// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! # Standalone Tests for the Inference Module use diagnostic; use diagnostic::Emitter; use driver; use rustc_resolve as resolve; use rustc_typeck::middle::lang_items; use rustc_typeck::middle::region::{self, CodeExtent}; use rustc_typeck::middle::resolve_lifetime; use rustc_typeck::middle::stability; use rustc_typeck::middle::subst; use rustc_typeck::middle::subst::Subst; use rustc_typeck::middle::ty::{self, Ty}; use rustc_typeck::middle::infer::combine::Combine; use rustc_typeck::middle::infer; use rustc_typeck::middle::infer::lub::Lub; use rustc_typeck::middle::infer::glb::Glb; use rustc_typeck::middle::infer::sub::Sub; use rustc_typeck::util::ppaux::{ty_to_string, Repr, UserString}; use rustc::session::{self,config}; use syntax::{abi, ast, ast_map}; use syntax::codemap; use syntax::codemap::{Span, CodeMap, DUMMY_SP}; use syntax::diagnostic::{Level, RenderSpan, Bug, Fatal, Error, Warning, Note, Help}; use syntax::parse::token; struct Env<'a, 'tcx: 'a> { infcx: &'a infer::InferCtxt<'a, 'tcx>, } struct RH<'a> { id: ast::NodeId, sub: &'a [RH<'a>] } static EMPTY_SOURCE_STR: &'static str = "#![no_std]"; struct ExpectErrorEmitter { messages: Vec } fn remove_message(e: &mut ExpectErrorEmitter, msg: &str, lvl: Level) { match lvl { Bug | Fatal | Error => { } Warning | Note | Help => { return; } } debug!("Error: {}", msg); match e.messages.iter().position(|m| msg.contains(m.as_slice())) { Some(i) => { e.messages.remove(i); } None => { panic!("Unexpected error: {} Expected: {:?}", msg, e.messages); } } } impl Emitter for ExpectErrorEmitter { fn emit(&mut self, _cmsp: Option<(&codemap::CodeMap, Span)>, msg: &str, _: Option<&str>, lvl: Level) { remove_message(self, msg, lvl); } fn custom_emit(&mut self, _cm: &codemap::CodeMap, _sp: RenderSpan, msg: &str, lvl: Level) { remove_message(self, msg, lvl); } } fn errors(msgs: &[&str]) -> (Box, uint) { let v = msgs.iter().map(|m| m.to_string()).collect(); (box ExpectErrorEmitter { messages: v } as Box, msgs.len()) } fn test_env(source_string: &str, (emitter, expected_err_count): (Box, uint), body: F) where F: FnOnce(Env), { let mut options = config::basic_options(); options.debugging_opts.verbose = true; let codemap = CodeMap::new(); let diagnostic_handler = diagnostic::mk_handler(true, emitter); let span_diagnostic_handler = diagnostic::mk_span_handler(diagnostic_handler, codemap); let sess = session::build_session_(options, None, span_diagnostic_handler); let krate_config = Vec::new(); let input = config::Input::Str(source_string.to_string()); let krate = driver::phase_1_parse_input(&sess, krate_config, &input); let krate = driver::phase_2_configure_and_expand(&sess, krate, "test", None) .expect("phase 2 aborted"); let mut forest = ast_map::Forest::new(krate); let arenas = ty::CtxtArenas::new(); let ast_map = driver::assign_node_ids_and_map(&sess, &mut forest); let krate = ast_map.krate(); // run just enough stuff to build a tcx: let lang_items = lang_items::collect_language_items(krate, &sess); let resolve::CrateMap { def_map, freevars, .. } = resolve::resolve_crate(&sess, &ast_map, &lang_items, krate, resolve::MakeGlobMap::No); let named_region_map = resolve_lifetime::krate(&sess, krate, &def_map); let region_map = region::resolve_crate(&sess, krate); let stability_index = stability::Index::build(&sess, krate); let tcx = ty::mk_ctxt(sess, &arenas, def_map, named_region_map, ast_map, freevars, region_map, lang_items, stability_index); let infcx = infer::new_infer_ctxt(&tcx); body(Env { infcx: &infcx }); infcx.resolve_regions_and_report_errors(ast::CRATE_NODE_ID); assert_eq!