// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! # Debug Info Module //! //! This module serves the purpose of generating debug symbols. We use LLVM's //! [source level debugging](http://llvm.org/docs/SourceLevelDebugging.html) //! features for generating the debug information. The general principle is this: //! //! Given the right metadata in the LLVM IR, the LLVM code generator is able to //! create DWARF debug symbols for the given code. The //! [metadata](http://llvm.org/docs/LangRef.html#metadata-type) is structured much //! like DWARF *debugging information entries* (DIE), representing type information //! such as datatype layout, function signatures, block layout, variable location //! and scope information, etc. It is the purpose of this module to generate correct //! metadata and insert it into the LLVM IR. //! //! As the exact format of metadata trees may change between different LLVM //! versions, we now use LLVM //! [DIBuilder](http://llvm.org/docs/doxygen/html/classllvm_1_1DIBuilder.html) to //! create metadata where possible. This will hopefully ease the adaption of this //! module to future LLVM versions. //! //! The public API of the module is a set of functions that will insert the correct //! metadata into the LLVM IR when called with the right parameters. The module is //! thus driven from an outside client with functions like //! `debuginfo::create_local_var_metadata(bcx: block, local: &ast::local)`. //! //! Internally the module will try to reuse already created metadata by utilizing a //! cache. The way to get a shared metadata node when needed is thus to just call //! the corresponding function in this module: //! //! let file_metadata = file_metadata(crate_context, path); //! //! The function will take care of probing the cache for an existing node for that //! exact file path. //! //! All private state used by the module is stored within either the //! CrateDebugContext struct (owned by the CrateContext) or the FunctionDebugContext //! (owned by the FunctionContext). //! //! This file consists of three conceptual sections: //! 1. The public interface of the module //! 2. Module-internal metadata creation functions //! 3. Minor utility functions //! //! //! ## Recursive Types //! //! Some kinds of types, such as structs and enums can be recursive. That means that //! the type definition of some type X refers to some other type which in turn //! (transitively) refers to X. This introduces cycles into the type referral graph. //! A naive algorithm doing an on-demand, depth-first traversal of this graph when //! describing types, can get trapped in an endless loop when it reaches such a //! cycle. //! //! For example, the following simple type for a singly-linked list... //! //! ``` //! struct List { //! value: int, //! tail: Option>, //! } //! ``` //! //! will generate the following callstack with a naive DFS algorithm: //! //! ``` //! describe(t = List) //! describe(t = int) //! describe(t = Option>) //! describe(t = Box) //! describe(t = List) // at the beginning again... //! ... //! ``` //! //! To break cycles like these, we use "forward declarations". That is, when the //! algorithm encounters a possibly recursive type (any struct or enum), it //! immediately creates a type description node and inserts it into the cache //! *before* describing the members of the type. This type description is just a //! stub (as type members are not described and added to it yet) but it allows the //! algorithm to already refer to the type. After the stub is inserted into the //! cache, the algorithm continues as before. If it now encounters a recursive //! reference, it will hit the cache and does not try to describe the type anew. //! //! This behaviour is encapsulated in the 'RecursiveTypeDescription' enum, which //! represents a kind of continuation, storing all state needed to continue //! traversal at the type members after the type has been registered with the cache. //! (This implementation approach might be a tad over-engineered and may change in //! the future) //! //! //! ## Source Locations and Line Information //! //! In addition to data type descriptions the debugging information must also allow //! to map machine code locations back to source code locations in order to be useful. //! This functionality is also handled in this module. The following functions allow //! to control source mappings: //! //! + set_source_location() //! + clear_source_location() //! + start_emitting_source_locations() //! //! `set_source_location()` allows to set the current source location. All IR //! instructions created after a call to this function will be linked to the given //! source location, until another location is specified with //! `set_source_location()` or the source location is cleared with //! `clear_source_location()`. In the later case, subsequent IR instruction will not //! be linked to any source location. As you can see, this is a stateful API //! (mimicking the one in LLVM), so be careful with source locations set by previous //! calls. It's probably best to not rely on any specific state being present at a //! given point in code. //! //! One topic that deserves some extra attention is *function prologues*. At the //! beginning of a function's machine code there are typically a few instructions //! for loading argument values into allocas and checking if there's enough stack //! space for the function to execute. This *prologue* is not visible in the source //! code and LLVM puts a special PROLOGUE END marker into the line table at the //! first non-prologue instruction of the function. In order to find out where the //! prologue ends, LLVM looks for the first instruction in the function body that is //! linked to a source location. So, when generating prologue instructions we have //! to make sure that we don't emit source location information until the 'real' //! function body begins. For this reason, source location emission is disabled by //! default for any new function being translated and is only activated after a call //! to the third function from the list above, `start_emitting_source_locations()`. //! This function should be called right before regularly starting to translate the //! top-level block of the given function. //! //! There is one exception to the above rule: `llvm.dbg.declare` instruction must be //! linked to the source location of the variable being declared. For function //! parameters these `llvm.dbg.declare` instructions typically occur in the middle //! of the prologue, however, they are ignored by LLVM's prologue detection. The //! `create_argument_metadata()` and related functions take care of linking the //! `llvm.dbg.declare` instructions to the correct source locations even while //! source location emission is still disabled, so there is no need to do anything //! special with source location handling here. //! //! ## Unique Type Identification //! //! In order for link-time optimization to work properly, LLVM needs a unique type //! identifier that tells it across compilation units which types are the same as //! others. This type identifier is created by TypeMap::get_unique_type_id_of_type() //! using the following algorithm: //! //! (1) Primitive types have their name as ID //! (2) Structs, enums and traits have a multipart identifier //! //! (1) The first part is the SVH (strict version hash) of the crate they were //! originally defined in //! //! (2) The second part is the ast::NodeId of the definition in their original //! crate //! //! (3) The final part is a concatenation of the type IDs of their concrete type //! arguments if they are generic types. //! //! (3) Tuple-, pointer and function types are structurally identified, which means //! that they are equivalent if their component types are equivalent (i.e. (int, //! int) is the same regardless in which crate it is used). //! //! This algorithm also provides a stable ID for types that are defined in one crate //! but instantiated from metadata within another crate. We just have to take care //! to always map crate and node IDs back to the original crate context. //! //! As a side-effect these unique type IDs also help to solve a problem arising from //! lifetime parameters. Since lifetime parameters are completely omitted in //! debuginfo, more than one `Ty` instance may map to the same debuginfo type //! metadata, that is, some struct `Struct<'a>` may have N instantiations with //! different concrete substitutions for `'a`, and thus there will be N `Ty` //! instances for the type `Struct<'a>` even though it is not generic otherwise. //! Unfortunately this means that we cannot use `ty::type_id()` as cheap identifier //! for type metadata---we have done this in the past, but it led to unnecessary //! metadata duplication in the best case and LLVM assertions in the worst. However, //! the unique type ID as described above *can* be used as identifier. Since it is //! comparatively expensive to construct, though, `ty::type_id()` is still used //! additionally as an optimization for cases where the exact same type has been //! seen before (which is most of the time). use self::VariableAccess::*; use self::VariableKind::*; use self::MemberOffset::*; use self::MemberDescriptionFactory::*; use self::RecursiveTypeDescription::*; use self::EnumDiscriminantInfo::*; use self::DebugLocation::*; use llvm; use llvm::{ModuleRef, ContextRef, ValueRef}; use llvm::debuginfo::*; use metadata::csearch; use middle::subst::{mod, Subst, Substs}; use trans::{mod, adt, machine, type_of}; use trans::common::*; use trans::_match::{BindingInfo, TrByCopy, TrByMove, TrByRef}; use trans::monomorphize; use trans::type_::Type; use middle::ty::{mod, Ty}; use middle::pat_util; use session::config::{mod, FullDebugInfo, LimitedDebugInfo, NoDebugInfo}; use util::nodemap::{DefIdMap, NodeMap, FnvHashMap, FnvHashSet}; use util::ppaux; use libc::c_uint; use std::c_str::{CString, ToCStr}; use std::cell::{Cell, RefCell}; use std::ptr; use std::rc::{Rc, Weak}; use syntax::util::interner::Interner; use syntax::codemap::{Span, Pos}; use syntax::{ast, codemap, ast_util, ast_map, attr}; use syntax::ast_util::PostExpansionMethod; use syntax::parse::token::{mod, special_idents}; const DW_LANG_RUST: c_uint = 0x9000; #[allow(non_upper_case_globals)] const DW_TAG_auto_variable: c_uint = 0x100; #[allow(non_upper_case_globals)] const DW_TAG_arg_variable: c_uint = 0x101; #[allow(non_upper_case_globals)] const DW_ATE_boolean: c_uint = 0x02; #[allow(non_upper_case_globals)] const DW_ATE_float: c_uint = 0x04; #[allow(non_upper_case_globals)] const DW_ATE_signed: c_uint = 0x05; #[allow(non_upper_case_globals)] const DW_ATE_unsigned: c_uint = 0x07; #[allow(non_upper_case_globals)] const DW_ATE_unsigned_char: c_uint = 0x08; const UNKNOWN_LINE_NUMBER: c_uint = 0; const UNKNOWN_COLUMN_NUMBER: c_uint = 0; // ptr::null() doesn't work :( const UNKNOWN_FILE_METADATA: DIFile = (0 as DIFile); const UNKNOWN_SCOPE_METADATA: DIScope = (0 as DIScope); const FLAGS_NONE: c_uint = 0; //=----------------------------------------------------------------------------- // Public Interface of debuginfo module //=----------------------------------------------------------------------------- #[deriving(Copy, Show, Hash, Eq, PartialEq, Clone)] struct UniqueTypeId(ast::Name); // The TypeMap is where the CrateDebugContext holds the type metadata nodes // created so far. The metadata nodes are indexed by UniqueTypeId, and, for // faster lookup, also by Ty. The TypeMap is responsible for creating // UniqueTypeIds. struct TypeMap<'tcx> { // The UniqueTypeIds created so far unique_id_interner: Interner>, // A map from UniqueTypeId to debuginfo metadata for that type. This is a 1:1 mapping. unique_id_to_metadata: FnvHashMap, // A map from types to debuginfo metadata. This is a N:1 mapping. type_to_metadata: FnvHashMap, DIType>, // A map from types to UniqueTypeId. This is a N:1 mapping. type_to_unique_id: FnvHashMap, UniqueTypeId> } impl<'tcx> TypeMap<'tcx> { fn new() -> TypeMap<'tcx> { TypeMap { unique_id_interner: Interner::new(), type_to_metadata: FnvHashMap::new(), unique_id_to_metadata: FnvHashMap::new(), type_to_unique_id: FnvHashMap::new(), } } // Adds a Ty to metadata mapping to the TypeMap. The method will fail if // the mapping already exists. fn register_type_with_metadata<'a>(&mut self, cx: &CrateContext<'a, 'tcx>, type_: Ty<'tcx>, metadata: DIType) { if self.type_to_metadata.insert(type_, metadata).is_some() { cx.sess().bug(format!("Type metadata for Ty '{}' is already in the TypeMap!", ppaux::ty_to_string(cx.tcx(), type_))[]); } } // Adds a UniqueTypeId to metadata mapping to the TypeMap. The method will // fail if the mapping already exists. fn register_unique_id_with_metadata(&mut self, cx: &CrateContext, unique_type_id: UniqueTypeId, metadata: DIType) { if self.unique_id_to_metadata.insert(unique_type_id, metadata).is_some() { let unique_type_id_str = self.get_unique_type_id_as_string(unique_type_id); cx.sess().bug(format!("Type metadata for unique id '{}' is already in the TypeMap!", unique_type_id_str[])[]); } } fn find_metadata_for_type(&self, type_: Ty<'tcx>) -> Option { self.type_to_metadata.get(&type_).cloned() } fn find_metadata_for_unique_id(&self, unique_type_id: UniqueTypeId) -> Option { self.unique_id_to_metadata.get(&unique_type_id).cloned() } // Get the string representation of a UniqueTypeId. This method will fail if // the id is unknown. fn get_unique_type_id_as_string(&self, unique_type_id: UniqueTypeId) -> Rc { let UniqueTypeId(interner_key) = unique_type_id; self.unique_id_interner.get(interner_key) } // Get the UniqueTypeId for the given type. If the UniqueTypeId for the given // type has been requested before, this is just a table lookup. Otherwise an // ID will be generated and stored for later lookup. fn get_unique_type_id_of_type<'a>(&mut self, cx: &CrateContext<'a, 'tcx>, type_: Ty<'tcx>) -> UniqueTypeId { // basic type -> {:name of the type:} // tuple -> {tuple_(:param-uid:)*} // struct -> {struct_:svh: / :node-id:_<(:param-uid:),*> } // enum -> {enum_:svh: / :node-id:_<(:param-uid:),*> } // enum variant -> {variant_:variant-name:_:enum-uid:} // reference (&) -> {& :pointee-uid:} // mut reference (&mut) -> {&mut :pointee-uid:} // ptr (*) -> {* :pointee-uid:} // mut ptr (*mut) -> {*mut :pointee-uid:} // unique ptr (~) -> {~ :pointee-uid:} // @-ptr (@) -> {@ :pointee-uid:} // sized vec ([T; x]) -> {[:size:] :element-uid:} // unsized vec ([T]) -> {[] :element-uid:} // trait (T) -> {trait_:svh: / :node-id:_<(:param-uid:),*> } // closure -> { :store-sigil: |(:param-uid:),* <,_...>| -> \ // :return-type-uid: : (:bounds:)*} // function -> { fn( (:param-uid:)* <,_...