// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use core::prelude::*; use back::abi; use back::link::{mangle_internal_name_by_path_and_seq}; use lib::llvm::{llvm, ValueRef}; use middle::moves; use middle::trans::base::*; use middle::trans::build::*; use middle::trans::callee; use middle::trans::common::*; use middle::trans::datum::{Datum, INIT, ByRef, ZeroMem}; use middle::trans::expr; use middle::trans::glue; use middle::trans::machine; use middle::trans::type_of::*; use middle::ty; use util::ppaux::ty_to_str; use core::str; use core::vec; use syntax::ast; use syntax::ast_map::path_name; use syntax::ast_util; use syntax::parse::token::special_idents; // ___Good to know (tm)__________________________________________________ // // The layout of a closure environment in memory is // roughly as follows: // // struct rust_opaque_box { // see rust_internal.h // unsigned ref_count; // only used for @fn() // type_desc *tydesc; // describes closure_data struct // rust_opaque_box *prev; // (used internally by memory alloc) // rust_opaque_box *next; // (used internally by memory alloc) // struct closure_data { // type_desc *bound_tdescs[]; // bound descriptors // struct { // upvar1_t upvar1; // ... // upvarN_t upvarN; // } bound_data; // } // }; // // Note that the closure is itself a rust_opaque_box. This is true // even for ~fn and &fn, because we wish to keep binary compatibility // between all kinds of closures. The allocation strategy for this // closure depends on the closure type. For a sendfn, the closure // (and the referenced type descriptors) will be allocated in the // exchange heap. For a fn, the closure is allocated in the task heap // and is reference counted. For a block, the closure is allocated on // the stack. // // ## Opaque closures and the embedded type descriptor ## // // One interesting part of closures is that they encapsulate the data // that they close over. So when I have a ptr to a closure, I do not // know how many type descriptors it contains nor what upvars are // captured within. That means I do not know precisely how big it is // nor where its fields are located. This is called an "opaque // closure". // // Typically an opaque closure suffices because we only manipulate it // by ptr. The routine common::T_opaque_box_ptr() returns an // appropriate type for such an opaque closure; it allows access to // the box fields, but not the closure_data itself. // // But sometimes, such as when cloning or freeing a closure, we need // to know the full information. That is where the type descriptor // that defines the closure comes in handy. We can use its take and // drop glue functions to allocate/free data as needed. // // ## Subtleties concerning alignment ## // // It is important that we be able to locate the closure data *without // knowing the kind of data that is being bound*. This can be tricky // because the alignment requirements of the bound data affects the // alignment requires of the closure_data struct as a whole. However, // right now this is a non-issue in any case, because the size of the // rust_opaque_box header is always a mutiple of 16-bytes, which is // the maximum alignment requirement we ever have to worry about. // // The only reason alignment matters is that, in order to learn what data // is bound, we would normally first load the type descriptors: but their // location is ultimately depend on their content! There