// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Operations and constants for `f32` use cmath; use cmp; use libc::{c_float, c_int}; use num; use num::NumCast; use option::Option; use from_str; use to_str; pub use cmath::c_float_targ_consts::*; macro_rules! delegate( ( fn $name:ident( $( $arg:ident : $arg_ty:ty ),* ) -> $rv:ty = $bound_name:path ) => ( pub pure fn $name($( $arg : $arg_ty ),*) -> $rv { unsafe { $bound_name($( $arg ),*) } } ) ) delegate!(fn acos(n: c_float) -> c_float = cmath::c_float_utils::acos) delegate!(fn asin(n: c_float) -> c_float = cmath::c_float_utils::asin) delegate!(fn atan(n: c_float) -> c_float = cmath::c_float_utils::atan) delegate!(fn atan2(a: c_float, b: c_float) -> c_float = cmath::c_float_utils::atan2) delegate!(fn cbrt(n: c_float) -> c_float = cmath::c_float_utils::cbrt) delegate!(fn ceil(n: c_float) -> c_float = cmath::c_float_utils::ceil) delegate!(fn copysign(x: c_float, y: c_float) -> c_float = cmath::c_float_utils::copysign) delegate!(fn cos(n: c_float) -> c_float = cmath::c_float_utils::cos) delegate!(fn cosh(n: c_float) -> c_float = cmath::c_float_utils::cosh) delegate!(fn erf(n: c_float) -> c_float = cmath::c_float_utils::erf) delegate!(fn erfc(n: c_float) -> c_float = cmath::c_float_utils::erfc) delegate!(fn exp(n: c_float) -> c_float = cmath::c_float_utils::exp) delegate!(fn expm1(n: c_float) -> c_float = cmath::c_float_utils::expm1) delegate!(fn exp2(n: c_float) -> c_float = cmath::c_float_utils::exp2) delegate!(fn abs(n: c_float) -> c_float = cmath::c_float_utils::abs) delegate!(fn abs_sub(a: c_float, b: c_float) -> c_float = cmath::c_float_utils::abs_sub) delegate!(fn mul_add(a: c_float, b: c_float, c: c_float) -> c_float = cmath::c_float_utils::mul_add) delegate!(fn fmax(a: c_float, b: c_float) -> c_float = cmath::c_float_utils::fmax) delegate!(fn fmin(a: c_float, b: c_float) -> c_float = cmath::c_float_utils::fmin) delegate!(fn nextafter(x: c_float, y: c_float) -> c_float = cmath::c_float_utils::nextafter) delegate!(fn frexp(n: c_float, value: &mut c_int) -> c_float = cmath::c_float_utils::frexp) delegate!(fn hypot(x: c_float, y: c_float) -> c_float = cmath::c_float_utils::hypot) delegate!(fn ldexp(x: c_float, n: c_int) -> c_float = cmath::c_float_utils::ldexp) delegate!(fn lgamma(n: c_float, sign: &mut c_int) -> c_float = cmath::c_float_utils::lgamma) delegate!(fn ln(n: c_float) -> c_float = cmath::c_float_utils::ln) delegate!(fn log_radix(n: c_float) -> c_float = cmath::c_float_utils::log_radix) delegate!(fn ln1p(n: c_float) -> c_float = cmath::c_float_utils::ln1p) delegate!(fn log10(n: c_float) -> c_float = cmath::c_float_utils::log10) delegate!(fn log2(n: c_float) -> c_float = cmath::c_float_utils::log2) delegate!(fn ilog_radix(n: c_float) -> c_int = cmath::c_float_utils::ilog_radix) delegate!(fn modf(n: c_float, iptr: &mut c_float) -> c_float = cmath::c_float_utils::modf) delegate!(fn pow(n: c_float, e: c_float) -> c_float = cmath::c_float_utils::pow) delegate!(fn round(n: c_float) -> c_float = cmath::c_float_utils::round) delegate!(fn ldexp_radix(n: c_float, i: c_int) -> c_float = cmath::c_float_utils::ldexp_radix) delegate!(fn sin(n: c_float) -> c_float = cmath::c_float_utils::sin) delegate!(fn sinh(n: c_float) -> c_float = cmath::c_float_utils::sinh) delegate!(fn sqrt(n: c_float) -> c_float = cmath::c_float_utils::sqrt) delegate!(fn tan(n: c_float) -> c_float = cmath::c_float_utils::tan) delegate!