> ) -> \ // :return-type-uid:} // unique vec box (~[]) -> {HEAP_VEC_BOX<:pointee-uid:>} // gc box -> {GC_BOX<:pointee-uid:>} match self.type_to_unique_id.get(&type_).cloned() { Some(unique_type_id) => return unique_type_id, None => { /* generate one */} }; let mut unique_type_id = String::with_capacity(256); unique_type_id.push('{'); match type_.sty { ty::ty_bool | ty::ty_char | ty::ty_str | ty::ty_int(_) | ty::ty_uint(_) | ty::ty_float(_) => { push_debuginfo_type_name(cx, type_, false, &mut unique_type_id); }, ty::ty_enum(def_id, substs) => { unique_type_id.push_str("enum "); from_def_id_and_substs(self, cx, def_id, substs, &mut unique_type_id); }, ty::ty_struct(def_id, substs) => { unique_type_id.push_str("struct "); from_def_id_and_substs(self, cx, def_id, substs, &mut unique_type_id); }, ty::ty_tup(ref component_types) if component_types.is_empty() => { push_debuginfo_type_name(cx, type_, false, &mut unique_type_id); }, ty::ty_tup(ref component_types) => { unique_type_id.push_str("tuple "); for &component_type in component_types.iter() { let component_type_id = self.get_unique_type_id_of_type(cx, component_type); let component_type_id = self.get_unique_type_id_as_string(component_type_id); unique_type_id.push_str(component_type_id[]); } }, ty::ty_uniq(inner_type) => { unique_type_id.push('~'); let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type); let inner_type_id = self.get_unique_type_id_as_string(inner_type_id); unique_type_id.push_str(inner_type_id[]); }, ty::ty_ptr(ty::mt { ty: inner_type, mutbl } ) => { unique_type_id.push('*'); if mutbl == ast::MutMutable { unique_type_id.push_str("mut"); } let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type); let inner_type_id = self.get_unique_type_id_as_string(inner_type_id); unique_type_id.push_str(inner_type_id[]); }, ty::ty_rptr(_, ty::mt { ty: inner_type, mutbl }) => { unique_type_id.push('&'); if mutbl == ast::MutMutable { unique_type_id.push_str("mut"); } let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type); let inner_type_id = self.get_unique_type_id_as_string(inner_type_id); unique_type_id.push_str(inner_type_id[]); }, ty::ty_vec(inner_type, optional_length) => { match optional_length { Some(len) => { unique_type_id.push_str(format!("[{}]", len)[]); } None => { unique_type_id.push_str("[]"); } }; let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type); let inner_type_id = self.get_unique_type_id_as_string(inner_type_id); unique_type_id.push_str(inner_type_id[]); }, ty::ty_trait(ref trait_data) => { unique_type_id.push_str("trait "); from_def_id_and_substs(self, cx, trait_data.principal_def_id(), trait_data.principal.0.substs, &mut unique_type_id); }, ty::ty_bare_fn(_, &ty::BareFnTy{ unsafety, abi, ref sig } ) => { if unsafety == ast::Unsafety::Unsafe { unique_type_id.push_str("unsafe "); } unique_type_id.push_str(abi.name()); unique_type_id.push_str(" fn("); for ¶meter_type in sig.0.inputs.iter() { let parameter_type_id = self.get_unique_type_id_of_type(cx, parameter_type); let parameter_type_id = self.get_unique_type_id_as_string(parameter_type_id); unique_type_id.push_str(parameter_type_id[]); unique_type_id.push(','); } if sig.0.variadic { unique_type_id.push_str("..."); } unique_type_id.push_str(")->"); match sig.0.output { ty::FnConverging(ret_ty) => { let return_type_id = self.get_unique_type_id_of_type(cx, ret_ty); let return_type_id = self.get_unique_type_id_as_string(return_type_id); unique_type_id.push_str(return_type_id[]); } ty::FnDiverging => { unique_type_id.push_str("!"); } } }, ty::ty_closure(box ref closure_ty) => { self.get_unique_type_id_of_closure_type(cx, closure_ty.clone(), &mut unique_type_id); }, ty::ty_unboxed_closure(ref def_id, _, substs) => { let closure_ty = cx.tcx().unboxed_closures.borrow() .get(def_id).unwrap().closure_type.subst(cx.tcx(), substs); self.get_unique_type_id_of_closure_type(cx, closure_ty, &mut unique_type_id); }, _ => { cx.sess().bug(format!("get_unique_type_id_of_type() - unexpected type: {}, {}", ppaux::ty_to_string(cx.tcx(), type_)[], type_.sty)[]) } }; unique_type_id.push('}'); // Trim to size before storing permanently unique_type_id.shrink_to_fit(); let key = self.unique_id_interner.intern(Rc::new(unique_type_id)); self.type_to_unique_id.insert(type_, UniqueTypeId(key)); return UniqueTypeId(key); fn from_def_id_and_substs<'a, 'tcx>(type_map: &mut TypeMap<'tcx>, cx: &CrateContext<'a, 'tcx>, def_id: ast::DefId, substs: &subst::Substs<'tcx>, output: &mut String) { // First, find out the 'real' def_id of the type. Items inlined from // other crates have to be mapped back to their source. let source_def_id = if def_id.krate == ast::LOCAL_CRATE { match cx.external_srcs().borrow().get(&def_id.node).cloned() { Some(source_def_id) => { // The given def_id identifies the inlined copy of a // type definition, let's take the source of the copy. source_def_id } None => def_id } } else { def_id }; // Get the crate hash as first part of the identifier. let crate_hash = if source_def_id.krate == ast::LOCAL_CRATE { cx.link_meta().crate_hash.clone() } else { cx.sess().cstore.get_crate_hash(source_def_id.krate) }; output.push_str(crate_hash.as_str()); output.push_str("/"); output.push_str(format!("{:x}", def_id.node)[]); // Maybe check that there is no self type here. let tps = substs.types.get_slice(subst::TypeSpace); if tps.len() > 0 { output.push('<'); for &type_parameter in tps.iter() { let param_type_id = type_map.get_unique_type_id_of_type(cx, type_parameter); let param_type_id = type_map.get_unique_type_id_as_string(param_type_id); output.push_str(param_type_id[]); output.push(','); } output.push('>'); } } } fn get_unique_type_id_of_closure_type<'a>(&mut self, cx: &CrateContext<'a, 'tcx>, closure_ty: ty::ClosureTy<'tcx>, unique_type_id: &mut String) { let ty::ClosureTy { unsafety, onceness, store, ref bounds, ref sig, abi: _ } = closure_ty; if unsafety == ast::Unsafety::Unsafe { unique_type_id.push_str("unsafe "); } if onceness == ast::Once { unique_type_id.push_str("once "); } match store { ty::UniqTraitStore => unique_type_id.push_str("~|"), ty::RegionTraitStore(_, ast::MutMutable) => { unique_type_id.push_str("&mut|") } ty::RegionTraitStore(_, ast::MutImmutable) => { unique_type_id.push_str("&|") } }; for ¶meter_type in sig.0.inputs.iter() { let parameter_type_id = self.get_unique_type_id_of_type(cx, parameter_type); let parameter_type_id = self.get_unique_type_id_as_string(parameter_type_id); unique_type_id.push_str(parameter_type_id[]); unique_type_id.push(','); } if sig.0.variadic { unique_type_id.push_str("..."); } unique_type_id.push_str("|->"); match sig.0.output { ty::FnConverging(ret_ty) => { let return_type_id = self.get_unique_type_id_of_type(cx, ret_ty); let return_type_id = self.get_unique_type_id_as_string(return_type_id); unique_type_id.push_str(return_type_id[]); } ty::FnDiverging => { unique_type_id.push_str("!"); } } unique_type_id.push(':'); for bound in bounds.builtin_bounds.iter() { match bound { ty::BoundSend => unique_type_id.push_str("Send"), ty::BoundSized => unique_type_id.push_str("Sized"), ty::BoundCopy => unique_type_id.push_str("Copy"), ty::BoundSync => unique_type_id.push_str("Sync"), }; unique_type_id.push('+'); } } // Get the UniqueTypeId for an enum variant. Enum variants are not really // types of their own, so they need special handling. We still need a // UniqueTypeId for them, since to debuginfo they *are* real types. fn get_unique_type_id_of_enum_variant<'a>(&mut self, cx: &CrateContext<'a, 'tcx>, enum_type: Ty<'tcx>, variant_name: &str) -> UniqueTypeId { let enum_type_id = self.get_unique_type_id_of_type(cx, enum_type); let enum_variant_type_id = format!("{}::{}", self.get_unique_type_id_as_string(enum_type_id) [], variant_name); let interner_key = self.unique_id_interner.intern(Rc::new(enum_variant_type_id)); UniqueTypeId(interner_key) } } // Returns from the enclosing function if the type metadata with the given // unique id can be found in the type map macro_rules! return_if_metadata_created_in_meantime { ($cx: expr, $unique_type_id: expr) => ( match debug_context($cx).type_map .borrow() .find_metadata_for_unique_id($unique_type_id) { Some(metadata) => return MetadataCreationResult::new(metadata, true), None => { /* proceed normally */ } }; ) } /// A context object for maintaining all state needed by the debuginfo module. pub struct CrateDebugContext<'tcx> { llcontext: ContextRef, builder: DIBuilderRef, current_debug_location: Cell, created_files: RefCell>, created_enum_disr_types: RefCell>, type_map: RefCell>, namespace_map: RefCell, Rc>>, // This collection is used to assert that composite types (structs, enums, // ...) have their members only set once: composite_types_completed: RefCell>, } impl<'tcx> CrateDebugContext<'tcx> { pub fn new(llmod: ModuleRef) -> CrateDebugContext<'tcx> { debug!("CrateDebugContext::new"); let builder = unsafe { llvm::LLVMDIBuilderCreate(llmod) }; // DIBuilder inherits context from the module, so we'd better use the same one let llcontext = unsafe { llvm::LLVMGetModuleContext(llmod) }; return CrateDebugContext { llcontext: llcontext, builder: builder, current_debug_location: Cell::new(UnknownLocation), created_files: RefCell::new(FnvHashMap::new()), created_enum_disr_types: RefCell::new(DefIdMap::new()), type_map: RefCell::new(TypeMap::new()), namespace_map: RefCell::new(FnvHashMap::new()), composite_types_completed: RefCell::new(FnvHashSet::new()), }; } } pub enum FunctionDebugContext { RegularContext(Box), DebugInfoDisabled, FunctionWithoutDebugInfo, } impl FunctionDebugContext { fn get_ref<'a>(&'a self, cx: &CrateContext, span: Span) -> &'a FunctionDebugContextData { match *self { FunctionDebugContext::RegularContext(box ref data) => data, FunctionDebugContext::DebugInfoDisabled => { cx.sess().span_bug(span, FunctionDebugContext::debuginfo_disabled_message()); } FunctionDebugContext::FunctionWithoutDebugInfo => { cx.sess().span_bug(span, FunctionDebugContext::should_be_ignored_message()); } } } fn debuginfo_disabled_message() -> &'static str { "debuginfo: Error trying to access FunctionDebugContext although debug info is disabled!" } fn should_be_ignored_message() -> &'static str { "debuginfo: Error trying to access FunctionDebugContext for function that should be \ ignored by debug info!" } } struct FunctionDebugContextData { scope_map: RefCell>, fn_metadata: DISubprogram, argument_counter: Cell, source_locations_enabled: Cell, } enum VariableAccess<'a> { // The llptr given is an alloca containing the variable's value DirectVariable { alloca: ValueRef }, // The llptr given is an alloca containing the start of some pointer chain // leading to the variable's content. IndirectVariable { alloca: ValueRef, address_operations: &'a [ValueRef] } } enum VariableKind { ArgumentVariable(uint /*index*/), LocalVariable, CapturedVariable, } /// Create any deferred debug metadata nodes pub fn finalize(cx: &CrateContext) { if cx.dbg_cx().is_none() { return; } debug!("finalize"); let _ = compile_unit_metadata(cx); if needs_gdb_debug_scripts_section(cx) { // Add a .debug_gdb_scripts section to this compile-unit. This will // cause GDB to try and load the gdb_load_rust_pretty_printers.py file, // which activates the Rust pretty printers for binary this section is // contained in. get_or_insert_gdb_debug_scripts_section_global(cx); } unsafe { llvm::LLVMDIBuilderFinalize(DIB(cx)); llvm::LLVMDIBuilderDispose(DIB(cx)); // Debuginfo generation in LLVM by default uses a higher // version of dwarf than OS X currently understands. We can // instruct LLVM to emit an older version of dwarf, however, // for OS X to understand. For more info see #11352 // This can be overridden using --llvm-opts -dwarf-version,N. if cx.sess().target.target.options.is_like_osx { "Dwarf Version".with_c_str( |s| llvm::LLVMRustAddModuleFlag(cx.llmod(), s, 2)); } // Prevent bitcode readers from deleting the debug info. "Debug Info Version".with_c_str( |s| llvm::LLVMRustAddModuleFlag(cx.llmod(), s, llvm::LLVMRustDebugMetadataVersion)); }; } /// Creates debug information for the given global variable. /// /// Adds the created metadata nodes directly to the crate's IR. pub fn create_global_var_metadata(cx: &CrateContext, node_id: ast::NodeId, global: ValueRef) { if cx.dbg_cx().is_none() { return; } // Don't create debuginfo for globals inlined from other crates. The other // crate should already contain debuginfo for it. More importantly, the // global might not even exist in un-inlined form anywhere which would lead // to a linker errors. if cx.external_srcs().borrow().contains_key(&node_id) { return; } let var_item = cx.tcx().map.get(node_id); let (ident, span) = match var_item { ast_map::NodeItem(item) => { match item.node { ast::ItemStatic(..) => (item.ident, item.span), ast::ItemConst(..) => (item.ident, item.span), _ => { cx.sess() .span_bug(item.span, format!("debuginfo::\ create_global_var_metadata() - Captured var-id refers to \ unexpected ast_item variant: {}", var_item)[]) } } }, _ => cx.sess().bug(format!("debuginfo::create_global_var_metadata() \ - Captured var-id refers to unexpected \ ast_map variant: {}", var_item)[]) }; let (file_metadata, line_number) = if span != codemap::DUMMY_SP { let loc = span_start(cx, span); (file_metadata(cx, loc.file.name[]), loc.line as c_uint) } else { (UNKNOWN_FILE_METADATA, UNKNOWN_LINE_NUMBER) }; let is_local_to_unit = is_node_local_to_unit(cx, node_id); let variable_type = ty::node_id_to_type(cx.tcx(), node_id); let type_metadata = type_metadata(cx, variable_type, span); let namespace_node = namespace_for_item(cx, ast_util::local_def(node_id)); let var_name = token::get_ident(ident).get().to_string(); let linkage_name = namespace_node.mangled_name_of_contained_item(var_name[]); let var_scope = namespace_node.scope; var_name.with_c_str(|var_name| { linkage_name.with_c_str(|linkage_name| { unsafe { llvm::LLVMDIBuilderCreateStaticVariable(DIB(cx), var_scope, var_name, linkage_name, file_metadata, line_number, type_metadata, is_local_to_unit, global, ptr::null_mut()); } }) }); } /// Creates debug information for the given local variable. /// /// This function assumes that there's a datum for each pattern component of the /// local in `bcx.fcx.lllocals`. /// Adds the created metadata nodes directly to the crate's IR. pub fn create_local_var_metadata(bcx: Block, local: &ast::Local) { if fn_should_be_ignored(bcx.fcx) { return; } let cx = bcx.ccx(); let def_map = &cx.tcx().def_map; let locals = bcx.fcx.lllocals.borrow(); pat_util::pat_bindings(def_map, &*local.pat, |_, node_id, span, var_ident| { let datum = match locals.get(&node_id) { Some(datum) => datum, None => { bcx.sess().span_bug(span, format!