(tcx.sess.err_count(), expected_err_count); } impl<'a, 'tcx> Env<'a, 'tcx> { pub fn tcx(&self) -> &ty::ctxt<'tcx> { self.infcx.tcx } pub fn create_region_hierarchy(&self, rh: &RH) { for child_rh in rh.sub.iter() { self.create_region_hierarchy(child_rh); self.infcx.tcx.region_maps.record_encl_scope( CodeExtent::from_node_id(child_rh.id), CodeExtent::from_node_id(rh.id)); } } pub fn create_simple_region_hierarchy(&self) { // creates a region hierarchy where 1 is root, 10 and 11 are // children of 1, etc self.create_region_hierarchy( &RH {id: 1, sub: &[RH {id: 10, sub: &[]}, RH {id: 11, sub: &[]}]}); } #[allow(dead_code)] // this seems like it could be useful, even if we don't use it now pub fn lookup_item(&self, names: &[String]) -> ast::NodeId { return match search_mod(self, &self.infcx.tcx.map.krate().module, 0, names) { Some(id) => id, None => { panic!("no item found: `{}`", names.connect("::")); } }; fn search_mod(this: &Env, m: &ast::Mod, idx: uint, names: &[String]) -> Option { assert!(idx < names.len()); for item in m.items.iter() { if item.ident.user_string(this.infcx.tcx) == names[idx] { return search(this, &**item, idx+1, names); } } return None; } fn search(this: &Env, it: &ast::Item, idx: uint, names: &[String]) -> Option { if idx == names.len() { return Some(it.id); } return match it.node { ast::ItemUse(..) | ast::ItemExternCrate(..) | ast::ItemConst(..) | ast::ItemStatic(..) | ast::ItemFn(..) | ast::ItemForeignMod(..) | ast::ItemTy(..) => { None } ast::ItemEnum(..) | ast::ItemStruct(..) | ast::ItemTrait(..) | ast::ItemImpl(..) | ast::ItemMac(..) => { None } ast::ItemMod(ref m) => { search_mod(this, m, idx, names) } }; } } pub fn make_subtype(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> bool { match infer::mk_subty(self.infcx, true, infer::Misc(DUMMY_SP), a, b) { Ok(_) => true, Err(ref e) => panic!("Encountered error: {}", ty::type_err_to_str(self.infcx.tcx, e)) } } pub fn is_subtype(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> bool { match infer::can_mk_subty(self.infcx, a, b) { Ok(_) => true, Err(_) => false } } pub fn assert_subtype(&self, a: Ty<'tcx>, b: Ty<'tcx>) { if !self.is_subtype(a, b) { panic!("{} is not a subtype of {}, but it should be", self.ty_to_string(a), self.ty_to_string(b)); } } pub fn assert_eq(&self, a: Ty<'tcx>, b: Ty<'tcx>) { self.assert_subtype(a, b); self.assert_subtype(b, a); } pub fn ty_to_string(&self, a: Ty<'tcx>) -> String { ty_to_string(self.infcx.tcx, a) } pub fn t_fn(&self, input_tys: &[Ty<'tcx>], output_ty: Ty<'tcx>) -> Ty<'tcx> { let input_args = input_tys.iter().map(|ty| *ty).collect(); ty::mk_bare_fn(self.infcx.tcx, None, self.infcx.tcx.mk_bare_fn(ty::BareFnTy { unsafety: ast::Unsafety::Normal, abi: abi::Rust, sig: ty::Binder(ty::FnSig { inputs: input_args, output: ty::FnConverging(output_ty), variadic: false }) })) } pub fn t_nil(&self) -> Ty<'tcx> { ty::mk_nil(self.infcx.tcx) } pub fn t_pair(&self, ty1: Ty<'tcx>, ty2: Ty<'tcx>) -> Ty<'tcx> { ty::mk_tup(self.infcx.tcx, vec![ty1, ty2]) } pub fn t_param(&self, space: subst::ParamSpace, index: u32) -> Ty<'tcx> { let name = format!