// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Rust AST Visitor. Extracts useful information and massages it into a form //! usable for clean use std::mem; use syntax::abi; use syntax::ast; use syntax::attr; use syntax_pos::Span; use rustc::hir::map as hir_map; use rustc::hir::def::Def; use rustc::hir::def_id::LOCAL_CRATE; use rustc::middle::cstore::LoadedMacro; use rustc::middle::privacy::AccessLevel; use rustc::util::nodemap::FxHashSet; use rustc::hir; use core; use clean::{self, AttributesExt, NestedAttributesExt}; use doctree::*; // looks to me like the first two of these are actually // output parameters, maybe only mutated once; perhaps // better simply to have the visit method return a tuple // containing them? // also, is there some reason that this doesn't use the 'visit' // framework from syntax? pub struct RustdocVisitor<'a, 'tcx: 'a> { pub module: Module, pub attrs: hir::HirVec, pub cx: &'a core::DocContext<'a, 'tcx>, view_item_stack: FxHashSet, inlining: bool, /// Is the current module and all of its parents public? inside_public_path: bool, } impl<'a, 'tcx> RustdocVisitor<'a, 'tcx> { pub fn new(cx: &'a core::DocContext<'a, 'tcx>) -> RustdocVisitor<'a, 'tcx> { // If the root is reexported, terminate all recursion. let mut stack = FxHashSet(); stack.insert(ast::CRATE_NODE_ID); RustdocVisitor { module: Module::new(None), attrs: hir::HirVec::new(), cx: cx, view_item_stack: stack, inlining: false, inside_public_path: true, } } fn stability(&self, id: ast::NodeId) -> Option { self.cx.tcx.map.opt_local_def_id(id) .and_then(|def_id| self.cx.tcx.lookup_stability(def_id)).cloned() } fn deprecation(&self, id: ast::NodeId) -> Option { self.cx.tcx.map.opt_local_def_id(id) .and_then(|def_id| self.cx.tcx.lookup_deprecation(def_id)) } pub fn visit(&mut self, krate: &hir::Crate) { self.attrs = krate.attrs.clone(); self.module = self.visit_mod_contents(krate.span, krate.attrs.clone(), hir::Public, ast::CRATE_NODE_ID, &krate.module, None); // attach the crate's exported macros to the top-level module: let macro_exports: Vec<_> = krate.exported_macros.iter().map(|def| self.visit_local_macro(def)).collect(); self.module.macros.extend(macro_exports); self.module.is_crate = true; } pub fn visit_variant_data(&mut self, item: &hir::Item, name: ast::Name, sd: &hir::VariantData, generics: &hir::Generics) -> Struct { debug!("Visiting struct"); let struct_type = struct_type_from_def(&*sd); Struct { id: item.id, struct_type: struct_type, name: name, vis: item.vis.clone(), stab: self.stability(item.id), depr: self.deprecation(item.id), attrs: item.attrs.clone(), generics: generics.clone(), fields: sd.fields().iter().cloned().collect(), whence: item.span } } pub fn visit_union_data(&mut self, item: &hir::Item, name: ast::Name, sd: &hir::VariantData, generics: &hir::Generics) -> Union { debug!("Visiting union"); let struct_type = struct_type_from_def(&*sd); Union { id: item.id, struct_type: struct_type, name: name, vis: item.vis.clone(), stab: self.stability(item.id), depr: self.deprecation(item.id), attrs: item.attrs.clone(), generics: generics.clone(), fields: sd.fields().iter().cloned().collect(), whence: item.span } } pub fn visit_enum_def(&mut self, it: &hir::Item, name: ast::Name, def: &hir::EnumDef, params: &hir::Generics) -> Enum { debug!("Visiting enum"); Enum { name: name, variants: def.variants.iter().map(|v| Variant { name: v.node.name, attrs: v.node.attrs.clone(), stab: self.stability(v.node.data.id()), depr: self.deprecation(v.node.data.id()), def: v.node.data.clone(), whence: v.span, }).collect(), vis: it.vis.clone(), stab: self.stability(it.id), depr: self.deprecation(it.id), generics: params.clone(), attrs: it.attrs.clone(), id: it.id, whence: it.span, } } pub fn visit_fn(&mut self, item: &hir::Item, name: ast::Name, fd: &hir::FnDecl, unsafety: &hir::Unsafety, constness: hir::Constness, abi: &abi::Abi, gen: &hir::Generics) -> Function { debug!