("no entry in lllocals table for {}", node_id)[]); } }; if unsafe { llvm::LLVMIsAAllocaInst(datum.val) } == ptr::null_mut() { cx.sess().span_bug(span, "debuginfo::create_local_var_metadata() - \ Referenced variable location is not an alloca!"); } let scope_metadata = scope_metadata(bcx.fcx, node_id, span); declare_local(bcx, var_ident.node, datum.ty, scope_metadata, DirectVariable { alloca: datum.val }, LocalVariable, span); }) } /// Creates debug information for a variable captured in a closure. /// /// Adds the created metadata nodes directly to the crate's IR. pub fn create_captured_var_metadata<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, node_id: ast::NodeId, env_pointer: ValueRef, env_index: uint, captured_by_ref: bool, span: Span) { if fn_should_be_ignored(bcx.fcx) { return; } let cx = bcx.ccx(); let ast_item = cx.tcx().map.find(node_id); let variable_ident = match ast_item { None => { cx.sess().span_bug(span, "debuginfo::create_captured_var_metadata: node not found"); } Some(ast_map::NodeLocal(pat)) | Some(ast_map::NodeArg(pat)) => { match pat.node { ast::PatIdent(_, ref path1, _) => { path1.node } _ => { cx.sess() .span_bug(span, format!( "debuginfo::create_captured_var_metadata() - \ Captured var-id refers to unexpected \ ast_map variant: {}", ast_item)[]); } } } _ => { cx.sess() .span_bug(span, format!("debuginfo::create_captured_var_metadata() - \ Captured var-id refers to unexpected \ ast_map variant: {}", ast_item)[]); } }; let variable_type = node_id_type(bcx, node_id); let scope_metadata = bcx.fcx.debug_context.get_ref(cx, span).fn_metadata; // env_pointer is the alloca containing the pointer to the environment, // so it's type is **EnvironmentType. In order to find out the type of // the environment we have to "dereference" two times. let llvm_env_data_type = val_ty(env_pointer).element_type().element_type(); let byte_offset_of_var_in_env = machine::llelement_offset(cx, llvm_env_data_type, env_index); let address_operations = unsafe { [llvm::LLVMDIBuilderCreateOpDeref(Type::i64(cx).to_ref()), llvm::LLVMDIBuilderCreateOpPlus(Type::i64(cx).to_ref()), C_i64(cx, byte_offset_of_var_in_env as i64), llvm::LLVMDIBuilderCreateOpDeref(Type::i64(cx).to_ref())] }; let address_op_count = if captured_by_ref { address_operations.len() } else { address_operations.len() - 1 }; let variable_access = IndirectVariable { alloca: env_pointer, address_operations: address_operations[..address_op_count] }; declare_local(bcx, variable_ident, variable_type, scope_metadata, variable_access, CapturedVariable, span); } /// Creates debug information for a local variable introduced in the head of a /// match-statement arm. /// /// Adds the created metadata nodes directly to the crate's IR. pub fn create_match_binding_metadata<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, variable_ident: ast::Ident, binding: BindingInfo<'tcx>) { if fn_should_be_ignored(bcx.fcx) { return; } let scope_metadata = scope_metadata(bcx.fcx, binding.id, binding.span); let aops = unsafe { [llvm::LLVMDIBuilderCreateOpDeref(bcx.ccx().int_type().to_ref())] }; // Regardless of the actual type (`T`) we're always passed the stack slot (alloca) // for the binding. For ByRef bindings that's a `T*` but for ByMove bindings we // actually have `T**`. So to get the actual variable we need to dereference once // more. For ByCopy we just use the stack slot we created for the binding. let var_access = match binding.trmode { TrByCopy(llbinding) => DirectVariable { alloca: llbinding }, TrByMove => IndirectVariable { alloca: binding.llmatch, address_operations: &aops }, TrByRef => DirectVariable { alloca: binding.llmatch } }; declare_local(bcx, variable_ident, binding.ty, scope_metadata, var_access, LocalVariable, binding.span); } /// Creates debug information for the given function argument. /// /// This function assumes that there's a datum for each pattern component of the /// argument in `bcx.fcx.lllocals`. /// Adds the created metadata nodes directly to the crate's IR. pub fn create_argument_metadata(bcx: Block, arg: &ast::Arg) { if fn_should_be_ignored(bcx.fcx) { return; } let def_map = &bcx.tcx().def_map; let scope_metadata = bcx .fcx .debug_context .get_ref(bcx.ccx(), arg.pat.span) .fn_metadata; let locals = bcx.fcx.lllocals.borrow(); pat_util::pat_bindings(def_map, &*arg.pat, |_, node_id, span, var_ident| { let datum = match locals.get(&node_id) { Some(v) => v, None => { bcx.sess().span_bug(span, format!("no entry in lllocals table for {}", node_id)[]); } }; if unsafe { llvm::LLVMIsAAllocaInst(datum.val) } == ptr::null_mut() { bcx.sess().span_bug(span, "debuginfo::create_argument_metadata() - \ Referenced variable location is not an alloca!"); } let argument_index = { let counter = &bcx .fcx .debug_context .get_ref(bcx.ccx(), span) .argument_counter; let argument_index = counter.get(); counter.set(argument_index + 1); argument_index }; declare_local(bcx, var_ident.node, datum.ty, scope_metadata, DirectVariable { alloca: datum.val }, ArgumentVariable(argument_index), span); }) } /// Creates debug information for the given for-loop variable. /// /// This function assumes that there's a datum for each pattern component of the /// loop variable in `bcx.fcx.lllocals`. /// Adds the created metadata nodes directly to the crate's IR. pub fn create_for_loop_var_metadata(bcx: Block, pat: &ast::Pat) { if fn_should_be_ignored(bcx.fcx) { return; } let def_map = &bcx.tcx().def_map; let locals = bcx.fcx.lllocals.borrow(); pat_util::pat_bindings(def_map, pat, |_, node_id, span, var_ident| { let datum = match locals.get(&node_id) { Some(datum) => datum, None => { bcx.sess().span_bug(span, format!("no entry in lllocals table for {}", node_id).as_slice()); } }; if unsafe { llvm::LLVMIsAAllocaInst(datum.val) } == ptr::null_mut() { bcx.sess().span_bug(span, "debuginfo::create_for_loop_var_metadata() - \ Referenced variable location is not an alloca!"); } let scope_metadata = scope_metadata(bcx.fcx, node_id, span); declare_local(bcx, var_ident.node, datum.ty, scope_metadata, DirectVariable { alloca: datum.val }, LocalVariable, span); }) } pub fn get_cleanup_debug_loc_for_ast_node<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, node_id: ast::NodeId, node_span: Span, is_block: bool) -> NodeInfo { // A debug location needs two things: // (1) A span (of which only the beginning will actually be used) // (2) An AST node-id which will be used to look up the lexical scope // for the location in the functions scope-map // // This function will calculate the debug location for compiler-generated // cleanup calls that are executed when control-flow leaves the // scope identified by `node_id`. // // For everything but block-like things we can simply take id and span of // the given expression, meaning that from a debugger's view cleanup code is // executed at the same source location as the statement/expr itself. // // Blocks are a special case. Here we want the cleanup to be linked to the // closing curly brace of the block. The *scope* the cleanup is executed in // is up to debate: It could either still be *within* the block being // cleaned up, meaning that locals from the block are still visible in the // debugger. // Or it could be in the scope that the block is contained in, so any locals // from within the block are already considered out-of-scope and thus not // accessible in the debugger anymore. // // The current implementation opts for the second option: cleanup of a block // already happens in the parent scope of the block. The main reason for // this decision is that scoping becomes controlflow dependent when variable // shadowing is involved and it's impossible to decide statically which // scope is actually left when the cleanup code is executed. // In practice it shouldn't make much of a difference. let mut cleanup_span = node_span; if is_block { // Not all blocks actually have curly braces (e.g. simple closure // bodies), in which case we also just want to return the span of the // whole expression. let code_snippet = cx.sess().codemap().span_to_snippet(node_span); if let Some(code_snippet) = code_snippet { let bytes = code_snippet.as_bytes(); if bytes.len() > 0 && bytes[bytes.len()-1 ..] == b"}" { cleanup_span = Span { lo: node_span.hi - codemap::BytePos(1), hi: node_span.hi, expn_id: node_span.expn_id }; } } } NodeInfo { id: node_id, span: cleanup_span } } /// Sets the current debug location at the beginning of the span. /// /// Maps to a call to llvm::LLVMSetCurrentDebugLocation(...). The node_id /// parameter is used to reliably find the correct visibility scope for the code /// position. pub fn set_source_location(fcx: &FunctionContext, node_id: ast::NodeId, span: Span) { match fcx.debug_context { FunctionDebugContext::DebugInfoDisabled => return, FunctionDebugContext::FunctionWithoutDebugInfo => { set_debug_location(fcx.ccx, UnknownLocation); return; } FunctionDebugContext::RegularContext(box ref function_debug_context) => { let cx = fcx.ccx; debug!("set_source_location: {}", cx.sess().codemap().span_to_string(span)); if function_debug_context.source_locations_enabled.get() { let loc = span_start(cx, span); let scope = scope_metadata(fcx, node_id, span); set_debug_location(cx, DebugLocation::new(scope, loc.line, loc.col.to_uint())); } else { set_debug_location(cx, UnknownLocation); } } } } /// Clears the current debug location. /// /// Instructions generated hereafter won't be assigned a source location. pub fn clear_source_location(fcx: &FunctionContext) { if fn_should_be_ignored(fcx) { return; } set_debug_location(fcx.ccx, UnknownLocation); } /// Enables emitting source locations for the given functions. /// /// Since we don't want source locations to be emitted for the function prelude, /// they are disabled when beginning to translate a new function. This functions /// switches source location emitting on and must therefore be called before the /// first real statement/expression of the function is translated. pub fn start_emitting_source_locations(fcx: &FunctionContext) { match fcx.debug_context { FunctionDebugContext::RegularContext(box ref data) => { data.source_locations_enabled.set(true) }, _ => { /* safe to ignore */ } } } /// Creates the function-specific debug context. /// /// Returns the FunctionDebugContext for the function which holds state needed /// for debug info creation. The function may also return another variant of the /// FunctionDebugContext enum which indicates why no debuginfo should be created /// for the function. pub fn create_function_debug_context<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, fn_ast_id: ast::NodeId, param_substs: &Substs<'tcx>, llfn: ValueRef) -> FunctionDebugContext { if cx.sess().opts.debuginfo == NoDebugInfo { return FunctionDebugContext::DebugInfoDisabled; } // Clear the debug location so we don't assign them in the function prelude. // Do this here already, in case we do an early exit from this function. set_debug_location(cx, UnknownLocation); if fn_ast_id == ast::DUMMY_NODE_ID { // This is a function not linked to any source location, so don't // generate debuginfo for it. return FunctionDebugContext::FunctionWithoutDebugInfo; } let empty_generics = ast_util::empty_generics(); let fnitem = cx.tcx().map.get(fn_ast_id); let (ident, fn_decl, generics, top_level_block, span, has_path) = match fnitem { ast_map::NodeItem(ref item) => { if contains_nodebug_attribute(item.attrs.as_slice()) { return FunctionDebugContext::FunctionWithoutDebugInfo; } match item.node { ast::ItemFn(ref fn_decl, _, _, ref generics, ref top_level_block) => { (item.ident, &**fn_decl, generics, &**top_level_block, item.span, true) } _ => { cx.sess().span_bug(item.span, "create_function_debug_context: item bound to non-function"); } } } ast_map::NodeImplItem(ref item) => { match **item { ast::MethodImplItem(ref method) => { if contains_nodebug_attribute(method.attrs.as_slice()) { return FunctionDebugContext::FunctionWithoutDebugInfo; } (method.pe_ident(), method.pe_fn_decl(), method.pe_generics(), method.pe_body(), method.span, true) } ast::TypeImplItem(ref typedef) => { cx.sess().span_bug(typedef.span, "create_function_debug_context() \ called on associated type?!") } } } ast_map::NodeExpr(ref expr) => { match expr.node { ast::ExprClosure(_, _, ref fn_decl, ref top_level_block) => { let name = format!("fn{}", token::gensym("fn")); let name = token::str_to_ident(name[]); (name, &**fn_decl, // This is not quite right. It should actually inherit // the generics of the enclosing function. &empty_generics, &**top_level_block, expr.span, // Don't try to lookup the item path: false) } _ => cx.sess().span_bug(expr.span, "create_function_debug_context: expected an expr_fn_block here") } } ast_map::NodeTraitItem(ref trait_method) => { match **trait_method { ast::ProvidedMethod(ref method) => { if contains_nodebug_attribute(method.attrs.as_slice()) { return FunctionDebugContext::FunctionWithoutDebugInfo; } (method.pe_ident(), method.pe_fn_decl(), method.pe_generics(), method.pe_body(), method.span, true) } _ => { cx.sess() .bug(format!("create_function_debug_context: \ unexpected sort of node: {}", fnitem)[]) } } } ast_map::NodeForeignItem(..) | ast_map::NodeVariant(..) | ast_map::NodeStructCtor(..) => { return FunctionDebugContext::FunctionWithoutDebugInfo; } _ => cx.sess().bug(format!("create_function_debug_context: \ unexpected sort of node: {}", fnitem)[]) }; // This can be the case for functions inlined from another crate if span == codemap::DUMMY_SP { return FunctionDebugContext::FunctionWithoutDebugInfo; } let loc = span_start(cx, span); let file_metadata = file_metadata(cx, loc.file.name[]); let function_type_metadata = unsafe { let fn_signature = get_function_signature(cx, fn_ast_id, &*fn_decl, param_substs, span); llvm::LLVMDIBuilderCreateSubroutineType(DIB(cx), file_metadata, fn_signature) }; // Get_template_parameters() will append a `<...