("T{}", index); ty::mk_param(self.infcx.tcx, space, index, token::intern(&name[])) } pub fn re_early_bound(&self, space: subst::ParamSpace, index: u32, name: &'static str) -> ty::Region { let name = token::intern(name); ty::ReEarlyBound(ast::DUMMY_NODE_ID, space, index, name) } pub fn re_late_bound_with_debruijn(&self, id: u32, debruijn: ty::DebruijnIndex) -> ty::Region { ty::ReLateBound(debruijn, ty::BrAnon(id)) } pub fn t_rptr(&self, r: ty::Region) -> Ty<'tcx> { ty::mk_imm_rptr(self.infcx.tcx, self.infcx.tcx.mk_region(r), self.tcx().types.int) } pub fn t_rptr_late_bound(&self, id: u32) -> Ty<'tcx> { let r = self.re_late_bound_with_debruijn(id, ty::DebruijnIndex::new(1)); ty::mk_imm_rptr(self.infcx.tcx, self.infcx.tcx.mk_region(r), self.tcx().types.int) } pub fn t_rptr_late_bound_with_debruijn(&self, id: u32, debruijn: ty::DebruijnIndex) -> Ty<'tcx> { let r = self.re_late_bound_with_debruijn(id, debruijn); ty::mk_imm_rptr(self.infcx.tcx, self.infcx.tcx.mk_region(r), self.tcx().types.int) } pub fn t_rptr_scope(&self, id: ast::NodeId) -> Ty<'tcx> { let r = ty::ReScope(CodeExtent::from_node_id(id)); ty::mk_imm_rptr(self.infcx.tcx, self.infcx.tcx.mk_region(r), self.tcx().types.int) } pub fn re_free(&self, nid: ast::NodeId, id: u32) -> ty::Region { ty::ReFree(ty::FreeRegion { scope: CodeExtent::from_node_id(nid), bound_region: ty::BrAnon(id)}) } pub fn t_rptr_free(&self, nid: ast::NodeId, id: u32) -> Ty<'tcx> { let r = self.re_free(nid, id); ty::mk_imm_rptr(self.infcx.tcx, self.infcx.tcx.mk_region(r), self.tcx().types.int) } pub fn t_rptr_static(&self) -> Ty<'tcx> { ty::mk_imm_rptr(self.infcx.tcx, self.infcx.tcx.mk_region(ty::ReStatic), self.tcx().types.int) } pub fn dummy_type_trace(&self) -> infer::TypeTrace<'tcx> { infer::TypeTrace::dummy(self.tcx()) } pub fn sub(&self) -> Sub<'a, 'tcx> { let trace = self.dummy_type_trace(); Sub(self.infcx.combine_fields(true, trace)) } pub fn lub(&self) -> Lub<'a, 'tcx> { let trace = self.dummy_type_trace(); Lub(self.infcx.combine_fields(true, trace)) } pub fn glb(&self) -> Glb<'a, 'tcx> { let trace = self.dummy_type_trace(); Glb(self.infcx.combine_fields(true, trace)) } pub fn make_lub_ty(&self, t1: Ty<'tcx>, t2: Ty<'tcx>) -> Ty<'tcx> { match self.lub().tys(t1, t2) { Ok(t) => t, Err(ref e) => panic!("unexpected error computing LUB: {}", ty::type_err_to_str(self.infcx.tcx, e)) } } /// Checks that `t1 <: t2` is true (this may register additional /// region checks). pub fn check_sub(&self, t1: Ty<'tcx>, t2: Ty<'tcx>) { match self.sub().tys(t1, t2) { Ok(_) => { } Err(ref e) => { panic!("unexpected error computing sub({},{}): {}", t1.repr(self.infcx.tcx), t2.repr(self.infcx.tcx), ty::type_err_to_str(self.infcx.tcx, e)); } } } /// Checks that `t1 <: t2` is false (this may register additional /// region checks). pub fn check_not_sub(&self, t1: Ty<'tcx>, t2: Ty<'tcx>) { match self.sub().tys(t1, t2) { Err(_) => { } Ok(_) => { panic!