(fn tanh(n: c_float) -> c_float = cmath::c_float_utils::tanh) delegate!(fn tgamma(n: c_float) -> c_float = cmath::c_float_utils::tgamma) delegate!(fn trunc(n: c_float) -> c_float = cmath::c_float_utils::trunc) // These are not defined inside consts:: for consistency with // the integer types pub const NaN: f32 = 0.0_f32/0.0_f32; pub const infinity: f32 = 1.0_f32/0.0_f32; pub const neg_infinity: f32 = -1.0_f32/0.0_f32; #[inline(always)] pub pure fn is_NaN(f: f32) -> bool { f != f } #[inline(always)] pub pure fn add(x: f32, y: f32) -> f32 { return x + y; } #[inline(always)] pub pure fn sub(x: f32, y: f32) -> f32 { return x - y; } #[inline(always)] pub pure fn mul(x: f32, y: f32) -> f32 { return x * y; } #[inline(always)] pub pure fn div(x: f32, y: f32) -> f32 { return x / y; } #[inline(always)] pub pure fn rem(x: f32, y: f32) -> f32 { return x % y; } #[inline(always)] pub pure fn lt(x: f32, y: f32) -> bool { return x < y; } #[inline(always)] pub pure fn le(x: f32, y: f32) -> bool { return x <= y; } #[inline(always)] pub pure fn eq(x: f32, y: f32) -> bool { return x == y; } #[inline(always)] pub pure fn ne(x: f32, y: f32) -> bool { return x != y; } #[inline(always)] pub pure fn ge(x: f32, y: f32) -> bool { return x >= y; } #[inline(always)] pub pure fn gt(x: f32, y: f32) -> bool { return x > y; } /// Returns `x` rounded down #[inline(always)] pub pure fn floor(x: f32) -> f32 { unsafe { floorf32(x) } } // FIXME (#1999): replace the predicates below with llvm intrinsics or // calls to the libmath macros in the rust runtime for performance. /// Returns true if `x` is a positive number, including +0.0f320 and +Infinity #[inline(always)] pub pure fn is_positive(x: f32) -> bool { return x > 0.0f32 || (1.0f32/x) == infinity; } /// Returns true if `x` is a negative number, including -0.0f320 and -Infinity #[inline(always)] pub pure fn is_negative(x: f32) -> bool { return x < 0.0f32 || (1.0f32/x) == neg_infinity; } /** * Returns true if `x` is a negative number, including -0.0f320 and -Infinity * * This is the same as `f32::is_negative`. */ #[inline(always)] pub pure fn is_nonpositive(x: f32) -> bool { return x < 0.0f32 || (1.0f32/x) == neg_infinity; } /** * Returns true if `x` is a positive number, including +0.0f320 and +Infinity * * This is the same as `f32::is_positive`.) */ #[inline(always)] pub pure fn is_nonnegative(x: f32) -> bool { return x > 0.0f32 || (1.0f32/x) == infinity; } /// Returns true if `x` is a zero number (positive or negative zero) #[inline(always)] pub pure fn is_zero(x: f32) -> bool { return x == 0.0f32 || x == -0.0f32; } /// Returns true if `x`is an infinite number #[inline(always)] pub pure fn is_infinite(x: f32) -> bool { return x == infinity || x == neg_infinity; } /// Returns true if `x`is a finite number #[inline(always)] pub pure fn is_finite(x: f32) -> bool { return !(is_NaN(x) || is_infinite(x)); } // FIXME (#1999): add is_normal, is_subnormal, and fpclassify. /* Module: consts */ pub mod consts { // FIXME (requires Issue #1433 to fix): replace with mathematical // constants from cmath. /// Archimedes' constant pub const pi: f32 = 3.14159265358979323846264338327950288_f32; /// pi/2.0 pub const frac_pi_2: f32 = 1.57079632679489661923132169163975144_f32; /// pi/4.0 pub const frac_pi_4: f32 = 0.785398163397448309615660845819875721_f32; /// 1.0/pi pub const frac_1_pi: f32 = 0.318309886183790671537767526745028724_f32; /// 2.0/pi pub const frac_2_pi: f32 = 0.636619772367581343075535053490057448_f32; /// 