is, however, a // workaround. We can load the tydesc from the rust_opaque_box, which // describes the closure_data struct and has self-contained derived type // descriptors, and read the alignment from there. It's just annoying to // do. Hopefully should this ever become an issue we'll have monomorphized // and type descriptors will all be a bad dream. // // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ pub enum EnvAction { /// Copy the value from this llvm ValueRef into the environment. EnvCopy, /// Move the value from this llvm ValueRef into the environment. EnvMove, /// Access by reference (used for stack closures). EnvRef } pub struct EnvValue { action: EnvAction, datum: Datum } pub impl EnvAction { fn to_str(&self) -> ~str { match *self { EnvCopy => ~"EnvCopy", EnvMove => ~"EnvMove", EnvRef => ~"EnvRef" } } } pub impl EnvValue { fn to_str(&self, ccx: @CrateContext) -> ~str { fmt!("%s(%s)", self.action.to_str(), self.datum.to_str(ccx)) } } pub fn mk_tuplified_uniq_cbox_ty(tcx: ty::ctxt, cdata_ty: ty::t) -> ty::t { let cbox_ty = tuplify_box_ty(tcx, cdata_ty); return ty::mk_imm_uniq(tcx, cbox_ty); } // Given a closure ty, emits a corresponding tuple ty pub fn mk_closure_tys(tcx: ty::ctxt, bound_values: &[EnvValue]) -> ty::t { // determine the types of the values in the env. Note that this // is the actual types that will be stored in the map, not the // logical types as the user sees them, so by-ref upvars must be // converted to ptrs. let bound_tys = bound_values.map(|bv| { match bv.action { EnvCopy | EnvMove => bv.datum.ty, EnvRef => ty::mk_mut_ptr(tcx, bv.datum.ty) } }); let cdata_ty = ty::mk_tup(tcx, bound_tys); debug!("cdata_ty=%s", ty_to_str(tcx, cdata_ty)); return cdata_ty; } pub fn allocate_cbox(bcx: block, sigil: ast::Sigil, cdata_ty: ty::t) -> Result { let _icx = bcx.insn_ctxt("closure::allocate_cbox"); let ccx = bcx.ccx(), tcx = ccx.tcx; fn nuke_ref_count(bcx: block, llbox: ValueRef) { let _icx = bcx.insn_ctxt("closure::nuke_ref_count"); // Initialize ref count to arbitrary value for debugging: let ccx = bcx.ccx(); let llbox = PointerCast(bcx, llbox, T_opaque_box_ptr(ccx)); let ref_cnt = GEPi(bcx, llbox, [0u, abi::box_field_refcnt]); let rc = C_int(ccx, 0x12345678); Store(bcx, rc, ref_cnt); } // Allocate and initialize the box: match sigil { ast::ManagedSigil => { malloc_raw(bcx, cdata_ty, heap_managed) } ast::OwnedSigil => { malloc_raw(bcx, cdata_ty, heap_for_unique(bcx, cdata_ty)) } ast::BorrowedSigil => { let cbox_ty = tuplify_box_ty(tcx, cdata_ty); let llbox = alloc_ty(bcx, cbox_ty); nuke_ref_count(bcx, llbox); rslt(bcx, llbox) } } } pub struct ClosureResult { llbox: ValueRef, // llvalue of ptr to closure cdata_ty: ty::t, // type of the closure data bcx: block // final bcx } // Given a block context and a list of tydescs and values to bind // construct a closure out of them. If copying is true, it is a // heap allocated closure that copies the upvars into environment. // Otherwise, it is stack allocated and copies pointers to the upvars. pub fn store_environment(bcx: block, bound_values: ~[EnvValue], sigil: ast::Sigil) -> ClosureResult { let _icx = bcx.insn_ctxt("closure::store_environment"); let ccx = bcx.ccx(), tcx = ccx.tcx; // compute the shape of the closure let cdata_ty = mk_closure_tys(tcx, bound_values); // allocate closure in the heap let Result {bcx: bcx, val: llbox} = allocate_cbox(bcx, sigil, cdata_ty); // cbox_ty has the form of a tuple: (a, b, c) we want a ptr to a // tuple. This could be a ptr in uniq or a box or on stack, // whatever. let cbox_ty = tuplify_box_ty(tcx, cdata_ty); let cboxptr_ty = ty::mk_ptr(tcx, ty::mt {ty:cbox_ty, mutbl:ast::m_imm}); let llbox = PointerCast(bcx, llbox, type_of(ccx, cboxptr_ty)); debug!