("unexpected success computing sub({},{})", t1.repr(self.infcx.tcx), t2.repr(self.infcx.tcx)); } } } /// Checks that `LUB(t1,t2) == t_lub` pub fn check_lub(&self, t1: Ty<'tcx>, t2: Ty<'tcx>, t_lub: Ty<'tcx>) { match self.lub().tys(t1, t2) { Ok(t) => { self.assert_eq(t, t_lub); } Err(ref e) => { panic!("unexpected error in LUB: {}", ty::type_err_to_str(self.infcx.tcx, e)) } } } /// Checks that `GLB(t1,t2) == t_glb` pub fn check_glb(&self, t1: Ty<'tcx>, t2: Ty<'tcx>, t_glb: Ty<'tcx>) { debug!("check_glb(t1={}, t2={}, t_glb={})", self.ty_to_string(t1), self.ty_to_string(t2), self.ty_to_string(t_glb)); match self.glb().tys(t1, t2) { Err(e) => { panic!("unexpected error computing LUB: {:?}", e) } Ok(t) => { self.assert_eq(t, t_glb); // sanity check for good measure: self.assert_subtype(t, t1); self.assert_subtype(t, t2); } } } } #[test] fn contravariant_region_ptr_ok() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { env.create_simple_region_hierarchy(); let t_rptr1 = env.t_rptr_scope(1); let t_rptr10 = env.t_rptr_scope(10); env.assert_eq(t_rptr1, t_rptr1); env.assert_eq(t_rptr10, t_rptr10); env.make_subtype(t_rptr1, t_rptr10); }) } #[test] fn contravariant_region_ptr_err() { test_env(EMPTY_SOURCE_STR, errors(&["lifetime mismatch"]), |env| { env.create_simple_region_hierarchy(); let t_rptr1 = env.t_rptr_scope(1); let t_rptr10 = env.t_rptr_scope(10); env.assert_eq(t_rptr1, t_rptr1); env.assert_eq(t_rptr10, t_rptr10); // will cause an error when regions are resolved env.make_subtype(t_rptr10, t_rptr1); }) } #[test] fn sub_free_bound_false() { //! Test that: //! //! fn(&'a int) <: for<'b> fn(&'b int) //! //! does NOT hold. test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { let t_rptr_free1 = env.t_rptr_free(0, 1); let t_rptr_bound1 = env.t_rptr_late_bound(1); env.check_not_sub(env.t_fn(&[t_rptr_free1], env.tcx().types.int), env.t_fn(&[t_rptr_bound1], env.tcx().types.int)); }) } #[test] fn sub_bound_free_true() { //! Test that: //! //! for<'a> fn(&'a int) <: fn(&'b int) //! //! DOES hold. test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { let t_rptr_bound1 = env.t_rptr_late_bound(1); let t_rptr_free1 = env.t_rptr_free(0, 1); env.check_sub(env.t_fn(&[t_rptr_bound1], env.tcx().types.int), env.t_fn(&[t_rptr_free1], env.tcx().types.int)); }) } #[test] fn sub_free_bound_false_infer() { //! Test that: //! //! fn(_#1) <: for<'b> fn(&'b int) //! //! does NOT hold for any instantiation of `_#1`. test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { let t_infer1 = env.infcx.next_ty_var(); let t_rptr_bound1 = env.t_rptr_late_bound(1); env.check_not_sub(env.t_fn(&[t_infer1], env.tcx().types.int), env.t_fn(&[t_rptr_bound1], env.tcx().types.int)); }) } #[test] fn lub_free_bound_infer() { //! Test result of: //! //! LUB(fn(_#1), for<'b> fn(&'b int)) //! //! This should yield `fn(&'_ int)`. We check //! that it yields `fn(&'x int)` for some free `'x`, //! anyhow. test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { let t_infer1 = env.infcx.next_ty_var(); let t_rptr_bound1 = env.t_rptr_late_bound(1); let t_rptr_free1 = env.t_rptr_free(0, 1); env.check_lub(env.t_fn(&[t_infer1], env.tcx().types.int), env.t_fn(&[t_rptr_bound1], env.tcx().types.int), env.t_fn(&[t_rptr_free1], env.tcx().types.int)); }); } #[test] fn