AbiSet, lifetimes: OptVec, decl: fn_decl } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum ty_ { ty_nil, ty_bot, /* bottom type */ ty_box(mt), ty_uniq(mt), ty_vec(mt), ty_fixed_length_vec(mt, @expr), ty_ptr(mt), ty_rptr(Option<@Lifetime>, mt), ty_closure(@TyClosure), ty_bare_fn(@TyBareFn), ty_tup(~[@Ty]), ty_path(@Path, node_id), ty_mac(mac), // ty_infer means the type should be inferred instead of it having been // specified. This should only appear at the "top level" of a type and not // nested in one. ty_infer, } #[cfg(stage0)] impl to_bytes::IterBytes for Ty { fn iter_bytes(&self, lsb0: bool, f: to_bytes::Cb) { to_bytes::iter_bytes_2(&self.span.lo, &self.span.hi, lsb0, f); } } #[cfg(not(stage0))] impl to_bytes::IterBytes for Ty { fn iter_bytes(&self, lsb0: bool, f: to_bytes::Cb) -> bool { to_bytes::iter_bytes_2(&self.span.lo, &self.span.hi, lsb0, f) } } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum asm_dialect { asm_att, asm_intel } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct inline_asm { asm: @~str, clobbers: @~str, inputs: ~[(@~str, @expr)], outputs: ~[(@~str, @expr)], volatile: bool, alignstack: bool, dialect: asm_dialect } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct arg { is_mutbl: bool, ty: @Ty, pat: @pat, id: node_id, } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct fn_decl { inputs: ~[arg], output: @Ty, cf: ret_style, } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum purity { pure_fn, // declared with "pure fn" unsafe_fn, // declared with "unsafe fn" impure_fn, // declared with "fn" extern_fn, // declared with "extern fn" } impl ToStr for purity { fn to_str(&self) -> ~str { match *self { impure_fn => ~"impure", unsafe_fn => ~"unsafe", pure_fn => ~"pure", extern_fn => ~"extern" } } } #[cfg(stage0)] impl to_bytes::IterBytes for purity { fn iter_bytes(&self, lsb0: bool, f: to_bytes::Cb) { (*self as u8).iter_bytes(lsb0, f) } } #[cfg(not(stage0))] impl to_bytes::IterBytes for purity { fn iter_bytes(&self, lsb0: bool, f: to_bytes::Cb) -> bool { (*self as u8).iter_bytes(lsb0, f) } } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum ret_style { noreturn, // functions with return type _|_ that always // raise an error or exit (i.e. never return to the caller) return_val, // everything else } #[cfg(stage0)] impl to_bytes::IterBytes for ret_style { fn iter_bytes(&self, lsb0: bool, f: to_bytes::Cb) { (*self as u8).iter_bytes(lsb0, f) } } #[cfg(not(stage0))] impl to_bytes::IterBytes for ret_style { fn iter_bytes(&self, lsb0: bool, f: to_bytes::Cb) -> bool { (*self as u8).iter_bytes(lsb0, f) } } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum self_ty_ { sty_static, // no self sty_value, // `self` sty_region(Option<@Lifetime>, mutability), // `&'lt self` sty_box(mutability), // `@self` sty_uniq(mutability) // `~self` } #[cfg(stage0)] impl to_bytes::IterBytes for self_ty_ { fn iter_bytes(&self, lsb0: bool, f: to_bytes::Cb) { match *self { sty_static => 0u8.iter_bytes(lsb0, f), sty_value => 1u8.iter_bytes(lsb0, f), sty_region(ref lft, ref mutbl) => to_bytes::iter_bytes_3(&2u8, &lft, mutbl, lsb0, f), sty_box(ref mutbl) => to_bytes::iter_bytes_2(&3u8, mutbl, lsb0, f), sty_uniq(ref mutbl) => to_bytes::iter_bytes_2(&4u8, mutbl, lsb0, f), } } } #[cfg(not(stage0))] impl to_bytes::IterBytes for self_ty_ { fn iter_bytes(&self, lsb0: bool, f: to_bytes::Cb) -> bool { match *self { sty_static => 0u8.iter_bytes(lsb0, f), sty_value => 1u8.iter_bytes(lsb0, f), sty_region(ref lft, ref mutbl) => to_bytes::iter_bytes_3(&2u8, &lft, mutbl, lsb0, f), sty_box(ref mutbl) => to_bytes::iter_bytes_2(&3u8, mutbl, lsb0, f), sty_uniq(ref