2.0/sqrt(pi) pub const frac_2_sqrtpi: f32 = 1.12837916709551257389615890312154517_f32; /// sqrt(2.0) pub const sqrt2: f32 = 1.41421356237309504880168872420969808_f32; /// 1.0/sqrt(2.0) pub const frac_1_sqrt2: f32 = 0.707106781186547524400844362104849039_f32; /// Euler's number pub const e: f32 = 2.71828182845904523536028747135266250_f32; /// log2(e) pub const log2_e: f32 = 1.44269504088896340735992468100189214_f32; /// log10(e) pub const log10_e: f32 = 0.434294481903251827651128918916605082_f32; /// ln(2.0) pub const ln_2: f32 = 0.693147180559945309417232121458176568_f32; /// ln(10.0) pub const ln_10: f32 = 2.30258509299404568401799145468436421_f32; } #[inline(always)] pub pure fn signbit(x: f32) -> int { if is_negative(x) { return 1; } else { return 0; } } #[inline(always)] pub pure fn logarithm(n: f32, b: f32) -> f32 { return log2(n) / log2(b); } #[cfg(notest)] impl f32 : cmp::Eq { #[inline(always)] pure fn eq(&self, other: &f32) -> bool { (*self) == (*other) } #[inline(always)] pure fn ne(&self, other: &f32) -> bool { (*self) != (*other) } } #[cfg(notest)] impl f32 : cmp::Ord { #[inline(always)] pure fn lt(&self, other: &f32) -> bool { (*self) < (*other) } #[inline(always)] pure fn le(&self, other: &f32) -> bool { (*self) <= (*other) } #[inline(always)] pure fn ge(&self, other: &f32) -> bool { (*self) >= (*other) } #[inline(always)] pure fn gt(&self, other: &f32) -> bool { (*self) > (*other) } } impl f32: num::Num { #[inline(always)] pure fn add(&self, other: &f32) -> f32 { return *self + *other; } #[inline(always)] pure fn sub(&self, other: &f32) -> f32 { return *self - *other; } #[inline(always)] pure fn mul(&self, other: &f32) -> f32 { return *self * *other; } #[inline(always)] pure fn div(&self, other: &f32) -> f32 { return *self / *other; } #[inline(always)] pure fn modulo(&self, other: &f32) -> f32 { return *self % *other; } #[inline(always)] pure fn neg(&self) -> f32 { return -*self; } } impl f32: num::Zero { #[inline(always)] static pure fn zero() -> f32 { 0.0 } } impl f32: num::One { #[inline(always)] static pure fn one() -> f32 { 1.0 } } pub impl f32: NumCast { /** * Cast `n` to an `f32` */ #[inline(always)] static pure fn from(n: N) -> f32 { n.to_f32() } #[inline(always)] pure fn to_u8(&self) -> u8 { *self as u8 } #[inline(always)] pure fn to_u16(&self) -> u16 { *self as u16 } #[inline(always)] pure fn to_u32(&self) -> u32 { *self as u32 } #[inline(always)] pure fn to_u64(&self) -> u64 { *self as u64 } #[inline(always)] pure fn to_uint(&self) -> uint { *self as uint } #[inline(always)] pure fn to_i8(&self) -> i8 { *self as i8 } #[inline(always)] pure fn to_i16(&self) -> i16 { *self as i16 } #[inline(always)] pure fn to_i32(&self) -> i32 { *self as i32 } #[inline(always)] pure fn to_i64(&self) -> i64 { *self as i64 } #[inline(always)] pure fn to_int(&self) -> int { *self as int } #[inline(always)] pure fn to_f32(&self) -> f32 { *self } #[inline(always)] pure fn to_f64(&self) -> f64 { *self as f64 } #[inline(always)] pure fn to_float(&self) -> float { *self as float } } #[abi="rust-intrinsic"] pub extern { fn floorf32(val: f32) -> f32; } impl f32: num::Round { #[inline(always)] pure fn round(&self, mode: num::RoundMode) -> f32 { match mode { num::RoundDown => floor(*self), num::RoundUp => ceil(*self), num::RoundToZero if is_negative(*self) => ceil(*self), num::RoundToZero => floor(*self), num::RoundFromZero if is_negative(*self) => floor(*self), num::RoundFromZero => ceil(*self) } } #[inline(always)] pure