>` clause to the function // name if necessary. let mut function_name = String::from_str(token::get_ident(ident).get()); let template_parameters = get_template_parameters(cx, generics, param_substs, file_metadata, &mut function_name); // There is no ast_map::Path for ast::ExprClosure-type functions. For now, // just don't put them into a namespace. In the future this could be improved // somehow (storing a path in the ast_map, or construct a path using the // enclosing function). let (linkage_name, containing_scope) = if has_path { let namespace_node = namespace_for_item(cx, ast_util::local_def(fn_ast_id)); let linkage_name = namespace_node.mangled_name_of_contained_item( function_name[]); let containing_scope = namespace_node.scope; (linkage_name, containing_scope) } else { (function_name.clone(), file_metadata) }; // Clang sets this parameter to the opening brace of the function's block, // so let's do this too. let scope_line = span_start(cx, top_level_block.span).line; let is_local_to_unit = is_node_local_to_unit(cx, fn_ast_id); let fn_metadata = function_name.with_c_str(|function_name| { linkage_name.with_c_str(|linkage_name| { unsafe { llvm::LLVMDIBuilderCreateFunction( DIB(cx), containing_scope, function_name, linkage_name, file_metadata, loc.line as c_uint, function_type_metadata, is_local_to_unit, true, scope_line as c_uint, FlagPrototyped as c_uint, cx.sess().opts.optimize != config::No, llfn, template_parameters, ptr::null_mut()) } }) }); let scope_map = create_scope_map(cx, fn_decl.inputs.as_slice(), &*top_level_block, fn_metadata, fn_ast_id); // Initialize fn debug context (including scope map and namespace map) let fn_debug_context = box FunctionDebugContextData { scope_map: RefCell::new(scope_map), fn_metadata: fn_metadata, argument_counter: Cell::new(1), source_locations_enabled: Cell::new(false), }; return FunctionDebugContext::RegularContext(fn_debug_context); fn get_function_signature<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, fn_ast_id: ast::NodeId, fn_decl: &ast::FnDecl, param_substs: &Substs<'tcx>, error_reporting_span: Span) -> DIArray { if cx.sess().opts.debuginfo == LimitedDebugInfo { return create_DIArray(DIB(cx), &[]); } let mut signature = Vec::with_capacity(fn_decl.inputs.len() + 1); // Return type -- llvm::DIBuilder wants this at index 0 match fn_decl.output { ast::Return(ref ret_ty) if ret_ty.node == ast::TyTup(vec![]) => signature.push(ptr::null_mut()), _ => { assert_type_for_node_id(cx, fn_ast_id, error_reporting_span); let return_type = ty::node_id_to_type(cx.tcx(), fn_ast_id); let return_type = monomorphize::apply_param_substs(cx.tcx(), param_substs, &return_type); signature.push(type_metadata(cx, return_type, codemap::DUMMY_SP)); } } // Arguments types for arg in fn_decl.inputs.iter() { assert_type_for_node_id(cx, arg.pat.id, arg.pat.span); let arg_type = ty::node_id_to_type(cx.tcx(), arg.pat.id); let arg_type = monomorphize::apply_param_substs(cx.tcx(), param_substs, &arg_type); signature.push(type_metadata(cx, arg_type, codemap::DUMMY_SP)); } return create_DIArray(DIB(cx), signature[]); } fn get_template_parameters<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, generics: &ast::Generics, param_substs: &Substs<'tcx>, file_metadata: DIFile, name_to_append_suffix_to: &mut String) -> DIArray { let self_type = param_substs.self_ty(); let self_type = monomorphize::normalize_associated_type(cx.tcx(), &self_type); // Only true for static default methods: let has_self_type = self_type.is_some(); if !generics.is_type_parameterized() && !has_self_type { return create_DIArray(DIB(cx), &[]); } name_to_append_suffix_to.push('<'); // The list to be filled with template parameters: let mut template_params: Vec = Vec::with_capacity(generics.ty_params.len() + 1); // Handle self type if has_self_type { let actual_self_type = self_type.unwrap(); // Add self type name to <...> clause of function name let actual_self_type_name = compute_debuginfo_type_name( cx, actual_self_type, true); name_to_append_suffix_to.push_str(actual_self_type_name[]); if generics.is_type_parameterized() { name_to_append_suffix_to.push_str(","); } // Only create type information if full debuginfo is enabled if cx.sess().opts.debuginfo == FullDebugInfo { let actual_self_type_metadata = type_metadata(cx, actual_self_type, codemap::DUMMY_SP); let ident = special_idents::type_self; let param_metadata = token::get_ident(ident).get() .with_c_str(|name| { unsafe { llvm::LLVMDIBuilderCreateTemplateTypeParameter( DIB(cx), file_metadata, name, actual_self_type_metadata, ptr::null_mut(), 0, 0) } }); template_params.push(param_metadata); } } // Handle other generic parameters let actual_types = param_substs.types.get_slice(subst::FnSpace); for (index, &ast::TyParam{ ident, .. }) in generics.ty_params.iter().enumerate() { let actual_type = actual_types[index]; // Add actual type name to <...> clause of function name let actual_type_name = compute_debuginfo_type_name(cx, actual_type, true); name_to_append_suffix_to.push_str(actual_type_name[]); if index != generics.ty_params.len() - 1 { name_to_append_suffix_to.push_str(","); } // Again, only create type information if full debuginfo is enabled if cx.sess().opts.debuginfo == FullDebugInfo { let actual_type_metadata = type_metadata(cx, actual_type, codemap::DUMMY_SP); let param_metadata = token::get_ident(ident).get() .with_c_str(|name| { unsafe { llvm::LLVMDIBuilderCreateTemplateTypeParameter( DIB(cx), file_metadata, name, actual_type_metadata, ptr::null_mut(), 0, 0) } }); template_params.push(param_metadata); } } name_to_append_suffix_to.push('>'); return create_DIArray(DIB(cx), template_params[]); } } //=----------------------------------------------------------------------------- // Module-Internal debug info creation functions //=----------------------------------------------------------------------------- fn is_node_local_to_unit(cx: &CrateContext, node_id: ast::NodeId) -> bool { // The is_local_to_unit flag indicates whether a function is local to the // current compilation unit (i.e. if it is *static* in the C-sense). The // *reachable* set should provide a good approximation of this, as it // contains everything that might leak out of the current crate (by being // externally visible or by being inlined into something externally visible). // It might better to use the `exported_items` set from `driver::CrateAnalysis` // in the future, but (atm) this set is not available in the translation pass. !cx.reachable().contains(&node_id) } #[allow(non_snake_case)] fn create_DIArray(builder: DIBuilderRef, arr: &[DIDescriptor]) -> DIArray { return unsafe { llvm::LLVMDIBuilderGetOrCreateArray(builder, arr.as_ptr(), arr.len() as u32) }; } fn compile_unit_metadata(cx: &CrateContext) -> DIDescriptor { let work_dir = &cx.sess().working_dir; let compile_unit_name = match cx.sess().local_crate_source_file { None => fallback_path(cx), Some(ref abs_path) => { if abs_path.is_relative() { cx.sess().warn("debuginfo: Invalid path to crate's local root source file!"); fallback_path(cx) } else { match abs_path.path_relative_from(work_dir) { Some(ref p) if p.is_relative() => { // prepend "./" if necessary let dotdot = b".."; let prefix = [dotdot[0], ::std::path::SEP_BYTE]; let mut path_bytes = p.as_vec().to_vec(); if path_bytes.slice_to(2) != prefix && path_bytes.slice_to(2) != dotdot { path_bytes.insert(0, prefix[0]); path_bytes.insert(1, prefix[1]); } path_bytes.to_c_str() } _ => fallback_path(cx) } } } }; debug!("compile_unit_metadata: {}", compile_unit_name); let producer = format!("rustc version {}", (option_env!("CFG_VERSION")).expect("CFG_VERSION")); let compile_unit_name = compile_unit_name.as_ptr(); return work_dir.as_vec().with_c_str(|work_dir| { producer.with_c_str(|producer| { "".with_c_str(|flags| { "".with_c_str(|split_name| { unsafe { llvm::LLVMDIBuilderCreateCompileUnit( debug_context(cx).builder, DW_LANG_RUST, compile_unit_name, work_dir, producer, cx.sess().opts.optimize != config::No, flags, 0, split_name) } }) }) }) }); fn fallback_path(cx: &CrateContext) -> CString { cx.link_meta().crate_name.to_c_str() } } fn declare_local<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, variable_ident: ast::Ident, variable_type: Ty<'tcx>, scope_metadata: DIScope, variable_access: VariableAccess, variable_kind: VariableKind, span: Span) { let cx: &CrateContext = bcx.ccx(); let filename = span_start(cx, span).file.name.clone(); let file_metadata = file_metadata(cx, filename[]); let name = token::get_ident(variable_ident); let loc = span_start(cx, span); let type_metadata = type_metadata(cx, variable_type, span); let (argument_index, dwarf_tag) = match variable_kind { ArgumentVariable(index) => (index as c_uint, DW_TAG_arg_variable), LocalVariable | CapturedVariable => (0, DW_TAG_auto_variable) }; let (var_alloca, var_metadata) = name.get().with_c_str(|name| { match variable_access { DirectVariable { alloca } => ( alloca, unsafe { llvm::LLVMDIBuilderCreateLocalVariable( DIB(cx), dwarf_tag, scope_metadata, name, file_metadata, loc.line as c_uint, type_metadata, cx.sess().opts.optimize != config::No, 0, argument_index) } ), IndirectVariable { alloca, address_operations } => ( alloca, unsafe { llvm::LLVMDIBuilderCreateComplexVariable( DIB(cx), dwarf_tag, scope_metadata, name, file_metadata, loc.line as c_uint, type_metadata, address_operations.as_ptr(), address_operations.len() as c_uint, argument_index) } ) } }); set_debug_location(cx, DebugLocation::new(scope_metadata, loc.line, loc.col.to_uint())); unsafe { let instr = llvm::LLVMDIBuilderInsertDeclareAtEnd( DIB(cx), var_alloca, var_metadata, bcx.llbb); llvm::LLVMSetInstDebugLocation(trans::build::B(bcx).llbuilder, instr); } match variable_kind { ArgumentVariable(_) | CapturedVariable => { assert!(!bcx.fcx .debug_context .get_ref(cx, span) .source_locations_enabled .get()); set_debug_location(cx, UnknownLocation); } _ => { /* nothing to do */ } } } fn file_metadata(cx: &CrateContext, full_path: &str) -> DIFile { match debug_context(cx).created_files.borrow().get(full_path) { Some(file_metadata) => return *file_metadata, None => () } debug!("file_metadata: {}", full_path); // FIXME (#9639): This needs to handle non-utf8 paths let work_dir = cx.sess().working_dir.as_str().unwrap(); let file_name = if full_path.starts_with(work_dir) { full_path[work_dir.len() + 1u..full_path.len()] } else { full_path }; let file_metadata = file_name.with_c_str(|file_name| { work_dir.with_c_str(|work_dir| { unsafe { llvm::LLVMDIBuilderCreateFile(DIB(cx), file_name, work_dir) } }) }); let mut created_files = debug_context(cx).created_files.borrow_mut(); created_files.insert(full_path.to_string(), file_metadata); return file_metadata; } /// Finds the scope metadata node for the given AST node. fn scope_metadata(fcx: &FunctionContext, node_id: ast::NodeId, error_reporting_span: Span) -> DIScope { let scope_map = &fcx.debug_context .get_ref(fcx.ccx, error_reporting_span) .scope_map; match scope_map.borrow().get(&node_id).cloned() { Some(scope_metadata) => scope_metadata, None => { let node = fcx.ccx.tcx().map.get(node_id); fcx.ccx.sess().span_bug(error_reporting_span, format!("debuginfo: Could not find scope info for node {}", node)[]); } } } fn diverging_type_metadata(cx: &CrateContext) -> DIType { "!".with_c_str(|name| { unsafe { llvm::LLVMDIBuilderCreateBasicType( DIB(cx), name, bytes_to_bits(0), bytes_to_bits(0), DW_ATE_unsigned) } }) } fn basic_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, t: Ty<'tcx>) -> DIType { debug!("basic_type_metadata: {}", t); let (name, encoding) = match t.sty { ty::ty_tup(ref elements) if elements.is_empty() => ("()".to_string(), DW_ATE_unsigned), ty::ty_bool => ("bool".to_string(), DW_ATE_boolean), ty::ty_char => ("char".to_string(), DW_ATE_unsigned_char), ty::ty_int(int_ty) => match int_ty { ast::TyI => ("int".to_string(), DW_ATE_signed), ast::TyI8 => ("i8".to_string(), DW_ATE_signed), ast::TyI16 => ("i16".to_string(), DW_ATE_signed), ast::TyI32 => ("i32".to_string(), DW_ATE_signed), ast::TyI64 => ("i64".to_string(), DW_ATE_signed) }, ty::ty_uint(uint_ty) => match uint_ty { ast::TyU => ("uint".to_string(), DW_ATE_unsigned), ast::TyU8 => ("u8".to_string(), DW_ATE_unsigned), ast::TyU16 => ("u16".to_string(), DW_ATE_unsigned), ast::TyU32 => ("u32".to_string(), DW_ATE_unsigned), ast::TyU64 => ("u64".to_string(), DW_ATE_unsigned) }, ty::ty_float(float_ty) => match float_ty { ast::TyF32 => ("f32".to_string(), DW_ATE_float), ast::TyF64 => ("f64".to_string(), DW_ATE_float), }, _ => cx.sess().bug("debuginfo::basic_type_metadata - t is invalid type") }; let llvm_type = type_of::type_of(cx, t); let (size, align) = size_and_align_of(cx, llvm_type); let ty_metadata = name.with_c_str(|name| { unsafe { llvm::LLVMDIBuilderCreateBasicType( DIB(cx), name, bytes_to_bits(size), bytes_to_bits(align), encoding) } }); return ty_metadata; } fn pointer_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, pointer_type: Ty<'tcx>, pointee_type_metadata: DIType) -> DIType { let pointer_llvm_type = type_of::type_of(cx, pointer_type); let (pointer_size, pointer_align) = size_and_align_of(cx, pointer_llvm_type); let name = compute_debuginfo_type_name(cx, pointer_type, false); let ptr_metadata = name.with_c_str(|name| { unsafe { llvm::LLVMDIBuilderCreatePointerType( DIB(cx), pointee_type_metadata, bytes_to_bits(pointer_size), bytes_to_bits(pointer_align), name) } }); return ptr_metadata; } //=----------------------------------------------------------------------------- // Common facilities for record-like types (structs, enums, tuples) //=----------------------------------------------------------------------------- enum MemberOffset { FixedMemberOffset { bytes: uint }, // For ComputedMemberOffset, the offset is read from the llvm type definition ComputedMemberOffset } // Description of a type member, which can either be a regular field (as in // structs or tuples) or an enum variant struct MemberDescription { name: String, llvm_type: Type, type_metadata: DIType, offset: MemberOffset, flags: c_uint } // A factory for MemberDescriptions. It produces a list of member descriptions // for some record-like type. MemberDescriptionFactories are used to defer the // creation of type member descriptions in order to break cycles arising from // recursive type definitions. enum MemberDescriptionFactory<'tcx> { StructMDF(StructMemberDescriptionFactory<'tcx>), TupleMDF(TupleMemberDescriptionFactory<'tcx>), EnumMDF(EnumMemberDescriptionFactory<'tcx>), VariantMDF(VariantMemberDescriptionFactory<'tcx>) } impl<'tcx> MemberDescriptionFactory<'tcx> { fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>) -> Vec { match *self { StructMDF(ref this) => { this.create_member_descriptions(cx) } TupleMDF(ref this) => { this.create_member_descriptions(cx) } EnumMDF(ref this) => { this.create_member_descriptions(cx) } VariantMDF(ref this) => { this.create_member_descriptions(cx) } } } } // A description of some recursive type. It can either be already finished (as // with FinalMetadata) or it is not yet finished, but contains all information // needed to generate the missing parts of the description. See the documentation // section on Recursive Types at the top of this file for more information. enum RecursiveTypeDescription<'tcx> { UnfinishedMetadata { unfinished_type: Ty<'tcx>, unique_type_id: UniqueTypeId, metadata_stub: DICompositeType, llvm_type: Type, member_description_factory: MemberDescriptionFactory<'tcx>, }, FinalMetadata(DICompositeType) } fn create_and_register_recursive_type_forward_declaration<'a, 'tcx>( cx: &CrateContext<'a, 'tcx>, unfinished_type: Ty<'tcx>, unique_type_id: UniqueTypeId, metadata_stub: DICompositeType, llvm_type: Type, member_description_factory: MemberDescriptionFactory<'tcx>) -> RecursiveTypeDescription<'tcx> { // Insert the stub into the TypeMap in order to allow for recursive references let mut type_map = debug_context(cx).type_map.borrow_mut(); type_map.register_unique_id_with_metadata(cx, unique_type_id, metadata_stub); type_map.register_type_with_metadata(cx, unfinished_type, metadata_stub); UnfinishedMetadata { unfinished_type: unfinished_type, unique_type_id: unique_type_id, metadata_stub: metadata_stub, llvm_type: llvm_type, member_description_factory: member_description_factory, } } impl<'tcx> RecursiveTypeDescription<'tcx> { // Finishes up the description of the type in question (mostly by providing // descriptions of the fields of the given type) and returns the final type metadata. fn finalize<'a>(&self, cx: &CrateContext<'a, 'tcx>) -> MetadataCreationResult { match *self { FinalMetadata(metadata) => MetadataCreationResult::new(metadata, false), UnfinishedMetadata { unfinished_type, unique_type_id, metadata_stub, llvm_type, ref member_description_factory, .. } => { // Make sure that we have a forward declaration of the type in // the TypeMap so that recursive references are possible. This // will always be the case if the RecursiveTypeDescription has // been properly created through the // create_and_register_recursive_type_forward_declaration() function. { let type_map = debug_context(cx).type_map.borrow(); if type_map.find_metadata_for_unique_id(unique_type_id).is_none() || type_map.find_metadata_for_type(unfinished_type).is_none() { cx.sess().bug(format!