("Visiting fn"); Function { id: item.id, vis: item.vis.clone(), stab: self.stability(item.id), depr: self.deprecation(item.id), attrs: item.attrs.clone(), decl: fd.clone(), name: name, whence: item.span, generics: gen.clone(), unsafety: *unsafety, constness: constness, abi: *abi, } } pub fn visit_mod_contents(&mut self, span: Span, attrs: hir::HirVec, vis: hir::Visibility, id: ast::NodeId, m: &hir::Mod, name: Option) -> Module { let mut om = Module::new(name); om.where_outer = span; om.where_inner = m.inner; om.attrs = attrs; om.vis = vis.clone(); om.stab = self.stability(id); om.depr = self.deprecation(id); om.id = id; // Keep track of if there were any private modules in the path. let orig_inside_public_path = self.inside_public_path; self.inside_public_path &= vis == hir::Public; for i in &m.item_ids { let item = self.cx.tcx.map.expect_item(i.id); self.visit_item(item, None, &mut om); } self.inside_public_path = orig_inside_public_path; if let Some(exports) = self.cx.export_map.get(&id) { for export in exports { if let Def::Macro(def_id) = export.def { if def_id.krate == LOCAL_CRATE { continue // These are `krate.exported_macros`, handled in `self.visit()`. } let imported_from = self.cx.sess().cstore.original_crate_name(def_id.krate); let def = match self.cx.sess().cstore.load_macro(def_id, self.cx.sess()) { LoadedMacro::MacroRules(macro_rules) => macro_rules, // FIXME(jseyfried): document proc macro reexports LoadedMacro::ProcMacro(..) => continue, }; // FIXME(jseyfried) merge with `self.visit_macro()` let matchers = def.body.chunks(4).map(|arm| arm[0].get_span()).collect(); om.macros.push(Macro { def_id: def_id, attrs: def.attrs.clone().into(), name: def.ident.name, whence: def.span, matchers: matchers, stab: self.stability(def.id), depr: self.deprecation(def.id), imported_from: Some(imported_from), }) } } } om } /// Tries to resolve the target of a `pub use` statement and inlines the /// target if it is defined locally and would not be documented otherwise, /// or when it is specifically requested with `please_inline`. /// (the latter is the case when the import is marked `doc(inline)`) /// /// Cross-crate inlining occurs later on during crate cleaning /// and follows different rules. /// /// Returns true if the target has been inlined. fn maybe_inline_local(&mut self, id: ast::NodeId, def: Def, renamed: Option, glob: bool, om: &mut Module, please_inline: bool) -> bool { fn inherits_doc_hidden(cx: &core::DocContext, mut node: ast::NodeId) -> bool { while let Some(id) = cx.tcx.map.get_enclosing_scope(node) { node = id; if cx.tcx.map.attrs(node).lists("doc").has_word("hidden") { return true; } if node == ast::CRATE_NODE_ID { break; } } false } let tcx = self.cx.tcx; if def == Def::Err { return false; } let def_did = def.def_id(); let use_attrs = tcx.map.attrs(id); // Don't inline doc(hidden) imports so they can be stripped at a later stage. let is_no_inline = use_attrs.lists("doc").has_word("no_inline") || use_attrs.lists("doc").has_word("hidden"); // For cross-crate impl inlining we need to know whether items are // reachable in documentation - a previously nonreachable item can be // made reachable by cross-crate inlining which we're checking here. // (this is done here because we need to know this upfront) if !def_did.is_local() && !is_no_inline { let attrs = clean::inline::load_attrs(self.cx, def_did); let self_is_hidden = attrs.lists("doc").has_word("hidden"); match def { Def::Trait(did) | Def::Struct(did) | Def::Union(did) | Def::Enum(did) | Def::TyAlias(did) if !self_is_hidden => { self.cx.access_levels.borrow_mut().map.insert(did, AccessLevel::Public); }, Def::Mod(did) => if !self_is_hidden { ::visit_lib::LibEmbargoVisitor::new(self.cx).visit_mod(did); }, _ => {}, } return false } let def_node_id = match tcx.map.as_local_node_id(def_did) { Some(n) => n, None => return false }; let is_private = !self.cx.access_levels.borrow().is_public(def_did); let is_hidden = inherits_doc_hidden(self.cx, def_node_id); // Only inline if requested or if the item would otherwise be stripped if (!please_inline && !is_private && !is_hidden) || is_no_inline { return false } if !self.view_item_stack.insert(def_node_id) { return false } let ret = match tcx.map.get(def_node_id) { hir_map::NodeItem(it) => { let prev = mem::replace(&mut self.inlining, true); if glob { match it.node { hir::ItemMod(ref m) => { for i in &m.item_ids { let i = self.cx.tcx.map.expect_item(i.id); self.visit_item(i, None, om); } } hir::ItemEnum(..) => {} _ => { panic!("glob not mapped to a module or enum"); } } } else { self.visit_item(it, renamed, om); } self.inlining = prev; true } _ => false, }; self.view_item_stack.remove(&def_node_id); ret } pub fn visit_item(&mut self, item: &hir::Item, renamed: Option, om: &mut Module) { debug!("Visiting item {:?