fn floor(&self) -> f32 { floor(*self) } #[inline(always)] pure fn ceil(&self) -> f32 { ceil(*self) } #[inline(always)] pure fn fract(&self) -> f32 { if is_negative(*self) { (*self) - ceil(*self) } else { (*self) - floor(*self) } } } /** * Section: String Conversions */ /** * Converts a float to a string * * # Arguments * * * num - The float value */ #[inline(always)] pub pure fn to_str(num: f32) -> ~str { let (r, _) = num::to_str_common( &num, 10u, true, true, num::SignNeg, num::DigAll); r } /** * Converts a float to a string in hexadecimal format * * # Arguments * * * num - The float value */ #[inline(always)] pub pure fn to_str_hex(num: f32) -> ~str { let (r, _) = num::to_str_common( &num, 16u, true, true, num::SignNeg, num::DigAll); r } /** * Converts a float to a string in a given radix * * # Arguments * * * num - The float value * * radix - The base to use * * # Failure * * Fails if called on a special value like `inf`, `-inf` or `NaN` due to * possible misinterpretation of the result at higher bases. If those values * are expected, use `to_str_radix_special()` instead. */ #[inline(always)] pub pure fn to_str_radix(num: f32, rdx: uint) -> ~str { let (r, special) = num::to_str_common( &num, rdx, true, true, num::SignNeg, num::DigAll); if special { fail!(~"number has a special value, \ try to_str_radix_special() if those are expected") } r } /** * Converts a float to a string in a given radix, and a flag indicating * whether it's a special value * * # Arguments * * * num - The float value * * radix - The base to use */ #[inline(always)] pub pure fn to_str_radix_special(num: f32, rdx: uint) -> (~str, bool) { num::to_str_common(&num, rdx, true, true, num::SignNeg, num::DigAll) } /** * Converts a float to a string with exactly the number of * provided significant digits * * # Arguments * * * num - The float value * * digits - The number of significant digits */ #[inline(always)] pub pure fn to_str_exact(num: f32, dig: uint) -> ~str { let (r, _) = num::to_str_common( &num, 10u, true, true, num::SignNeg, num::DigExact(dig)); r } /** * Converts a float to a string with a maximum number of * significant digits * * # Arguments * * * num - The float value * * digits - The number of significant digits */ #[inline(always)] pub pure fn to_str_digits(num: f32, dig: uint) -> ~str { let (r, _) = num::to_str_common( &num, 10u, true, true, num::SignNeg, num::DigMax(dig)); r } impl f32: to_str::ToStr { #[inline(always)] pure fn to_str(&self) -> ~str { to_str_digits(*self, 8) } } impl f32: num::ToStrRadix { #[inline(always)] pure fn to_str_radix(&self, rdx: uint) -> ~str { to_str_radix(*self, rdx) } } /** * Convert a string in base 10 to a float. * Accepts a optional decimal exponent. * * This function accepts strings such as * * * '3.14' * * '+3.14', equivalent to '3.14' * * '-3.14' * * '2.5E10', or equivalently, '2.5e10' * * '2.5E-10' * * '.' (understood as 0) * * '5.' * * '.5', or, equivalently, '0.5' * * '+inf', 'inf', '-inf', 'NaN' * * Leading and trailing whitespace represent an error. * * # Arguments * * * num - A string * * # Return value * * `none` if the string did not represent a valid number. Otherwise, * `Some(n)` where `n` is the floating-point number represented by `num`. */ #[inline(always)] pub pure fn from_str(num: &str) -> Option { num::from_str_common(num, 10u, true, true, true, num::ExpDec, false) } /** * Convert a string in base 16 to a float. * Accepts a optional