("tuplify_box_ty = %s", ty_to_str(tcx, cbox_ty)); // Copy expr values into boxed bindings. let mut bcx = bcx; for vec::eachi(bound_values) |i, bv| { debug!("Copy %s into closure", bv.to_str(ccx)); if ccx.sess.asm_comments() { add_comment(bcx, fmt!("Copy %s into closure", bv.to_str(ccx))); } let bound_data = GEPi(bcx, llbox, [0u, abi::box_field_body, i]); match bv.action { EnvCopy => { bcx = bv.datum.copy_to(bcx, INIT, bound_data); } EnvMove => { bcx = bv.datum.move_to(bcx, INIT, bound_data); } EnvRef => { Store(bcx, bv.datum.to_ref_llval(bcx), bound_data); } } } ClosureResult { llbox: llbox, cdata_ty: cdata_ty, bcx: bcx } } // Given a context and a list of upvars, build a closure. This just // collects the upvars and packages them up for store_environment. pub fn build_closure(bcx0: block, cap_vars: &[moves::CaptureVar], sigil: ast::Sigil, include_ret_handle: Option) -> ClosureResult { let _icx = bcx0.insn_ctxt("closure::build_closure"); // If we need to, package up the iterator body to call let bcx = bcx0; // Package up the captured upvars let mut env_vals = ~[]; for cap_vars.each |cap_var| { debug!("Building closure: captured variable %?", *cap_var); let datum = expr::trans_local_var(bcx, cap_var.def); match cap_var.mode { moves::CapRef => { assert_eq!(sigil, ast::BorrowedSigil); env_vals.push(EnvValue {action: EnvRef, datum: datum}); } moves::CapCopy => { env_vals.push(EnvValue {action: EnvCopy, datum: datum}); } moves::CapMove => { env_vals.push(EnvValue {action: EnvMove, datum: datum}); } } } // If this is a `for` loop body, add two special environment // variables: for include_ret_handle.each |flagptr| { // Flag indicating we have returned (a by-ref bool): let flag_datum = Datum {val: *flagptr, ty: ty::mk_bool(), mode: ByRef(ZeroMem)}; env_vals.push(EnvValue {action: EnvRef, datum: flag_datum}); // Return value (we just pass a by-ref () and cast it later to // the right thing): let ret_true = match bcx.fcx.loop_ret { Some((_, retptr)) => retptr, None => bcx.fcx.llretptr.get() }; let ret_casted = PointerCast(bcx, ret_true, T_ptr(T_nil())); let ret_datum = Datum {val: ret_casted, ty: ty::mk_nil(), mode: ByRef(ZeroMem)}; env_vals.push(EnvValue {action: EnvRef, datum: ret_datum}); } return store_environment(bcx, env_vals, sigil); } // Given an enclosing block context, a new function context, a closure type, // and a list of upvars, generate code to load and populate the environment // with the upvars and type descriptors. pub fn load_environment(fcx: fn_ctxt, cdata_ty: ty::t, cap_vars: &[moves::CaptureVar], load_ret_handle: bool, sigil: ast::Sigil) { let _icx = fcx.insn_ctxt("closure::load_environment"); let llloadenv = match fcx.llloadenv { Some(ll) => ll, None => { let ll = str::as_c_str("load_env", |buf| unsafe { llvm::LLVMAppendBasicBlock(fcx.llfn, buf) }); fcx.llloadenv = Some(ll); ll } }; let bcx = raw_block(fcx, false, llloadenv); // Load a pointer to the closure data, skipping over the box header: let llcdata = opaque_box_body(bcx, cdata_ty, fcx.llenv); // Populate the upvars from the environment. let mut i = 0u; for cap_vars.each |cap_var| { let