}", item); let name = renamed.unwrap_or(item.name); match item.node { hir::ItemForeignMod(ref fm) => { // If inlining we only want to include public functions. om.foreigns.push(if self.inlining { hir::ForeignMod { abi: fm.abi, items: fm.items.iter().filter(|i| i.vis == hir::Public).cloned().collect(), } } else { fm.clone() }); } // If we're inlining, skip private items. _ if self.inlining && item.vis != hir::Public => {} hir::ItemExternCrate(ref p) => { let cstore = &self.cx.sess().cstore; om.extern_crates.push(ExternCrate { cnum: cstore.extern_mod_stmt_cnum(item.id) .unwrap_or(LOCAL_CRATE), name: name, path: p.map(|x|x.to_string()), vis: item.vis.clone(), attrs: item.attrs.clone(), whence: item.span, }) } hir::ItemUse(_, hir::UseKind::ListStem) => {} hir::ItemUse(ref path, kind) => { let is_glob = kind == hir::UseKind::Glob; // If there was a private module in the current path then don't bother inlining // anything as it will probably be stripped anyway. if item.vis == hir::Public && self.inside_public_path { let please_inline = item.attrs.iter().any(|item| { match item.meta_item_list() { Some(list) if item.check_name("doc") => { list.iter().any(|i| i.check_name("inline")) } _ => false, } }); let name = if is_glob { None } else { Some(name) }; if self.maybe_inline_local(item.id, path.def, name, is_glob, om, please_inline) { return; } } om.imports.push(Import { name: name, id: item.id, vis: item.vis.clone(), attrs: item.attrs.clone(), path: (**path).clone(), glob: is_glob, whence: item.span, }); } hir::ItemMod(ref m) => { om.mods.push(self.visit_mod_contents(item.span, item.attrs.clone(), item.vis.clone(), item.id, m, Some(name))); }, hir::ItemEnum(ref ed, ref gen) => om.enums.push(self.visit_enum_def(item, name, ed, gen)), hir::ItemStruct(ref sd, ref gen) => om.structs.push(self.visit_variant_data(item, name, sd, gen)), hir::ItemUnion(ref sd, ref gen) => om.unions.push(self.visit_union_data(item, name, sd, gen)), hir::ItemFn(ref fd, ref unsafety, constness, ref abi, ref gen, _) => om.fns.push(self.visit_fn(item, name, &**fd, unsafety, constness, abi, gen)), hir::ItemTy(ref ty, ref gen) => { let t = Typedef { ty: ty.clone(), gen: gen.clone(), name: name, id: item.id, attrs: item.attrs.clone(), whence: item.span, vis: item.vis.clone(), stab: self.stability(item.id), depr: self.deprecation(item.id), }; om.typedefs.push(t); }, hir::ItemStatic(ref ty, ref mut_, ref exp) => { let s = Static { type_: ty.clone(), mutability: mut_.clone(), expr: exp.clone(), id: item.id, name: name, attrs: item.attrs.clone(), whence: item.span, vis: item.vis.clone(), stab: self.stability(item.id), depr: self.deprecation(item.id), }; om.statics.push(s); }, hir::ItemConst(ref ty, ref exp) => { let s = Constant { type_: ty.clone(), expr: exp.clone(), id: item.id, name: name, attrs: item.attrs.clone(), whence: item.span, vis: item.vis.clone(), stab: self.stability(item.id), depr: self.deprecation(item.id), }; om.constants.push(s); }, hir::ItemTrait(unsafety, ref gen, ref b, ref items) => { let t = Trait { unsafety: unsafety, name: name, items: items.clone(), generics: gen.clone(), bounds: b.iter().cloned().collect(), id: item.id, attrs: item.attrs.clone(), whence: item.span, vis: item.vis.clone(), stab: self.stability(item.id), depr: self.deprecation(item.id), }; om.traits.push(t); }, hir::ItemImpl(unsafety, polarity, ref gen, ref tr, ref ty, ref item_ids) => { // Don't duplicate impls when inlining, we'll pick them up // regardless of where they're located. if !self.inlining { let items = item_ids.iter() .map(|ii| self.cx.tcx.map.impl_item(ii.id).clone()) .collect(); let i = Impl { unsafety: unsafety, polarity: polarity, generics: gen.clone(), trait_: tr.clone(), for_: ty.clone(), items: items, attrs: item.attrs.clone(), id: item.id, whence: item.span, vis: item.vis.clone(), stab: self.stability(item.id), depr: self.deprecation(item.id), }; om.impls.push(i); } }, hir::ItemDefaultImpl(unsafety, ref trait_ref) => { // See comment above about ItemImpl. if !self.inlining { let i = DefaultImpl { unsafety: unsafety, trait_: trait_ref.clone(), id: item.id, attrs: item.attrs.clone(), whence: item.span, }; om.def_traits.push(i); } } } } // convert each exported_macro into a doc item fn visit_local_macro(&self, def: &hir::MacroDef) -> Macro { // Extract the spans of all matchers. They represent the "interface" of the macro. let matchers = def.body.chunks(4).map(|arm| arm[0].get_span()).collect(); Macro { def_id: self.cx.tcx.map.local_def_id(def.id), attrs: def.attrs.clone(), name: def.name, whence: def.span, matchers: matchers, stab: self.stability(def.id), depr: self.deprecation(def.id), imported_from: None, } } }