lub_bound_bound() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { let t_rptr_bound1 = env.t_rptr_late_bound(1); let t_rptr_bound2 = env.t_rptr_late_bound(2); env.check_lub(env.t_fn(&[t_rptr_bound1], env.tcx().types.int), env.t_fn(&[t_rptr_bound2], env.tcx().types.int), env.t_fn(&[t_rptr_bound1], env.tcx().types.int)); }) } #[test] fn lub_bound_free() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { let t_rptr_bound1 = env.t_rptr_late_bound(1); let t_rptr_free1 = env.t_rptr_free(0, 1); env.check_lub(env.t_fn(&[t_rptr_bound1], env.tcx().types.int), env.t_fn(&[t_rptr_free1], env.tcx().types.int), env.t_fn(&[t_rptr_free1], env.tcx().types.int)); }) } #[test] fn lub_bound_static() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { let t_rptr_bound1 = env.t_rptr_late_bound(1); let t_rptr_static = env.t_rptr_static(); env.check_lub(env.t_fn(&[t_rptr_bound1], env.tcx().types.int), env.t_fn(&[t_rptr_static], env.tcx().types.int), env.t_fn(&[t_rptr_static], env.tcx().types.int)); }) } #[test] fn lub_bound_bound_inverse_order() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { let t_rptr_bound1 = env.t_rptr_late_bound(1); let t_rptr_bound2 = env.t_rptr_late_bound(2); env.check_lub(env.t_fn(&[t_rptr_bound1, t_rptr_bound2], t_rptr_bound1), env.t_fn(&[t_rptr_bound2, t_rptr_bound1], t_rptr_bound1), env.t_fn(&[t_rptr_bound1, t_rptr_bound1], t_rptr_bound1)); }) } #[test] fn lub_free_free() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { let t_rptr_free1 = env.t_rptr_free(0, 1); let t_rptr_free2 = env.t_rptr_free(0, 2); let t_rptr_static = env.t_rptr_static(); env.check_lub(env.t_fn(&[t_rptr_free1], env.tcx().types.int), env.t_fn(&[t_rptr_free2], env.tcx().types.int), env.t_fn(&[t_rptr_static], env.tcx().types.int)); }) } #[test] fn lub_returning_scope() { test_env(EMPTY_SOURCE_STR, errors(&["cannot infer an appropriate lifetime"]), |env| { let t_rptr_scope10 = env.t_rptr_scope(10); let t_rptr_scope11 = env.t_rptr_scope(11); // this should generate an error when regions are resolved env.make_lub_ty(env.t_fn(&[], t_rptr_scope10), env.t_fn(&[], t_rptr_scope11)); }) } #[test] fn glb_free_free_with_common_scope() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { let t_rptr_free1 = env.t_rptr_free(0, 1); let t_rptr_free2 = env.t_rptr_free(0, 2); let t_rptr_scope = env.t_rptr_scope(0); env.check_glb(env.t_fn(&[t_rptr_free1], env.tcx().types.int), env.t_fn(&[t_rptr_free2], env.tcx().types.int), env.t_fn(&[t_rptr_scope], env.tcx().types.int)); }) } #[test] fn glb_bound_bound() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { let t_rptr_bound1 = env.t_rptr_late_bound(1); let t_rptr_bound2 = env.t_rptr_late_bound(2); env.check_glb(env.t_fn(&[t_rptr_bound1], env.tcx().types.int), env.t_fn(&[t_rptr_bound2], env.tcx().types.int), env.t_fn(&[t_rptr_bound1], env.tcx().types.int)); }) } #[test] fn glb_bound_free() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { let t_rptr_bound1 = env.t_rptr_late_bound(1); let t_rptr_free1 = env.t_rptr_free(0, 1); env.check_glb(env.t_fn(&[t_rptr_bound1], env.tcx().types.int), env.t_fn(&[t_rptr_free1], env.tcx().types.int), env.t_fn(&[t_rptr_bound1], env.tcx().types.int)); }) } #[test] fn