mut upvarptr = GEPi(bcx, llcdata, [0u, i]); match sigil { ast::BorrowedSigil => { upvarptr = Load(bcx, upvarptr); } ast::ManagedSigil | ast::OwnedSigil => {} } let def_id = ast_util::def_id_of_def(cap_var.def); fcx.llupvars.insert(def_id.node, upvarptr); i += 1u; } if load_ret_handle { let flagptr = Load(bcx, GEPi(bcx, llcdata, [0u, i])); let retptr = Load(bcx, GEPi(bcx, llcdata, [0u, i+1u])); fcx.loop_ret = Some((flagptr, retptr)); } } pub fn trans_expr_fn(bcx: block, sigil: ast::Sigil, decl: &ast::fn_decl, body: &ast::blk, outer_id: ast::node_id, user_id: ast::node_id, is_loop_body: Option>, dest: expr::Dest) -> block { /*! * * Translates the body of a closure expression. * * - `sigil` * - `decl` * - `body` * - `outer_id`: The id of the closure expression with the correct * type. This is usually the same as as `user_id`, but in the * case of a `for` loop, the `outer_id` will have the return * type of boolean, and the `user_id` will have the return type * of `nil`. * - `user_id`: The id of the closure as the user expressed it. Generally the same as `outer_id` * - `cap_clause`: information about captured variables, if any. * - `is_loop_body`: `Some()` if this is part of a `for` loop. * - `dest`: where to write the closure value, which must be a (fn ptr, env) pair */ let _icx = bcx.insn_ctxt("closure::trans_expr_fn"); let dest_addr = match dest { expr::SaveIn(p) => p, expr::Ignore => { return bcx; // closure construction is non-side-effecting } }; let ccx = bcx.ccx(); let fty = node_id_type(bcx, outer_id); let llfnty = type_of_fn_from_ty(ccx, fty); let sub_path = vec::append_one(/*bad*/copy bcx.fcx.path, path_name(special_idents::anon)); // XXX: Bad copy. let s = mangle_internal_name_by_path_and_seq(ccx, copy sub_path, "expr_fn"); let llfn = decl_internal_cdecl_fn(ccx.llmod, s, llfnty); // Always mark inline if this is a loop body. This is important for // performance on many programs with tight loops. if is_loop_body.is_some() { set_always_inline(llfn); } else { // Can't hurt. set_inline_hint(llfn); } let real_return_type = if is_loop_body.is_some() { ty::mk_bool() } else { ty::ty_fn_ret(fty) }; let Result {bcx: bcx, val: closure} = match sigil { ast::BorrowedSigil | ast::ManagedSigil | ast::OwnedSigil => { let cap_vars = ccx.maps.capture_map.get_copy(&user_id); let ret_handle = match is_loop_body {Some(x) => x, None => None}; let ClosureResult {llbox, cdata_ty, bcx} = build_closure(bcx, cap_vars, sigil, ret_handle); trans_closure(ccx, sub_path, decl, body, llfn, no_self, /*bad*/ copy bcx.fcx.param_substs, user_id, None, [], real_return_type, |fcx| load_environment(fcx, cdata_ty, cap_vars, ret_handle.is_some(), sigil), |bcx| { if is_loop_body.is_some() { Store(bcx, C_bool(true), bcx.fcx.llretptr.get()); } }); rslt(bcx, llbox) } }; fill_fn_pair(bcx, dest_addr, llfn, closure); return bcx; } pub fn make_closure_glue( cx: block, v: ValueRef, t: ty::t, glue_fn: @fn(block, v: ValueRef, t: ty::t) -> block) -> block { let _icx = cx.insn_ctxt("closure::make_closure_glue"); let bcx = cx; let tcx = cx.tcx(); let sigil = ty::ty_closure_sigil(t); match sigil { ast::BorrowedSigil => bcx, ast::OwnedSigil | ast::ManagedSigil => { let box_cell_v = GEPi(cx, v, [0u, abi::fn_field_box]); let box_ptr_v = Load(cx, box_cell_v); do with_cond(cx, IsNotNull(cx, box_ptr_v)) |bcx| { let closure_ty = ty::mk_opaque_closure_ptr(tcx, sigil); glue_fn(bcx, box_cell_v, closure_ty) } } } } pub