mutbl) => to_bytes::iter_bytes_2(&4u8, mutbl, lsb0, f), } } } pub type self_ty = spanned; #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct method { ident: ident, attrs: ~[attribute], generics: Generics, self_ty: self_ty, purity: purity, decl: fn_decl, body: blk, id: node_id, span: span, self_id: node_id, vis: visibility, } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct _mod { view_items: ~[@view_item], items: ~[@item], } // Foreign mods can be named or anonymous #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum foreign_mod_sort { named, anonymous } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct foreign_mod { sort: foreign_mod_sort, abis: AbiSet, view_items: ~[@view_item], items: ~[@foreign_item], } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct variant_arg { ty: @Ty, id: node_id, } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum variant_kind { tuple_variant_kind(~[variant_arg]), struct_variant_kind(@struct_def), } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct enum_def { variants: ~[variant], } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct variant_ { name: ident, attrs: ~[attribute], kind: variant_kind, id: node_id, disr_expr: Option<@expr>, vis: visibility, } pub type variant = spanned; #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct path_list_ident_ { name: ident, id: node_id, } pub type path_list_ident = spanned; pub type view_path = spanned; #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum view_path_ { // quux = foo::bar::baz // // or just // // foo::bar::baz (with 'baz =' implicitly on the left) view_path_simple(ident, @Path, node_id), // foo::bar::* view_path_glob(@Path, node_id), // foo::bar::{a,b,c} view_path_list(@Path, ~[path_list_ident], node_id) } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct view_item { node: view_item_, attrs: ~[attribute], vis: visibility, span: span, } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum view_item_ { view_item_extern_mod(ident, ~[@meta_item], node_id), view_item_use(~[@view_path]), } // Meta-data associated with an item pub type attribute = spanned; // Distinguishes between attributes that decorate items and attributes that // are contained as statements within items. These two cases need to be // distinguished for pretty-printing. #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum attr_style { attr_outer, attr_inner, } // doc-comments are promoted to attributes that have is_sugared_doc = true #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct attribute_ { style: attr_style, value: @meta_item, is_sugared_doc: bool, } /* trait_refs appear in impls. resolve maps each trait_ref's ref_id to its defining trait; that's all that the ref_id is for. The impl_id maps to the "self type" of this impl. If this impl is an item_impl, the impl_id is redundant (it could be the same as the impl's node id). */ #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct trait_ref { path: @Path, ref_id: node_id, } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum visibility { public, private, inherited } impl visibility { fn inherit_from(&self, parent_visibility: visibility) -> visibility { match self { &inherited => parent_visibility, &public | &private => *self } } } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct struct_field_ { kind: struct_field_kind, id: node_id, ty: @Ty, attrs: ~[attribute], } pub type struct_field = spanned; #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum struct_field_kind { named_field(ident, visibility), unnamed_field // element of a tuple-like struct } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct struct_def { fields: ~[@struct_field], /* fields, not