glb_bound_free_infer() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { let t_rptr_bound1 = env.t_rptr_late_bound(1); let t_infer1 = env.infcx.next_ty_var(); // compute GLB(fn(_) -> int, for<'b> fn(&'b int) -> int), // which should yield for<'b> fn(&'b int) -> int env.check_glb(env.t_fn(&[t_rptr_bound1], env.tcx().types.int), env.t_fn(&[t_infer1], env.tcx().types.int), env.t_fn(&[t_rptr_bound1], env.tcx().types.int)); // as a side-effect, computing GLB should unify `_` with // `&'_ int` let t_resolve1 = env.infcx.shallow_resolve(t_infer1); match t_resolve1.sty { ty::ty_rptr(..) => { } _ => { panic!("t_resolve1={}", t_resolve1.repr(env.infcx.tcx)); } } }) } #[test] fn glb_bound_static() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { let t_rptr_bound1 = env.t_rptr_late_bound(1); let t_rptr_static = env.t_rptr_static(); env.check_glb(env.t_fn(&[t_rptr_bound1], env.tcx().types.int), env.t_fn(&[t_rptr_static], env.tcx().types.int), env.t_fn(&[t_rptr_bound1], env.tcx().types.int)); }) } /// Test substituting a bound region into a function, which introduces another level of binding. /// This requires adjusting the Debruijn index. #[test] fn subst_ty_renumber_bound() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { // Situation: // Theta = [A -> &'a foo] let t_rptr_bound1 = env.t_rptr_late_bound(1); // t_source = fn(A) let t_source = { let t_param = env.t_param(subst::TypeSpace, 0); env.t_fn(&[t_param], env.t_nil()) }; let substs = subst::Substs::new_type(vec![t_rptr_bound1], vec![]); let t_substituted = t_source.subst(env.infcx.tcx, &substs); // t_expected = fn(&'a int) let t_expected = { let t_ptr_bound2 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(2)); env.t_fn(&[t_ptr_bound2], env.t_nil()) }; debug!("subst_bound: t_source={} substs={} t_substituted={} t_expected={}", t_source.repr(env.infcx.tcx), substs.repr(env.infcx.tcx), t_substituted.repr(env.infcx.tcx), t_expected.repr(env.infcx.tcx)); assert_eq!(t_substituted, t_expected); }) } /// Test substituting a bound region into a function, which introduces another level of binding. /// This requires adjusting the Debruijn index. #[test] fn subst_ty_renumber_some_bounds() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { // Situation: // Theta = [A -> &'a foo] let t_rptr_bound1 = env.t_rptr_late_bound(1); // t_source = (A, fn(A)) let t_source = { let t_param = env.t_param(subst::TypeSpace, 0); env.t_pair(t_param, env.t_fn(&[t_param], env.t_nil())) }; let substs = subst::Substs::new_type(vec![t_rptr_bound1], vec![]); let t_substituted = t_source.subst(env.infcx.tcx, &substs); // t_expected = (&'a int, fn(&'a int)) // // but not that the Debruijn index is different in the different cases. let t_expected = { let t_rptr_bound2 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(2)); env.t_pair(t_rptr_bound1, env.t_fn(&[t_rptr_bound2], env.t_nil())) }; debug!("subst_bound: t_source={} substs={} t_substituted={} t_expected={}", t_source.repr(env.infcx.tcx), substs.repr(env.infcx.tcx), t_substituted.repr(env.infcx.tcx), t_expected.repr(env.infcx.tcx)); assert_eq!(t_substituted, t_expected); }) } /// Test that we correctly compute whether a type has escaping regions or not. #[test] fn escaping() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { // Situation: // Theta = [A -> &'a foo] assert!