("Forward declaration of potentially recursive type \ '{}' was not found in TypeMap!", ppaux::ty_to_string(cx.tcx(), unfinished_type)) []); } } // ... then create the member descriptions ... let member_descriptions = member_description_factory.create_member_descriptions(cx); // ... and attach them to the stub to complete it. set_members_of_composite_type(cx, metadata_stub, llvm_type, member_descriptions[]); return MetadataCreationResult::new(metadata_stub, true); } } } } //=----------------------------------------------------------------------------- // Structs //=----------------------------------------------------------------------------- // Creates MemberDescriptions for the fields of a struct struct StructMemberDescriptionFactory<'tcx> { fields: Vec>, is_simd: bool, span: Span, } impl<'tcx> StructMemberDescriptionFactory<'tcx> { fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>) -> Vec { if self.fields.len() == 0 { return Vec::new(); } let field_size = if self.is_simd { machine::llsize_of_alloc(cx, type_of::type_of(cx, self.fields[0].mt.ty)) as uint } else { 0xdeadbeef }; self.fields.iter().enumerate().map(|(i, field)| { let name = if field.name == special_idents::unnamed_field.name { "".to_string() } else { token::get_name(field.name).get().to_string() }; let offset = if self.is_simd { assert!(field_size != 0xdeadbeef); FixedMemberOffset { bytes: i * field_size } } else { ComputedMemberOffset }; MemberDescription { name: name, llvm_type: type_of::type_of(cx, field.mt.ty), type_metadata: type_metadata(cx, field.mt.ty, self.span), offset: offset, flags: FLAGS_NONE, } }).collect() } } fn prepare_struct_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, struct_type: Ty<'tcx>, def_id: ast::DefId, substs: &subst::Substs<'tcx>, unique_type_id: UniqueTypeId, span: Span) -> RecursiveTypeDescription<'tcx> { let struct_name = compute_debuginfo_type_name(cx, struct_type, false); let struct_llvm_type = type_of::type_of(cx, struct_type); let (containing_scope, _) = get_namespace_and_span_for_item(cx, def_id); let struct_metadata_stub = create_struct_stub(cx, struct_llvm_type, struct_name[], unique_type_id, containing_scope); let fields = ty::struct_fields(cx.tcx(), def_id, substs); create_and_register_recursive_type_forward_declaration( cx, struct_type, unique_type_id, struct_metadata_stub, struct_llvm_type, StructMDF(StructMemberDescriptionFactory { fields: fields, is_simd: ty::type_is_simd(cx.tcx(), struct_type), span: span, }) ) } //=----------------------------------------------------------------------------- // Tuples //=----------------------------------------------------------------------------- // Creates MemberDescriptions for the fields of a tuple struct TupleMemberDescriptionFactory<'tcx> { component_types: Vec>, span: Span, } impl<'tcx> TupleMemberDescriptionFactory<'tcx> { fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>) -> Vec { self.component_types.iter().map(|&component_type| { MemberDescription { name: "".to_string(), llvm_type: type_of::type_of(cx, component_type), type_metadata: type_metadata(cx, component_type, self.span), offset: ComputedMemberOffset, flags: FLAGS_NONE, } }).collect() } } fn prepare_tuple_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, tuple_type: Ty<'tcx>, component_types: &[Ty<'tcx>], unique_type_id: UniqueTypeId, span: Span) -> RecursiveTypeDescription<'tcx> { let tuple_name = compute_debuginfo_type_name(cx, tuple_type, false); let tuple_llvm_type = type_of::type_of(cx, tuple_type); create_and_register_recursive_type_forward_declaration( cx, tuple_type, unique_type_id, create_struct_stub(cx, tuple_llvm_type, tuple_name[], unique_type_id, UNKNOWN_SCOPE_METADATA), tuple_llvm_type, TupleMDF(TupleMemberDescriptionFactory { component_types: component_types.to_vec(), span: span, }) ) } //=----------------------------------------------------------------------------- // Enums //=----------------------------------------------------------------------------- // Describes the members of an enum value: An enum is described as a union of // structs in DWARF. This MemberDescriptionFactory provides the description for // the members of this union; so for every variant of the given enum, this factory // will produce one MemberDescription (all with no name and a fixed offset of // zero bytes). struct EnumMemberDescriptionFactory<'tcx> { enum_type: Ty<'tcx>, type_rep: Rc>, variants: Rc>>>, discriminant_type_metadata: Option, containing_scope: DIScope, file_metadata: DIFile, span: Span, } impl<'tcx> EnumMemberDescriptionFactory<'tcx> { fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>) -> Vec { match *self.type_rep { adt::General(_, ref struct_defs, _) => { let discriminant_info = RegularDiscriminant(self.discriminant_type_metadata .expect("")); struct_defs .iter() .enumerate() .map(|(i, struct_def)| { let (variant_type_metadata, variant_llvm_type, member_desc_factory) = describe_enum_variant(cx, self.enum_type, struct_def, &*(*self.variants)[i], discriminant_info, self.containing_scope, self.span); let member_descriptions = member_desc_factory .create_member_descriptions(cx); set_members_of_composite_type(cx, variant_type_metadata, variant_llvm_type, member_descriptions[]); MemberDescription { name: "".to_string(), llvm_type: variant_llvm_type, type_metadata: variant_type_metadata, offset: FixedMemberOffset { bytes: 0 }, flags: FLAGS_NONE } }).collect() }, adt::Univariant(ref struct_def, _) => { assert!(self.variants.len() <= 1); if self.variants.len() == 0 { vec![] } else { let (variant_type_metadata, variant_llvm_type, member_description_factory) = describe_enum_variant(cx, self.enum_type, struct_def, &*(*self.variants)[0], NoDiscriminant, self.containing_scope, self.span); let member_descriptions = member_description_factory.create_member_descriptions(cx); set_members_of_composite_type(cx, variant_type_metadata, variant_llvm_type, member_descriptions[]); vec![ MemberDescription { name: "".to_string(), llvm_type: variant_llvm_type, type_metadata: variant_type_metadata, offset: FixedMemberOffset { bytes: 0 }, flags: FLAGS_NONE } ] } } adt::RawNullablePointer { nndiscr: non_null_variant_index, nnty, .. } => { // As far as debuginfo is concerned, the pointer this enum // represents is still wrapped in a struct. This is to make the // DWARF representation of enums uniform. // First create a description of the artificial wrapper struct: let non_null_variant = &(*self.variants)[non_null_variant_index as uint]; let non_null_variant_name = token::get_name(non_null_variant.name); // The llvm type and metadata of the pointer let non_null_llvm_type = type_of::type_of(cx, nnty); let non_null_type_metadata = type_metadata(cx, nnty, self.span); // The type of the artificial struct wrapping the pointer let artificial_struct_llvm_type = Type::struct_(cx, &[non_null_llvm_type], false); // For the metadata of the wrapper struct, we need to create a // MemberDescription of the struct's single field. let sole_struct_member_description = MemberDescription { name: match non_null_variant.arg_names { Some(ref names) => token::get_ident(names[0]).get().to_string(), None => "".to_string() }, llvm_type: non_null_llvm_type, type_metadata: non_null_type_metadata, offset: FixedMemberOffset { bytes: 0 }, flags: FLAGS_NONE }; let unique_type_id = debug_context(cx).type_map .borrow_mut() .get_unique_type_id_of_enum_variant( cx, self.enum_type, non_null_variant_name.get()); // Now we can create the metadata of the artificial struct let artificial_struct_metadata = composite_type_metadata(cx, artificial_struct_llvm_type, non_null_variant_name.get(), unique_type_id, &[sole_struct_member_description], self.containing_scope, self.file_metadata, codemap::DUMMY_SP); // Encode the information about the null variant in the union // member's name. let null_variant_index = (1 - non_null_variant_index) as uint; let null_variant_name = token::get_name((*self.variants)[null_variant_index].name); let union_member_name = format!("RUST$ENCODED$ENUM${}${}", 0u, null_variant_name); // Finally create the (singleton) list of descriptions of union // members. vec![ MemberDescription { name: union_member_name, llvm_type: artificial_struct_llvm_type, type_metadata: artificial_struct_metadata, offset: FixedMemberOffset { bytes: 0 }, flags: FLAGS_NONE } ] }, adt::StructWrappedNullablePointer { nonnull: ref struct_def, nndiscr, ref discrfield, ..} => { // Create a description of the non-null variant let (variant_type_metadata, variant_llvm_type, member_description_factory) = describe_enum_variant(cx, self.enum_type, struct_def, &*(*self.variants)[nndiscr as uint], OptimizedDiscriminant, self.containing_scope, self.span); let variant_member_descriptions = member_description_factory.create_member_descriptions(cx); set_members_of_composite_type(cx, variant_type_metadata, variant_llvm_type, variant_member_descriptions[]); // Encode the information about the null variant in the union // member's name. let null_variant_index = (1 - nndiscr) as uint; let null_variant_name = token::get_name((*self.variants)[null_variant_index].name); let discrfield = discrfield.iter() .skip(1) .map(|x| x.to_string()) .collect::>().connect("$"); let union_member_name = format!("RUST$ENCODED$ENUM${}${}", discrfield, null_variant_name); // Create the (singleton) list of descriptions of union members. vec![ MemberDescription { name: union_member_name, llvm_type: variant_llvm_type, type_metadata: variant_type_metadata, offset: FixedMemberOffset { bytes: 0 }, flags: FLAGS_NONE } ] }, adt::CEnum(..) => cx.sess().span_bug(self.span, "This should be unreachable.") } } } // Creates MemberDescriptions for the fields of a single enum variant. struct VariantMemberDescriptionFactory<'tcx> { args: Vec<(String, Ty<'tcx>)>, discriminant_type_metadata: Option, span: Span, } impl<'tcx> VariantMemberDescriptionFactory<'tcx> { fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>) -> Vec { self.args.iter().enumerate().map(|(i, &(ref name, ty))| { MemberDescription { name: name.to_string(), llvm_type: type_of::type_of(cx, ty), type_metadata: match self.discriminant_type_metadata { Some(metadata) if i == 0 => metadata, _ => type_metadata(cx, ty, self.span) }, offset: ComputedMemberOffset, flags: FLAGS_NONE } }).collect() } } #[deriving(Copy)] enum EnumDiscriminantInfo { RegularDiscriminant(DIType), OptimizedDiscriminant, NoDiscriminant } // Returns a tuple of (1) type_metadata_stub of the variant, (2) the llvm_type // of the variant, and (3) a MemberDescriptionFactory for producing the // descriptions of the fields of the variant. This is a rudimentary version of a // full RecursiveTypeDescription. fn describe_enum_variant<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, enum_type: Ty<'tcx>, struct_def: &adt::Struct<'tcx>, variant_info: &ty::VariantInfo<'tcx>, discriminant_info: EnumDiscriminantInfo, containing_scope: DIScope, span: Span) -> (DICompositeType, Type, MemberDescriptionFactory<'tcx>) { let variant_llvm_type = Type::struct_(cx, struct_def.fields .iter() .map(|&t| type_of::type_of(cx, t)) .collect::>() [], struct_def.packed); // Could do some consistency checks here: size, align, field count, discr type let variant_name = token::get_name(variant_info.name); let variant_name = variant_name.get(); let unique_type_id = debug_context(cx).type_map .borrow_mut() .get_unique_type_id_of_enum_variant( cx, enum_type, variant_name); let metadata_stub = create_struct_stub(cx, variant_llvm_type, variant_name, unique_type_id, containing_scope); // Get the argument names from the enum variant info let mut arg_names: Vec<_> = match variant_info.arg_names { Some(ref names) => { names.iter() .map(|ident| { token::get_ident(*ident).get().to_string() }).collect() } None => variant_info.args.iter().map(|_| "".to_string()).collect() }; // If this is not a univariant enum, there is also the discriminant field. match discriminant_info { RegularDiscriminant(_) => arg_names.insert(0, "RUST$ENUM$DISR".to_string()), _ => { /* do nothing */ } }; // Build an array of (field name, field type) pairs to be captured in the factory closure. let args: Vec<(String, Ty)> = arg_names.iter() .zip(struct_def.fields.iter()) .map(|(s, &t)| (s.to_string(), t)) .collect(); let member_description_factory = VariantMDF(VariantMemberDescriptionFactory { args: args, discriminant_type_metadata: match discriminant_info { RegularDiscriminant(discriminant_type_metadata) => { Some(discriminant_type_metadata) } _ => None }, span: span, }); (metadata_stub, variant_llvm_type, member_description_factory) } fn prepare_enum_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, enum_type: Ty<'tcx>, enum_def_id: ast::DefId, unique_type_id: UniqueTypeId, span: Span) -> RecursiveTypeDescription<'tcx> { let enum_name = compute_debuginfo_type_name(cx, enum_type, false); let (containing_scope, definition_span) = get_namespace_and_span_for_item(cx, enum_def_id); let loc = span_start(cx, definition_span); let file_metadata = file_metadata(cx, loc.file.name[]); let variants = ty::enum_variants(cx.tcx(), enum_def_id); let enumerators_metadata: Vec = variants .iter() .map(|v| { token::get_name(v.name).get().with_c_str(|name| { unsafe { llvm::LLVMDIBuilderCreateEnumerator( DIB(cx), name, v.disr_val as u64) } }) }) .collect(); let discriminant_type_metadata = |&: inttype| { // We can reuse the type of the discriminant for all monomorphized // instances of an enum because it doesn't depend on any type parameters. // The def_id, uniquely identifying the enum's polytype acts as key in // this cache. let cached_discriminant_type_metadata = debug_context(cx).created_enum_disr_types .borrow() .get(&enum_def_id).cloned(); match cached_discriminant_type_metadata { Some(discriminant_type_metadata) => discriminant_type_metadata, None => { let discriminant_llvm_type = adt::ll_inttype(cx, inttype); let (discriminant_size, discriminant_align) = size_and_align_of(cx, discriminant_llvm_type); let discriminant_base_type_metadata = type_metadata(cx, adt::ty_of_inttype(cx.tcx(), inttype), codemap::DUMMY_SP); let discriminant_name = get_enum_discriminant_name(cx, enum_def_id); let discriminant_type_metadata = discriminant_name.get().with_c_str(|name| { unsafe { llvm::LLVMDIBuilderCreateEnumerationType( DIB(cx), containing_scope, name, UNKNOWN_FILE_METADATA, UNKNOWN_LINE_NUMBER, bytes_to_bits(discriminant_size), bytes_to_bits(discriminant_align), create_DIArray(DIB(cx), enumerators_metadata[]), discriminant_base_type_metadata) } }); debug_context(cx).created_enum_disr_types .borrow_mut() .insert(enum_def_id, discriminant_type_metadata); discriminant_type_metadata } } }; let type_rep = adt::represent_type(cx, enum_type); let discriminant_type_metadata = match *type_rep { adt::CEnum(inttype, _, _) => { return FinalMetadata(discriminant_type_metadata(inttype)) }, adt::RawNullablePointer { .. } | adt::StructWrappedNullablePointer { .. } | adt::Univariant(..) => None, adt::General(inttype, _, _) => Some(discriminant_type_metadata(inttype)), }; let enum_llvm_type = type_of::type_of(cx, enum_type); let (enum_type_size, enum_type_align) = size_and_align_of(cx, enum_llvm_type); let unique_type_id_str = debug_context(cx) .type_map .borrow() .get_unique_type_id_as_string(unique_type_id); let enum_metadata = enum_name.with_c_str(|enum_name| { unique_type_id_str.with_c_str(|unique_type_id_str| { unsafe { llvm::LLVMDIBuilderCreateUnionType( DIB(cx), containing_scope, enum_name, UNKNOWN_FILE_METADATA, UNKNOWN_LINE_NUMBER, bytes_to_bits(enum_type_size), bytes_to_bits(enum_type_align), 0, // Flags ptr::null_mut(), 0, // RuntimeLang unique_type_id_str) } }) }); return create_and_register_recursive_type_forward_declaration( cx, enum_type, unique_type_id, enum_metadata, enum_llvm_type, EnumMDF(EnumMemberDescriptionFactory { enum_type: enum_type, type_rep: type_rep.clone(), variants: variants, discriminant_type_metadata: discriminant_type_metadata, containing_scope: containing_scope, file_metadata: file_metadata, span: span, }), ); fn get_enum_discriminant_name(cx: &CrateContext, def_id: ast::DefId) -> token::InternedString { let name = if def_id.krate == ast::LOCAL_CRATE { cx.tcx().map.get_path_elem(def_id.node).name() } else { csearch::get_item_path(cx.tcx(), def_id).last().unwrap().name() }; token::get_name(name) } } /// Creates debug information for a composite type, that is, anything that /// results in a LLVM struct. /// /// Examples of Rust types to use this are: structs, tuples, boxes, vecs, and enums. fn composite_type_metadata(cx: &CrateContext, composite_llvm_type: Type, composite_type_name: &str, composite_type_unique_id: UniqueTypeId, member_descriptions: &[MemberDescription], containing_scope: DIScope, // Ignore source location information as long as it // can't be reconstructed for non-local crates. _file_metadata: DIFile, _definition_span: Span) -> DICompositeType { // Create the (empty) struct metadata node ... let composite_type_metadata = create_struct_stub(cx, composite_llvm_type, composite_type_name, composite_type_unique_id, containing_scope); // ... and immediately create and add the member descriptions. set_members_of_composite_type(cx, composite_type_metadata, composite_llvm_type, member_descriptions); return composite_type_metadata; } fn set_members_of_composite_type(cx: &CrateContext, composite_type_metadata: DICompositeType, composite_llvm_type: Type, member_descriptions: &[MemberDescription]) { // In some rare cases LLVM metadata uniquing would lead to an existing type // description being used instead of a new one created in create_struct_stub. // This would cause a hard to trace assertion in DICompositeType::SetTypeArray(). // The following check makes sure that we get a better error message if this // should happen again due to some regression. { let mut composite_types_completed = debug_context(cx).composite_types_completed.borrow_mut(); if composite_types_completed.contains(&composite_type_metadata) { let (llvm_version_major, llvm_version_minor) = unsafe { (llvm::LLVMVersionMajor(), llvm::LLVMVersionMinor()) }; let actual_llvm_version = llvm_version_major * 1000000 + llvm_version_minor * 1000; let min_supported_llvm_version = 3 * 1000000 + 4 * 1000; if actual_llvm_version < min_supported_llvm_version { cx.sess().warn(format!("This version of rustc was built with LLVM \ {}.{}. Rustc just ran into a known \ debuginfo corruption problem thatoften \ occurs with LLVM versions below 3.4. \ Please use a rustc built with anewer \ version of LLVM.", llvm_version_major, llvm_version_minor)[]); } else { cx.sess().bug("debuginfo::set_members_of_composite_type() - \ Already completed forward declaration re-encountered."); } } else { composite_types_completed.insert(composite_type_metadata); } } let member_metadata: Vec = member_descriptions .iter() .enumerate() .map(|(i, member_description)| { let (member_size, member_align) = size_and_align_of(cx, member_description.llvm_type); let member_offset = match member_description.offset { FixedMemberOffset { bytes } => bytes as u64, ComputedMemberOffset => machine::llelement_offset(cx, composite_llvm_type, i) }; member_description.name.with_c_str(|member_name| { unsafe { llvm::LLVMDIBuilderCreateMemberType( DIB(cx), composite_type_metadata, member_name, UNKNOWN_FILE_METADATA, UNKNOWN_LINE_NUMBER, bytes_to_bits(member_size), bytes_to_bits(member_align), bytes_to_bits(member_offset), member_description.flags, member_description.type_metadata) } }) }) .collect(); unsafe { let type_array = create_DIArray(DIB(cx), member_metadata[]); llvm::LLVMDICompositeTypeSetTypeArray(composite_type_metadata, type_array); } } // A convenience wrapper around LLVMDIBuilderCreateStructType(). Does not do any // caching, does not add any fields to the struct. This can be done later with // set_members_of_composite_type(). fn create_struct_stub(cx: &CrateContext, struct_llvm_type: Type, struct_type_name: &str, unique_type_id: UniqueTypeId, containing_scope: DIScope) -> DICompositeType { let (struct_size, struct_align) = size_and_align_of(cx, struct_llvm_type); let unique_type_id_str = debug_context(cx).type_map .borrow() .get_unique_type_id_as_string(unique_type_id); let metadata_stub = unsafe { struct_type_name.with_c_str(|name| { unique_type_id_str.with_c_str(|unique_type_id| { // LLVMDIBuilderCreateStructType() wants an empty array. A null // pointer will lead to hard to trace and debug LLVM assertions // later on in llvm/lib/IR/Value.cpp. let empty_array = create_DIArray(DIB(cx), &[]); llvm::LLVMDIBuilderCreateStructType( DIB(cx), containing_scope, name, UNKNOWN_FILE_METADATA, UNKNOWN_LINE_NUMBER, bytes_to_bits(struct_size), bytes_to_bits(struct_align), 0, ptr::null_mut(), empty_array, 0, ptr::null_mut(), unique_type_id) }) }) }; return metadata_stub; } fn fixed_vec_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, unique_type_id: UniqueTypeId, element_type: Ty<'tcx>, len: uint, span: Span) -> MetadataCreationResult { let element_type_metadata = type_metadata(cx, element_type, span); return_if_metadata_created_in_meantime!(cx, unique_type_id); let element_llvm_type = type_of::type_of(cx, element_type); let (element_type_size, element_type_align) = size_and_align_of(cx, element_llvm_type); let subrange = unsafe { llvm::LLVMDIBuilderGetOrCreateSubrange( DIB(cx), 0, len as i64) }; let subscripts = create_DIArray(DIB(cx), &[subrange]); let metadata = unsafe { llvm::LLVMDIBuilderCreateArrayType( DIB(cx), bytes_to_bits(element_type_size * (len as u64)), bytes_to_bits(element_type_align), element_type_metadata, subscripts) }; return MetadataCreationResult::new(metadata, false); } fn vec_slice_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, vec_type: Ty<'tcx>, element_type: Ty<'tcx>, unique_type_id: UniqueTypeId, span: Span) -> MetadataCreationResult { let data_ptr_type = ty::mk_ptr(cx.tcx(), ty::mt { ty: element_type, mutbl: ast::MutImmutable }); let element_type_metadata = type_metadata(cx, data_ptr_type, span); return_if_metadata_created_in_meantime!(cx, unique_type_id); let slice_llvm_type = type_of::type_of(cx, vec_type); let slice_type_name = compute_debuginfo_type_name(cx, vec_type, true); let member_llvm_types = slice_llvm_type.field_types(); assert!(slice_layout_is_correct(cx, member_llvm_types[], element_type)); let member_descriptions = [ MemberDescription { name: "data_ptr".to_string(), llvm_type: member_llvm_types[0], type_metadata: element_type_metadata, offset: ComputedMemberOffset, flags: FLAGS_NONE }, MemberDescription { name: "length".to_string(), llvm_type: member_llvm_types[1], type_metadata: type_metadata(cx, cx.tcx().types.uint, span), offset: ComputedMemberOffset, flags: FLAGS_NONE }, ]; assert!(member_descriptions.len() == member_llvm_types.len()); let loc = span_start(cx, span); let file_metadata = file_metadata(cx, loc.file.name[]); let metadata = composite_type_metadata(cx, slice_llvm_type, slice_type_name[], unique_type_id, &member_descriptions, UNKNOWN_SCOPE_METADATA, file_metadata, span); return MetadataCreationResult::new(metadata, false); fn slice_layout_is_correct<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, member_llvm_types: &[Type], element_type: Ty<'tcx>) -> bool { member_llvm_types.len() == 2 && member_llvm_types[0] == type_of::type_of(cx, element_type).ptr_to() && member_llvm_types[1] == cx.int_type() } } fn subroutine_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, unique_type_id: UniqueTypeId, signature: &ty::PolyFnSig<'tcx>, span: Span) -> MetadataCreationResult { let mut signature_metadata: Vec = Vec::with_capacity(signature.0.inputs.len() + 1); // return type signature_metadata.push(match signature.0.output { ty::FnConverging(ret_ty) => match ret_ty.sty { ty::ty_tup(ref tys) if tys.is_empty() => ptr::null_mut(), _ => type_metadata(cx, ret_ty, span) }, ty::FnDiverging => diverging_type_metadata(cx) }); // regular arguments for &argument_type in signature.0.inputs.iter() { signature_metadata.push(type_metadata(cx, argument_type, span)); } return_if_metadata_created_in_meantime!(cx, unique_type_id); return MetadataCreationResult::new( unsafe { llvm::LLVMDIBuilderCreateSubroutineType( DIB(cx), UNKNOWN_FILE_METADATA, create_DIArray(DIB(cx), signature_metadata[])) }, false); } // FIXME(1563) This is all a bit of a hack because 'trait pointer' is an ill- // defined concept. For the case of an actual trait pointer (i.e., Box, // &Trait), trait_object_type should be the whole thing (e.g, Box) and // trait_type should be the actual trait (e.g., Trait). Where the trait is part // of a DST struct, there is no trait_object_type and the results of this // function will be a little bit weird. fn trait_pointer_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, trait_type: Ty<'tcx>, trait_object_type: Option>, unique_type_id: UniqueTypeId) -> DIType { // The implementation provided here is a stub. It makes sure that the trait // type is assigned the correct name, size, namespace, and source location. // But it does not describe the trait's methods. let def_id = match trait_type.sty { ty::ty_trait(ref data) => data.principal_def_id(), _ => { let pp_type_name = ppaux::ty_to_string(cx.tcx(), trait_type); cx.sess().bug(format!("debuginfo: Unexpected trait-object type in \ trait_pointer_metadata(): {}", pp_type_name[])[]); } }; let trait_object_type = trait_object_type.unwrap_or(trait_type); let trait_type_name = compute_debuginfo_type_name(cx, trait_object_type, false); let (containing_scope, _) = get_namespace_and_span_for_item(cx, def_id); let trait_llvm_type = type_of::type_of(cx, trait_object_type); composite_type_metadata(cx, trait_llvm_type, trait_type_name[], unique_type_id, &[], containing_scope, UNKNOWN_FILE_METADATA, codemap::DUMMY_SP) } fn type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, t: Ty<'tcx>, usage_site_span: Span) -> DIType { // Get the unique type id of this type. let unique_type_id = { let mut type_map = debug_context(cx).type_map.borrow_mut(); // First, try to find the type in TypeMap. If we have seen it before, we // can exit early here. match type_map.find_metadata_for_type(t) { Some(metadata) => { return metadata; }, None => { // The Ty is not in the TypeMap but maybe we have already seen // an equivalent type (e.g. only differing in region arguments). // In order to find out, generate the unique type id and look // that up. let unique_type_id = type_map.get_unique_type_id_of_type(cx, t); match type_map.find_metadata_for_unique_id(unique_type_id) { Some(metadata) => { // There is already an equivalent type in the TypeMap. // Register this Ty as an alias in the cache and // return the cached metadata. type_map.register_type_with_metadata(cx, t, metadata); return metadata; }, None => { // There really is no type metadata for this type, so // proceed by creating it. unique_type_id } } } } }; debug!("type_metadata: {}", t); let sty = &t.sty; let MetadataCreationResult { metadata, already_stored_in_typemap } = match *sty { ty::ty_bool | ty::ty_char | ty::ty_int(_) | ty::ty_uint(_) | ty::ty_float(_) => { MetadataCreationResult::new(basic_type_metadata(cx, t), false) } ty::ty_tup(ref elements) if elements.is_empty() => { MetadataCreationResult::new(basic_type_metadata(cx, t), false) } ty::ty_enum(def_id, _) => { prepare_enum_metadata(cx, t, def_id, unique_type_id, usage_site_span).finalize(cx) } ty::ty_vec(typ, Some(len)) => { fixed_vec_metadata(cx, unique_type_id, typ, len, usage_site_span) } // FIXME Can we do better than this for unsized vec/str fields? ty::ty_vec(typ, None) => fixed_vec_metadata(cx, unique_type_id, typ, 0, usage_site_span), ty::ty_str => fixed_vec_metadata(cx, unique_type_id, cx.tcx().types.i8, 0, usage_site_span), ty::ty_trait(..) => { MetadataCreationResult::new( trait_pointer_metadata(cx, t, None, unique_type_id), false) } ty::ty_uniq(ty) | ty::ty_ptr(ty::mt{ty, ..}) | ty::ty_rptr(_, ty::mt{ty, ..}) => { match ty.sty { ty::ty_vec(typ, None) => { vec_slice_metadata(cx, t, typ, unique_type_id, usage_site_span) } ty::ty_str => { vec_slice_metadata(cx, t, cx.tcx().types.u8, unique_type_id, usage_site_span) } ty::ty_trait(..) => { MetadataCreationResult::new( trait_pointer_metadata(cx, ty, Some(t), unique_type_id), false) } _ => { let pointee_metadata = type_metadata(cx, ty, usage_site_span); match debug_context(cx).type_map .borrow() .find_metadata_for_unique_id(unique_type_id) { Some(metadata) => return metadata, None => { /* proceed normally */ } }; MetadataCreationResult::new(pointer_type_metadata(cx, t, pointee_metadata), false) } } } ty::ty_bare_fn(_, ref barefnty) => { subroutine_type_metadata(cx, unique_type_id, &barefnty.sig, usage_site_span) } ty::ty_closure(ref closurety) => { subroutine_type_metadata(cx, unique_type_id, &closurety.sig, usage_site_span) } ty::ty_unboxed_closure(ref def_id, _, substs) => { let sig = cx.tcx().unboxed_closures.borrow() .get(def_id).unwrap().closure_type.sig.subst(cx.tcx(), substs); subroutine_type_metadata(cx, unique_type_id, &sig, usage_site_span) } ty::ty_struct(def_id, substs) => { prepare_struct_metadata(cx, t, def_id, substs, unique_type_id, usage_site_span).finalize(cx) } ty::ty_tup(ref elements) => { prepare_tuple_metadata(cx, t, elements[], unique_type_id, usage_site_span).finalize(cx) } _ => { cx.sess().bug(format!