including ctor */ /* ID of the constructor. This is only used for tuple- or enum-like * structs. */ ctor_id: Option } /* FIXME (#3300): Should allow items to be anonymous. Right now we just use dummy names for anon items. */ #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct item { ident: ident, attrs: ~[attribute], id: node_id, node: item_, vis: visibility, span: span, } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum item_ { item_const(@Ty, @expr), item_fn(fn_decl, purity, AbiSet, Generics, blk), item_mod(_mod), item_foreign_mod(foreign_mod), item_ty(@Ty, Generics), item_enum(enum_def, Generics), item_struct(@struct_def, Generics), item_trait(Generics, ~[@trait_ref], ~[trait_method]), item_impl(Generics, Option<@trait_ref>, // (optional) trait this impl implements @Ty, // self ~[@method]), // a macro invocation (which includes macro definition) item_mac(mac), } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub struct foreign_item { ident: ident, attrs: ~[attribute], node: foreign_item_, id: node_id, span: span, vis: visibility, } #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum foreign_item_ { foreign_item_fn(fn_decl, purity, Generics), foreign_item_const(@Ty) } // The data we save and restore about an inlined item or method. This is not // part of the AST that we parse from a file, but it becomes part of the tree // that we trans. #[auto_encode] #[auto_decode] #[deriving(Eq)] pub enum inlined_item { ii_item(@item), ii_method(def_id /* impl id */, @method), ii_foreign(@foreign_item), } /* hold off on tests ... they appear in a later merge. #[cfg(test)] mod test { use core::option::{None, Option, Some}; use core::uint; use std; use codemap::*; use super::*; #[test] fn xorpush_test () { let mut s = ~[]; xorPush(&mut s,14); assert_eq!(s,~[14]); xorPush(&mut s,14); assert_eq!(s,~[]); xorPush(&mut s,14); assert_eq!(s,~[14]); xorPush(&mut s,15); assert_eq!(s,~[14,15]); xorPush (&mut s,16); assert_eq! (s,~[14,15,16]); xorPush (&mut s,16); assert_eq! (s,~[14,15]); xorPush (&mut s,15); assert_eq! (s,~[14]); } #[test] fn test_marksof () { let stopname = uints_to_name(&~[12,14,78]); assert_eq!(s,~[]); xorPush(&mut s,14); assert_eq!(s,~[14]); xorPush(&mut s,15); assert_eq!(s,~[14,15]); xorPush (&mut s,16); assert_eq! (s,~[14,15,16]); xorPush (&mut s,16); assert_eq! (s,~[14,15]); xorPush (&mut s,15); assert_eq! (s,~[14]); } #[test] fn test_marksof () { let stopname = uints_to_name(&~[12,14,78]); let name1 = uints_to_name(&~[4,9,7]); assert_eq!(marksof (MT,stopname),~[]); assert_eq! (marksof (Mark (4,@Mark(98,@MT)),stopname),~[4,98]); // does xoring work? assert_eq! (marksof (Mark (5, @Mark (5, @Mark (16,@MT))),stopname), ~[16]); // does nested xoring work? assert_eq! (marksof (Mark (5, @Mark (10, @Mark (10, @Mark (5, @Mark (16,@MT))))), stopname), ~[16]); // stop has no effect on marks assert_eq! (marksof (Mark (9, @Mark (14, @Mark (12, @MT))),stopname), ~[9,14,12]); // rename where stop doesn't match: assert_eq! (marksof (Mark (9, @Rename (name1, @Mark (4, @MT), uints_to_name(&~[100,101,102]), @Mark (14, @MT))), stopname), ~[9,14]); // rename where stop does match ; assert_eq! (marksof (Mark(9, @Rename (name1, @Mark (4, @MT), stopname, @Mark (14, @MT))), stopname), ~[9]); } // are ASTs encodable? #[test] fn check_asts_encodable() { let bogus_span = span {lo:BytePos(10), hi:BytePos(20), expn_info:None}; let e : crate = spanned{ node: crate_{ module: _mod {view_items: ~[], items: ~[]}, attrs: ~[], config: ~[] }, span: bogus_span}; // doesn't matter which encoder we use.... let _f = (@e as @std::serialize::Encodable); } } */ // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: //