(!ty::type_has_escaping_regions(env.t_nil())); let t_rptr_free1 = env.t_rptr_free(0, 1); assert!(!ty::type_has_escaping_regions(t_rptr_free1)); let t_rptr_bound1 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(1)); assert!(ty::type_has_escaping_regions(t_rptr_bound1)); let t_rptr_bound2 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(2)); assert!(ty::type_has_escaping_regions(t_rptr_bound2)); // t_fn = fn(A) let t_param = env.t_param(subst::TypeSpace, 0); assert!(!ty::type_has_escaping_regions(t_param)); let t_fn = env.t_fn(&[t_param], env.t_nil()); assert!(!ty::type_has_escaping_regions(t_fn)); }) } /// Test applying a substitution where the value being substituted for an early-bound region is a /// late-bound region. #[test] fn subst_region_renumber_region() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { let re_bound1 = env.re_late_bound_with_debruijn(1, ty::DebruijnIndex::new(1)); // type t_source<'a> = fn(&'a int) let t_source = { let re_early = env.re_early_bound(subst::TypeSpace, 0, "'a"); env.t_fn(&[env.t_rptr(re_early)], env.t_nil()) }; let substs = subst::Substs::new_type(vec![], vec![re_bound1]); let t_substituted = t_source.subst(env.infcx.tcx, &substs); // t_expected = fn(&'a int) // // but not that the Debruijn index is different in the different cases. let t_expected = { let t_rptr_bound2 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(2)); env.t_fn(&[t_rptr_bound2], env.t_nil()) }; debug!("subst_bound: t_source={} substs={} t_substituted={} t_expected={}", t_source.repr(env.infcx.tcx), substs.repr(env.infcx.tcx), t_substituted.repr(env.infcx.tcx), t_expected.repr(env.infcx.tcx)); assert_eq!(t_substituted, t_expected); }) } #[test] fn walk_ty() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { let tcx = env.infcx.tcx; let int_ty = tcx.types.int; let uint_ty = tcx.types.uint; let tup1_ty = ty::mk_tup(tcx, vec!(int_ty, uint_ty, int_ty, uint_ty)); let tup2_ty = ty::mk_tup(tcx, vec!(tup1_ty, tup1_ty, uint_ty)); let uniq_ty = ty::mk_uniq(tcx, tup2_ty); let walked: Vec<_> = uniq_ty.walk().collect(); assert_eq!(vec!(uniq_ty, tup2_ty, tup1_ty, int_ty, uint_ty, int_ty, uint_ty, tup1_ty, int_ty, uint_ty, int_ty, uint_ty, uint_ty), walked); }) } #[test] fn walk_ty_skip_subtree() { test_env(EMPTY_SOURCE_STR, errors(&[]), |env| { let tcx = env.infcx.tcx; let int_ty = tcx.types.int; let uint_ty = tcx.types.uint; let tup1_ty = ty::mk_tup(tcx, vec!(int_ty, uint_ty, int_ty, uint_ty)); let tup2_ty = ty::mk_tup(tcx, vec!(tup1_ty, tup1_ty, uint_ty)); let uniq_ty = ty::mk_uniq(tcx, tup2_ty); // types we expect to see (in order), plus a boolean saying // whether to skip the subtree. let mut expected = vec!((uniq_ty, false), (tup2_ty, false), (tup1_ty, false), (int_ty, false), (uint_ty, false), (int_ty, false), (uint_ty, false), (tup1_ty, true), // skip the int/uint/int/uint (uint_ty, false)); expected.reverse(); let mut walker = uniq_ty.walk(); while let Some(t) = walker.next() { debug!("walked to {:?}", t); let (expected_ty, skip) = expected.pop().unwrap(); assert_eq!(t, expected_ty); if skip { walker.skip_current_subtree(); } } assert!(expected.is_empty()); }) }