("debuginfo: unexpected type in type_metadata: {}", sty)[]) } }; { let mut type_map = debug_context(cx).type_map.borrow_mut(); if already_stored_in_typemap { // Also make sure that we already have a TypeMap entry entry for the unique type id. let metadata_for_uid = match type_map.find_metadata_for_unique_id(unique_type_id) { Some(metadata) => metadata, None => { let unique_type_id_str = type_map.get_unique_type_id_as_string(unique_type_id); let error_message = format!("Expected type metadata for unique \ type id '{}' to already be in \ the debuginfo::TypeMap but it \ was not. (Ty = {})", unique_type_id_str[], ppaux::ty_to_string(cx.tcx(), t)); cx.sess().span_bug(usage_site_span, error_message[]); } }; match type_map.find_metadata_for_type(t) { Some(metadata) => { if metadata != metadata_for_uid { let unique_type_id_str = type_map.get_unique_type_id_as_string(unique_type_id); let error_message = format!("Mismatch between Ty and \ UniqueTypeId maps in \ debuginfo::TypeMap. \ UniqueTypeId={}, Ty={}", unique_type_id_str[], ppaux::ty_to_string(cx.tcx(), t)); cx.sess().span_bug(usage_site_span, error_message[]); } } None => { type_map.register_type_with_metadata(cx, t, metadata); } } } else { type_map.register_type_with_metadata(cx, t, metadata); type_map.register_unique_id_with_metadata(cx, unique_type_id, metadata); } } metadata } struct MetadataCreationResult { metadata: DIType, already_stored_in_typemap: bool } impl MetadataCreationResult { fn new(metadata: DIType, already_stored_in_typemap: bool) -> MetadataCreationResult { MetadataCreationResult { metadata: metadata, already_stored_in_typemap: already_stored_in_typemap } } } #[deriving(Copy, PartialEq)] enum DebugLocation { KnownLocation { scope: DIScope, line: uint, col: uint }, UnknownLocation } impl DebugLocation { fn new(scope: DIScope, line: uint, col: uint) -> DebugLocation { KnownLocation { scope: scope, line: line, col: col, } } } fn set_debug_location(cx: &CrateContext, debug_location: DebugLocation) { if debug_location == debug_context(cx).current_debug_location.get() { return; } let metadata_node; match debug_location { KnownLocation { scope, line, .. } => { // Always set the column to zero like Clang and GCC let col = UNKNOWN_COLUMN_NUMBER; debug!("setting debug location to {} {}", line, col); let elements = [C_i32(cx, line as i32), C_i32(cx, col as i32), scope, ptr::null_mut()]; unsafe { metadata_node = llvm::LLVMMDNodeInContext(debug_context(cx).llcontext, elements.as_ptr(), elements.len() as c_uint); } } UnknownLocation => { debug!("clearing debug location "); metadata_node = ptr::null_mut(); } }; unsafe { llvm::LLVMSetCurrentDebugLocation(cx.raw_builder(), metadata_node); } debug_context(cx).current_debug_location.set(debug_location); } //=----------------------------------------------------------------------------- // Utility Functions //=----------------------------------------------------------------------------- fn contains_nodebug_attribute(attributes: &[ast::Attribute]) -> bool { attributes.iter().any(|attr| { let meta_item: &ast::MetaItem = &*attr.node.value; match meta_item.node { ast::MetaWord(ref value) => value.get() == "no_debug", _ => false } }) } /// Return codemap::Loc corresponding to the beginning of the span fn span_start(cx: &CrateContext, span: Span) -> codemap::Loc { cx.sess().codemap().lookup_char_pos(span.lo) } fn size_and_align_of(cx: &CrateContext, llvm_type: Type) -> (u64, u64) { (machine::llsize_of_alloc(cx, llvm_type), machine::llalign_of_min(cx, llvm_type) as u64) } fn bytes_to_bits(bytes: u64) -> u64 { bytes * 8 } #[inline] fn debug_context<'a, 'tcx>(cx: &'a CrateContext<'a, 'tcx>) -> &'a CrateDebugContext<'tcx> { let debug_context: &'a CrateDebugContext<'tcx> = cx.dbg_cx().as_ref().unwrap(); debug_context } #[inline] #[allow(non_snake_case)] fn DIB(cx: &CrateContext) -> DIBuilderRef { cx.dbg_cx().as_ref().unwrap().builder } fn fn_should_be_ignored(fcx: &FunctionContext) -> bool { match fcx.debug_context { FunctionDebugContext::RegularContext(_) => false, _ => true } } fn assert_type_for_node_id(cx: &CrateContext, node_id: ast::NodeId, error_reporting_span: Span) { if !cx.tcx().node_types.borrow().contains_key(&node_id) { cx.sess().span_bug(error_reporting_span, "debuginfo: Could not find type for node id!"); } } fn get_namespace_and_span_for_item(cx: &CrateContext, def_id: ast::DefId) -> (DIScope, Span) { let containing_scope = namespace_for_item(cx, def_id).scope; let definition_span = if def_id.krate == ast::LOCAL_CRATE { cx.tcx().map.span(def_id.node) } else { // For external items there is no span information codemap::DUMMY_SP }; (containing_scope, definition_span) } // This procedure builds the *scope map* for a given function, which maps any // given ast::NodeId in the function's AST to the correct DIScope metadata instance. // // This builder procedure walks the AST in execution order and keeps track of // what belongs to which scope, creating DIScope DIEs along the way, and // introducing *artificial* lexical scope descriptors where necessary. These // artificial scopes allow GDB to correctly handle name shadowing. fn create_scope_map(cx: &CrateContext, args: &[ast::Arg], fn_entry_block: &ast::Block, fn_metadata: DISubprogram, fn_ast_id: ast::NodeId) -> NodeMap { let mut scope_map = NodeMap::new(); let def_map = &cx.tcx().def_map; struct ScopeStackEntry { scope_metadata: DIScope, ident: Option } let mut scope_stack = vec!(ScopeStackEntry { scope_metadata: fn_metadata, ident: None }); scope_map.insert(fn_ast_id, fn_metadata); // Push argument identifiers onto the stack so arguments integrate nicely // with variable shadowing. for arg in args.iter() { pat_util::pat_bindings(def_map, &*arg.pat, |_, node_id, _, path1| { scope_stack.push(ScopeStackEntry { scope_metadata: fn_metadata, ident: Some(path1.node) }); scope_map.insert(node_id, fn_metadata); }) } // Clang creates a separate scope for function bodies, so let's do this too. with_new_scope(cx, fn_entry_block.span, &mut scope_stack, &mut scope_map, |cx, scope_stack, scope_map| { walk_block(cx, fn_entry_block, scope_stack, scope_map); }); return scope_map; // local helper functions for walking the AST. fn with_new_scope(cx: &CrateContext, scope_span: Span, scope_stack: &mut Vec , scope_map: &mut NodeMap, inner_walk: F) where F: FnOnce(&CrateContext, &mut Vec, &mut NodeMap), { // Create a new lexical scope and push it onto the stack let loc = cx.sess().codemap().lookup_char_pos(scope_span.lo); let file_metadata = file_metadata(cx, loc.file.name[]); let parent_scope = scope_stack.last().unwrap().scope_metadata; let scope_metadata = unsafe { llvm::LLVMDIBuilderCreateLexicalBlock( DIB(cx), parent_scope, file_metadata, loc.line as c_uint, loc.col.to_uint() as c_uint) }; scope_stack.push(ScopeStackEntry { scope_metadata: scope_metadata, ident: None }); inner_walk(cx, scope_stack, scope_map); // pop artificial scopes while scope_stack.last().unwrap().ident.is_some() { scope_stack.pop(); } if scope_stack.last().unwrap().scope_metadata != scope_metadata { cx.sess().span_bug(scope_span, "debuginfo: Inconsistency in scope management."); } scope_stack.pop(); } fn walk_block(cx: &CrateContext, block: &ast::Block, scope_stack: &mut Vec , scope_map: &mut NodeMap) { scope_map.insert(block.id, scope_stack.last().unwrap().scope_metadata); // The interesting things here are statements and the concluding expression. for statement in block.stmts.iter() { scope_map.insert(ast_util::stmt_id(&**statement), scope_stack.last().unwrap().scope_metadata); match statement.node { ast::StmtDecl(ref decl, _) => walk_decl(cx, &**decl, scope_stack, scope_map), ast::StmtExpr(ref exp, _) | ast::StmtSemi(ref exp, _) => walk_expr(cx, &**exp, scope_stack, scope_map), ast::StmtMac(..) => () // Ignore macros (which should be expanded anyway). } } for exp in block.expr.iter() { walk_expr(cx, &**exp, scope_stack, scope_map); } } fn walk_decl(cx: &CrateContext, decl: &ast::Decl, scope_stack: &mut Vec , scope_map: &mut NodeMap) { match *decl { codemap::Spanned { node: ast::DeclLocal(ref local), .. } => { scope_map.insert(local.id, scope_stack.last().unwrap().scope_metadata); walk_pattern(cx, &*local.pat, scope_stack, scope_map); for exp in local.init.iter() { walk_expr(cx, &**exp, scope_stack, scope_map); } } _ => () } } fn walk_pattern(cx: &CrateContext, pat: &ast::Pat, scope_stack: &mut Vec , scope_map: &mut NodeMap) { let def_map = &cx.tcx().def_map; // Unfortunately, we cannot just use pat_util::pat_bindings() or // ast_util::walk_pat() here because we have to visit *all* nodes in // order to put them into the scope map. The above functions don't do that. match pat.node { ast::PatIdent(_, ref path1, ref sub_pat_opt) => { // Check if this is a binding. If so we need to put it on the // scope stack and maybe introduce an artificial scope if pat_util::pat_is_binding(def_map, &*pat) { let ident = path1.node; // LLVM does not properly generate 'DW_AT_start_scope' fields // for variable DIEs. For this reason we have to introduce // an artificial scope at bindings whenever a variable with // the same name is declared in *any* parent scope. // // Otherwise the following error occurs: // // let x = 10; // // do_something(); // 'gdb print x' correctly prints 10 // // { // do_something(); // 'gdb print x' prints 0, because it // // already reads the uninitialized 'x' // // from the next line... // let x = 100; // do_something(); // 'gdb print x' correctly prints 100 // } // Is there already a binding with that name? // N.B.: this comparison must be UNhygienic... because // gdb knows nothing about the context, so any two // variables with the same name will cause the problem. let need_new_scope = scope_stack .iter() .any(|entry| entry.ident.iter().any(|i| i.name == ident.name)); if need_new_scope { // Create a new lexical scope and push it onto the stack let loc = cx.sess().codemap().lookup_char_pos(pat.span.lo); let file_metadata = file_metadata(cx, loc.file.name[]); let parent_scope = scope_stack.last().unwrap().scope_metadata; let scope_metadata = unsafe { llvm::LLVMDIBuilderCreateLexicalBlock( DIB(cx), parent_scope, file_metadata, loc.line as c_uint, loc.col.to_uint() as c_uint) }; scope_stack.push(ScopeStackEntry { scope_metadata: scope_metadata, ident: Some(ident) }); } else { // Push a new entry anyway so the name can be found let prev_metadata = scope_stack.last().unwrap().scope_metadata; scope_stack.push(ScopeStackEntry { scope_metadata: prev_metadata, ident: Some(ident) }); } } scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); for sub_pat in sub_pat_opt.iter() { walk_pattern(cx, &**sub_pat, scope_stack, scope_map); } } ast::PatWild(_) => { scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); } ast::PatEnum(_, ref sub_pats_opt) => { scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); for sub_pats in sub_pats_opt.iter() { for p in sub_pats.iter() { walk_pattern(cx, &**p, scope_stack, scope_map); } } } ast::PatStruct(_, ref field_pats, _) => { scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); for &codemap::Spanned { node: ast::FieldPat { pat: ref sub_pat, .. }, .. } in field_pats.iter() { walk_pattern(cx, &**sub_pat, scope_stack, scope_map); } } ast::PatTup(ref sub_pats) => { scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); for sub_pat in sub_pats.iter() { walk_pattern(cx, &**sub_pat, scope_stack, scope_map); } } ast::PatBox(ref sub_pat) | ast::PatRegion(ref sub_pat) => { scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); walk_pattern(cx, &**sub_pat, scope_stack, scope_map); } ast::PatLit(ref exp) => { scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); walk_expr(cx, &**exp, scope_stack, scope_map); } ast::PatRange(ref exp1, ref exp2) => { scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); walk_expr(cx, &**exp1, scope_stack, scope_map); walk_expr(cx, &**exp2, scope_stack, scope_map); } ast::PatVec(ref front_sub_pats, ref middle_sub_pats, ref back_sub_pats) => { scope_map.insert(pat.id, scope_stack.last().unwrap().scope_metadata); for sub_pat in front_sub_pats.iter() { walk_pattern(cx, &**sub_pat, scope_stack, scope_map); } for sub_pat in middle_sub_pats.iter() { walk_pattern(cx, &**sub_pat, scope_stack, scope_map); } for sub_pat in back_sub_pats.iter() { walk_pattern(cx, &**sub_pat, scope_stack, scope_map); } } ast::PatMac(_) => { cx.sess().span_bug(pat.span, "debuginfo::create_scope_map() - \ Found unexpanded macro."); } } } fn walk_expr(cx: &CrateContext, exp: &ast::Expr, scope_stack: &mut Vec , scope_map: &mut NodeMap) { scope_map.insert(exp.id, scope_stack.last().unwrap().scope_metadata); match exp.node { ast::ExprLit(_) | ast::ExprBreak(_) | ast::ExprAgain(_) | ast::ExprPath(_) => {} ast::ExprCast(ref sub_exp, _) | ast::ExprAddrOf(_, ref sub_exp) | ast::ExprField(ref sub_exp, _) | ast::ExprTupField(ref sub_exp, _) | ast::ExprParen(ref sub_exp) => walk_expr(cx, &**sub_exp, scope_stack, scope_map), ast::ExprBox(ref place, ref sub_expr) => { place.as_ref().map( |e| walk_expr(cx, &**e, scope_stack, scope_map)); walk_expr(cx, &**sub_expr, scope_stack, scope_map); } ast::ExprRet(ref exp_opt) => match *exp_opt { Some(ref sub_exp) => walk_expr(cx, &**sub_exp, scope_stack, scope_map), None => () }, ast::ExprUnary(_, ref sub_exp) => { walk_expr(cx, &**sub_exp, scope_stack, scope_map); } ast::ExprAssignOp(_, ref lhs, ref rhs) | ast::ExprIndex(ref lhs, ref rhs) | ast::ExprBinary(_, ref lhs, ref rhs) => { walk_expr(cx, &**lhs, scope_stack, scope_map); walk_expr(cx, &**rhs, scope_stack, scope_map); } ast::ExprRange(ref start, ref end) => { start.as_ref().map(|e| walk_expr(cx, &**e, scope_stack, scope_map)); end.as_ref().map(|e| walk_expr(cx, &**e, scope_stack, scope_map)); } ast::ExprVec(ref init_expressions) | ast::ExprTup(ref init_expressions) => { for ie in init_expressions.iter() { walk_expr(cx, &**ie, scope_stack, scope_map); } } ast::ExprAssign(ref sub_exp1, ref sub_exp2) | ast::ExprRepeat(ref sub_exp1, ref sub_exp2) => { walk_expr(cx, &**sub_exp1, scope_stack, scope_map); walk_expr(cx, &**sub_exp2, scope_stack, scope_map); } ast::ExprIf(ref cond_exp, ref then_block, ref opt_else_exp) => { walk_expr(cx, &**cond_exp, scope_stack, scope_map); with_new_scope(cx, then_block.span, scope_stack, scope_map, |cx, scope_stack, scope_map| { walk_block(cx, &**then_block, scope_stack, scope_map); }); match *opt_else_exp { Some(ref else_exp) => walk_expr(cx, &**else_exp, scope_stack, scope_map), _ => () } } ast::ExprIfLet(..) => { cx.sess().span_bug(exp.span, "debuginfo::create_scope_map() - \ Found unexpanded if-let."); } ast::ExprWhile(ref