binary exponent. * * This function accepts strings such as * * * 'a4.fe' * * '+a4.fe', equivalent to 'a4.fe' * * '-a4.fe' * * '2b.aP128', or equivalently, '2b.ap128' * * '2b.aP-128' * * '.' (understood as 0) * * 'c.' * * '.c', or, equivalently, '0.c' * * '+inf', 'inf', '-inf', 'NaN' * * Leading and trailing whitespace represent an error. * * # Arguments * * * num - A string * * # Return value * * `none` if the string did not represent a valid number. Otherwise, * `Some(n)` where `n` is the floating-point number represented by `[num]`. */ #[inline(always)] pub pure fn from_str_hex(num: &str) -> Option { num::from_str_common(num, 16u, true, true, true, num::ExpBin, false) } /** * Convert a string in an given base to a float. * * Due to possible conflicts, this function does **not** accept * the special values `inf`, `-inf`, `+inf` and `NaN`, **nor** * does it recognize exponents of any kind. * * Leading and trailing whitespace represent an error. * * # Arguments * * * num - A string * * radix - The base to use. Must lie in the range [2 .. 36] * * # Return value * * `none` if the string did not represent a valid number. Otherwise, * `Some(n)` where `n` is the floating-point number represented by `num`. */ #[inline(always)] pub pure fn from_str_radix(num: &str, rdx: uint) -> Option { num::from_str_common(num, rdx, true, true, false, num::ExpNone, false) } impl f32: from_str::FromStr { #[inline(always)] static pure fn from_str(val: &str) -> Option { from_str(val) } } impl f32: num::FromStrRadix { #[inline(always)] static pure fn from_str_radix(val: &str, rdx: uint) -> Option { from_str_radix(val, rdx) } } #[test] pub fn test_num() { let ten: f32 = num::cast(10); let two: f32 = num::cast(2); assert (ten.add(&two) == num::cast(12)); assert (ten.sub(&two) == num::cast(8)); assert (ten.mul(&two) == num::cast(20)); assert (ten.div(&two) == num::cast(5)); assert (ten.modulo(&two) == num::cast(0)); } #[test] fn test_numcast() { assert (20u == 20f32.to_uint()); assert (20u8 == 20f32.to_u8()); assert (20u16 == 20f32.to_u16()); assert (20u32 == 20f32.to_u32()); assert (20u64 == 20f32.to_u64()); assert (20i == 20f32.to_int()); assert (20i8 == 20f32.to_i8()); assert (20i16 == 20f32.to_i16()); assert (20i32 == 20f32.to_i32()); assert (20i64 == 20f32.to_i64()); assert (20f == 20f32.to_float()); assert (20f32 == 20f32.to_f32()); assert (20f64 == 20f32.to_f64()); assert (20f32 == NumCast::from(20u)); assert (20f32 == NumCast::from(20u8)); assert (20f32 == NumCast::from(20u16)); assert (20f32 == NumCast::from(20u32)); assert (20f32 == NumCast::from(20u64)); assert (20f32 == NumCast::from(20i)); assert (20f32 == NumCast::from(20i8)); assert (20f32 == NumCast::from(20i16)); assert (20f32 == NumCast::from(20i32)); assert (20f32 == NumCast::from(20i64)); assert (20f32 == NumCast::from(20f)); assert (20f32 == NumCast::from(20f32)); assert (20f32 == NumCast::from(20f64)); assert (20f32 == num::cast(20u)); assert (20f32 == num::cast(20u8)); assert (20f32 == num::cast(20u16)); assert (20f32 == num::cast(20u32)); assert (20f32 == num::cast(20u64)); assert (20f32 == num::cast(20i)); assert (20f32 == num::cast(20i8)); assert (20f32 == num::cast(20i16)); assert (20f32 == num::cast(20i32)); assert (20f32 == num::cast(20i64)); assert (20f32 == num::cast(20f)); assert (20f32 == num::cast(20f32)); assert (20f32 == num::cast(20f64)); } // // Local Variables: // mode: rust // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: //