fn make_opaque_cbox_take_glue( bcx: block, sigil: ast::Sigil, cboxptr: ValueRef) // ptr to ptr to the opaque closure -> block { // Easy cases: let _icx = bcx.insn_ctxt("closure::make_opaque_cbox_take_glue"); match sigil { ast::BorrowedSigil => { return bcx; } ast::ManagedSigil => { glue::incr_refcnt_of_boxed(bcx, Load(bcx, cboxptr)); return bcx; } ast::OwnedSigil => { /* hard case: fallthrough to code below */ } } // ~fn requires a deep copy. let ccx = bcx.ccx(), tcx = ccx.tcx; let llopaquecboxty = T_opaque_box_ptr(ccx); let cbox_in = Load(bcx, cboxptr); do with_cond(bcx, IsNotNull(bcx, cbox_in)) |bcx| { // Load the size from the type descr found in the cbox let cbox_in = PointerCast(bcx, cbox_in, llopaquecboxty); let tydescptr = GEPi(bcx, cbox_in, [0u, abi::box_field_tydesc]); let tydesc = Load(bcx, tydescptr); let tydesc = PointerCast(bcx, tydesc, T_ptr(ccx.tydesc_type)); let sz = Load(bcx, GEPi(bcx, tydesc, [0u, abi::tydesc_field_size])); // Adjust sz to account for the rust_opaque_box header fields let sz = Add(bcx, sz, machine::llsize_of(ccx, T_box_header(ccx))); // Allocate memory, update original ptr, and copy existing data let opaque_tydesc = PointerCast(bcx, tydesc, T_ptr(T_i8())); let rval = alloca(bcx, T_ptr(T_i8())); let bcx = callee::trans_lang_call( bcx, bcx.tcx().lang_items.exchange_malloc_fn(), [opaque_tydesc, sz], expr::SaveIn(rval)); let cbox_out = PointerCast(bcx, Load(bcx, rval), llopaquecboxty); call_memcpy(bcx, cbox_out, cbox_in, sz, 1); Store(bcx, cbox_out, cboxptr); // Take the (deeply cloned) type descriptor let tydesc_out = GEPi(bcx, cbox_out, [0u, abi::box_field_tydesc]); let bcx = glue::take_ty(bcx, tydesc_out, ty::mk_type(tcx)); // Take the data in the tuple let cdata_out = GEPi(bcx, cbox_out, [0u, abi::box_field_body]); glue::call_tydesc_glue_full(bcx, cdata_out, tydesc, abi::tydesc_field_take_glue, None); bcx } } pub fn make_opaque_cbox_drop_glue( bcx: block, sigil: ast::Sigil, cboxptr: ValueRef) // ptr to the opaque closure -> block { let _icx = bcx.insn_ctxt("closure::make_opaque_cbox_drop_glue"); match sigil { ast::BorrowedSigil => bcx, ast::ManagedSigil => { glue::decr_refcnt_maybe_free( bcx, Load(bcx, cboxptr), ty::mk_opaque_closure_ptr(bcx.tcx(), sigil)) } ast::OwnedSigil => { glue::free_ty( bcx, cboxptr, ty::mk_opaque_closure_ptr(bcx.tcx(), sigil)) } } } pub fn make_opaque_cbox_free_glue( bcx: block, sigil: ast::Sigil, cbox: ValueRef) // ptr to ptr to the opaque closure -> block { let _icx = bcx.insn_ctxt("closure::make_opaque_cbox_free_glue"); match sigil { ast::BorrowedSigil => { return bcx; } ast::ManagedSigil | ast::OwnedSigil => { /* hard cases: fallthrough to code below */ } } let ccx = bcx.ccx(); do with_cond(bcx, IsNotNull(bcx, cbox)) |bcx| { // Load the type descr found in the cbox let lltydescty = T_ptr(ccx.tydesc_type); let cbox = Load(bcx, cbox); let tydescptr = GEPi(bcx, cbox, [0u, abi::box_field_tydesc]); let tydesc = Load(bcx, tydescptr); let tydesc = PointerCast(bcx, tydesc, lltydescty); // Drop the tuple data then free the descriptor let cdata = GEPi(bcx, cbox, [0u, abi::box_field_body]); glue::call_tydesc_glue_full(bcx, cdata, tydesc, abi::tydesc_field_drop_glue, None); // Free the ty descr (if necc) and the box itself match sigil { ast::ManagedSigil => glue::trans_free(bcx, cbox), ast::OwnedSigil => glue::trans_exchange_free(bcx, cbox), ast::BorrowedSigil => { bcx.sess().bug("impossible") } } } }