cond_exp, ref loop_body, _) => { walk_expr(cx, &**cond_exp, scope_stack, scope_map); with_new_scope(cx, loop_body.span, scope_stack, scope_map, |cx, scope_stack, scope_map| { walk_block(cx, &**loop_body, scope_stack, scope_map); }) } ast::ExprWhileLet(..) => { cx.sess().span_bug(exp.span, "debuginfo::create_scope_map() - \ Found unexpanded while-let."); } ast::ExprForLoop(ref pattern, ref head, ref body, _) => { walk_expr(cx, &**head, scope_stack, scope_map); with_new_scope(cx, exp.span, scope_stack, scope_map, |cx, scope_stack, scope_map| { scope_map.insert(exp.id, scope_stack.last() .unwrap() .scope_metadata); walk_pattern(cx, &**pattern, scope_stack, scope_map); walk_block(cx, &**body, scope_stack, scope_map); }) } ast::ExprMac(_) => { cx.sess().span_bug(exp.span, "debuginfo::create_scope_map() - \ Found unexpanded macro."); } ast::ExprLoop(ref block, _) | ast::ExprBlock(ref block) => { with_new_scope(cx, block.span, scope_stack, scope_map, |cx, scope_stack, scope_map| { walk_block(cx, &**block, scope_stack, scope_map); }) } ast::ExprClosure(_, _, ref decl, ref block) => { with_new_scope(cx, block.span, scope_stack, scope_map, |cx, scope_stack, scope_map| { for &ast::Arg { pat: ref pattern, .. } in decl.inputs.iter() { walk_pattern(cx, &**pattern, scope_stack, scope_map); } walk_block(cx, &**block, scope_stack, scope_map); }) } ast::ExprCall(ref fn_exp, ref args) => { walk_expr(cx, &**fn_exp, scope_stack, scope_map); for arg_exp in args.iter() { walk_expr(cx, &**arg_exp, scope_stack, scope_map); } } ast::ExprMethodCall(_, _, ref args) => { for arg_exp in args.iter() { walk_expr(cx, &**arg_exp, scope_stack, scope_map); } } ast::ExprMatch(ref discriminant_exp, ref arms, _) => { walk_expr(cx, &**discriminant_exp, scope_stack, scope_map); // For each arm we have to first walk the pattern as these might // introduce new artificial scopes. It should be sufficient to // walk only one pattern per arm, as they all must contain the // same binding names. for arm_ref in arms.iter() { let arm_span = arm_ref.pats[0].span; with_new_scope(cx, arm_span, scope_stack, scope_map, |cx, scope_stack, scope_map| { for pat in arm_ref.pats.iter() { walk_pattern(cx, &**pat, scope_stack, scope_map); } for guard_exp in arm_ref.guard.iter() { walk_expr(cx, &**guard_exp, scope_stack, scope_map) } walk_expr(cx, &*arm_ref.body, scope_stack, scope_map); }) } } ast::ExprStruct(_, ref fields, ref base_exp) => { for &ast::Field { expr: ref exp, .. } in fields.iter() { walk_expr(cx, &**exp, scope_stack, scope_map); } match *base_exp { Some(ref exp) => walk_expr(cx, &**exp, scope_stack, scope_map), None => () } } ast::ExprInlineAsm(ast::InlineAsm { ref inputs, ref outputs, .. }) => { // inputs, outputs: Vec<(String, P)> for &(_, ref exp) in inputs.iter() { walk_expr(cx, &**exp, scope_stack, scope_map); } for &(_, ref exp, _) in outputs.iter() { walk_expr(cx, &**exp, scope_stack, scope_map); } } } } } //=----------------------------------------------------------------------------- // Type Names for Debug Info //=----------------------------------------------------------------------------- // Compute the name of the type as it should be stored in debuginfo. Does not do // any caching, i.e. calling the function twice with the same type will also do // the work twice. The `qualified` parameter only affects the first level of the // type name, further levels (i.e. type parameters) are always fully qualified. fn compute_debuginfo_type_name<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, t: Ty<'tcx>, qualified: bool) -> String { let mut result = String::with_capacity(64); push_debuginfo_type_name(cx, t, qualified, &mut result); result } // Pushes the name of the type as it should be stored in debuginfo on the // `output` String. See also compute_debuginfo_type_name(). fn push_debuginfo_type_name<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, t: Ty<'tcx>, qualified: bool, output: &mut String) { match t.sty { ty::ty_bool => output.push_str("bool"), ty::ty_char => output.push_str("char"), ty::ty_str => output.push_str("str"), ty::ty_int(ast::TyI) => output.push_str("int"), ty::ty_int(ast::TyI8) => output.push_str("i8"), ty::ty_int(ast::TyI16) => output.push_str("i16"), ty::ty_int(ast::TyI32) => output.push_str("i32"), ty::ty_int(ast::TyI64) => output.push_str("i64"), ty::ty_uint(ast::TyU) => output.push_str("uint"), ty::ty_uint(ast::TyU8) => output.push_str("u8"), ty::ty_uint(ast::TyU16) => output.push_str("u16"), ty::ty_uint(ast::TyU32) => output.push_str("u32"), ty::ty_uint(ast::TyU64) => output.push_str("u64"), ty::ty_float(ast::TyF32) => output.push_str("f32"), ty::ty_float(ast::TyF64) => output.push_str("f64"), ty::ty_struct(def_id, substs) | ty::ty_enum(def_id, substs) => { push_item_name(cx, def_id, qualified, output); push_type_params(cx, substs, output); }, ty::ty_tup(ref component_types) => { output.push('('); for &component_type in component_types.iter() { push_debuginfo_type_name(cx, component_type, true, output); output.push_str(", "); } if !component_types.is_empty() { output.pop(); output.pop(); } output.push(')'); }, ty::ty_uniq(inner_type) => { output.push_str("Box<"); push_debuginfo_type_name(cx, inner_type, true, output); output.push('>'); }, ty::ty_ptr(ty::mt { ty: inner_type, mutbl } ) => { output.push('*'); match mutbl { ast::MutImmutable => output.push_str("const "), ast::MutMutable => output.push_str("mut "), } push_debuginfo_type_name(cx, inner_type, true, output); }, ty::ty_rptr(_, ty::mt { ty: inner_type, mutbl }) => { output.push('&'); if mutbl == ast::MutMutable { output.push_str("mut "); } push_debuginfo_type_name(cx, inner_type, true, output); }, ty::ty_vec(inner_type, optional_length) => { output.push('['); push_debuginfo_type_name(cx, inner_type, true, output); match optional_length { Some(len) => { output.push_str(format!("; {}", len).as_slice()); } None => { /* nothing to do */ } }; output.push(']'); }, ty::ty_trait(ref trait_data) => { push_item_name(cx, trait_data.principal_def_id(), false, output); push_type_params(cx, trait_data.principal.0.substs, output); }, ty::ty_bare_fn(_, &ty::BareFnTy{ unsafety, abi, ref sig } ) => { if unsafety == ast::Unsafety::Unsafe { output.push_str("unsafe "); } if abi != ::syntax::abi::Rust { output.push_str("extern \""); output.push_str(abi.name()); output.push_str("\" "); } output.push_str("fn("); if sig.0.inputs.len() > 0 { for ¶meter_type in sig.0.inputs.iter() { push_debuginfo_type_name(cx, parameter_type, true, output); output.push_str(", "); } output.pop(); output.pop(); } if sig.0.variadic { if sig.0.inputs.len() > 0 { output.push_str(", ..."); } else { output.push_str("..."); } } output.push(')'); match sig.0.output { ty::FnConverging(result_type) if ty::type_is_nil(result_type) => {} ty::FnConverging(result_type) => { output.push_str(" -> "); push_debuginfo_type_name(cx, result_type, true, output); } ty::FnDiverging => { output.push_str(" -> !"); } } }, ty::ty_closure(box ty::ClosureTy { unsafety, onceness, store, ref sig, .. // omitting bounds ... }) => { if unsafety == ast::Unsafety::Unsafe { output.push_str("unsafe "); } if onceness == ast::Once { output.push_str("once "); } let param_list_closing_char; match store { ty::UniqTraitStore => { output.push_str("proc("); param_list_closing_char = ')'; } ty::RegionTraitStore(_, ast::MutMutable) => { output.push_str("&mut|"); param_list_closing_char = '|'; } ty::RegionTraitStore(_, ast::MutImmutable) => { output.push_str("&|"); param_list_closing_char = '|'; } }; if sig.0.inputs.len() > 0 { for ¶meter_type in sig.0.inputs.iter() { push_debuginfo_type_name(cx, parameter_type, true, output); output.push_str(", "); } output.pop(); output.pop(); } if sig.0.variadic { if sig.0.inputs.len() > 0 { output.push_str(", ..."); } else { output.push_str("..."); } } output.push(param_list_closing_char); match sig.0.output { ty::FnConverging(result_type) if ty::type_is_nil(result_type) => {} ty::FnConverging(result_type) => { output.push_str(" -> "); push_debuginfo_type_name(cx, result_type, true, output); } ty::FnDiverging => { output.push_str(" -> !"); } } }, ty::ty_unboxed_closure(..) => { output.push_str("closure"); } ty::ty_err | ty::ty_infer(_) | ty::ty_open(_) | ty::ty_projection(..) | ty::ty_param(_) => { cx.sess().bug(format!("debuginfo: Trying to create type name for \ unexpected type: {}", ppaux::ty_to_string(cx.tcx(), t))[]); } } fn push_item_name(cx: &CrateContext, def_id: ast::DefId, qualified: bool, output: &mut String) { ty::with_path(cx.tcx(), def_id, |mut path| { if qualified { if def_id.krate == ast::LOCAL_CRATE { output.push_str(crate_root_namespace(cx)); output.push_str("::"); } let mut path_element_count = 0u; for path_element in path { let name = token::get_name(path_element.name()); output.push_str(name.get()); output.push_str("::"); path_element_count += 1; } if path_element_count == 0 { cx.sess().bug("debuginfo: Encountered empty item path!"); } output.pop(); output.pop(); } else { let name = token::get_name(path.last() .expect("debuginfo: Empty item path?") .name()); output.push_str(name.get()); } }); } // Pushes the type parameters in the given `Substs` to the output string. // This ignores region parameters, since they can't reliably be // reconstructed for items from non-local crates. For local crates, this // would be possible but with inlining and LTO we have to use the least // common denominator - otherwise we would run into conflicts. fn push_type_params<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, substs: &subst::Substs<'tcx>, output: &mut String) { if substs.types.is_empty() { return; } output.push('<'); for &type_parameter in substs.types.iter() { push_debuginfo_type_name(cx, type_parameter, true, output); output.push_str(", "); } output.pop(); output.pop(); output.push('>'); } } //=----------------------------------------------------------------------------- // Namespace Handling //=----------------------------------------------------------------------------- struct NamespaceTreeNode { name: ast::Name, scope: DIScope, parent: Option>, } impl NamespaceTreeNode { fn mangled_name_of_contained_item(&self, item_name: &str) -> String { fn fill_nested(node: &NamespaceTreeNode, output: &mut String) { match node.parent { Some(ref parent) => fill_nested(&*parent.upgrade().unwrap(), output), None => {} } let string = token::get_name(node.name); output.push_str(format!("{}", string.get().len())[]); output.push_str(string.get()); } let mut name = String::from_str("_ZN"); fill_nested(self, &mut name); name.push_str(format!("{}", item_name.len())[]); name.push_str(item_name); name.push('E'); name } } fn crate_root_namespace<'a>(cx: &'a CrateContext) -> &'a str { cx.link_meta().crate_name[] } fn namespace_for_item(cx: &CrateContext, def_id: ast::DefId) -> Rc { ty::with_path(cx.tcx(), def_id, |path| { // prepend crate name if not already present let krate = if def_id.krate == ast::LOCAL_CRATE { let crate_namespace_ident = token::str_to_ident(crate_root_namespace(cx)); Some(ast_map::PathMod(crate_namespace_ident.name)) } else { None }; let mut path = krate.into_iter().chain(path).peekable(); let mut current_key = Vec::new(); let mut parent_node: Option> = None; // Create/Lookup namespace for each element of the path. loop { // Emulate a for loop so we can use peek below. let path_element = match path.next() { Some(e) => e, None => break }; // Ignore the name of the item (the last path element). if path.peek().is_none() { break; } let name = path_element.name(); current_key.push(name); let existing_node = debug_context(cx).namespace_map.borrow() .get(¤t_key).cloned(); let current_node = match existing_node { Some(existing_node) => existing_node, None => { // create and insert let parent_scope = match parent_node { Some(ref node) => node.scope, None => ptr::null_mut() }; let namespace_name = token::get_name(name); let scope = namespace_name.get().with_c_str(|namespace_name| { unsafe { llvm::LLVMDIBuilderCreateNameSpace( DIB(cx), parent_scope, namespace_name, // cannot reconstruct file ... ptr::null_mut(), // ... or line information, but that's not so important. 0) } }); let node = Rc::new(NamespaceTreeNode { name: name, scope: scope, parent: parent_node.map(|parent| parent.downgrade()), }); debug_context(cx).namespace_map.borrow_mut() .insert(current_key.clone(), node.clone()); node } }; parent_node = Some(current_node); } match parent_node { Some(node) => node, None => { cx.sess().bug(format!("debuginfo::namespace_for_item(): \ path too short for {}", def_id)[]); } } }) } //=----------------------------------------------------------------------------- // .debug_gdb_scripts binary section //=----------------------------------------------------------------------------- /// Inserts a side-effect free instruction sequence that makes sure that the /// .debug_gdb_scripts global is referenced, so it isn't removed by the linker. pub fn insert_reference_to_gdb_debug_scripts_section_global(ccx: &CrateContext) { if needs_gdb_debug_scripts_section(ccx) { let empty = b"".to_c_str(); let gdb_debug_scripts_section_global = get_or_insert_gdb_debug_scripts_section_global(ccx); unsafe { let volative_load_instruction = llvm::LLVMBuildLoad(ccx.raw_builder(), gdb_debug_scripts_section_global, empty.as_ptr()); llvm::LLVMSetVolatile(volative_load_instruction, llvm::True); } } } /// Allocates the global variable responsible for the .debug_gdb_scripts binary /// section. fn get_or_insert_gdb_debug_scripts_section_global(ccx: &CrateContext) -> llvm::ValueRef { let section_var_name = b"__rustc_debug_gdb_scripts_section__".to_c_str(); let section_var = unsafe { llvm::LLVMGetNamedGlobal(ccx.llmod(), section_var_name.as_ptr()) }; if section_var == ptr::null_mut() { let section_name = b".debug_gdb_scripts".to_c_str(); let section_contents = b"\x01gdb_load_rust_pretty_printers.py\0"; unsafe { let llvm_type = Type::array(&Type::i8(ccx), section_contents.len() as u64); let section_var = llvm::LLVMAddGlobal(ccx.llmod(), llvm_type.to_ref(), section_var_name.as_ptr()); llvm::LLVMSetSection(section_var, section_name.as_ptr()); llvm::LLVMSetInitializer(section_var, C_bytes(ccx, section_contents)); llvm::LLVMSetGlobalConstant(section_var, llvm::True); llvm::LLVMSetUnnamedAddr(section_var, llvm::True); llvm::SetLinkage(section_var, llvm::Linkage::LinkOnceODRLinkage); // This should make sure that the whole section is not larger than // the string it contains. Otherwise we get a warning from GDB. llvm::LLVMSetAlignment(section_var, 1); section_var } } else { section_var } } fn needs_gdb_debug_scripts_section(ccx: &CrateContext) -> bool { let omit_gdb_pretty_printer_section = attr::contains_name(ccx.tcx() .map .krate() .attrs .as_slice(), "omit_gdb_pretty_printer_section"); !omit_gdb_pretty_printer_section && !ccx.sess().target.target.options.is_like_osx && !ccx.sess().target.target.options.is_like_windows && ccx.sess().opts.debuginfo != NoDebugInfo }