// A "shape" is a compact encoding of a type that is used by interpreted glue. // This substitutes for the runtime tags used by e.g. MLs. import lib::llvm::True; import lib::llvm::llvm::{ModuleRef, TypeRef, ValueRef}; import driver::session; import middle::{trans, trans_common}; import middle::trans_common::{crate_ctxt, val_ty, C_bytes, C_named_struct, C_struct, T_tag_variant}; import middle::ty; import middle::ty::field; import syntax::ast; import syntax::ast_util::dummy_sp; import syntax::util::interner; import util::common; import std::{vec, str}; import std::map::hashmap; import std::option::{none, some}; import ty_ctxt = middle::ty::ctxt; type res_info = {did: ast::def_id, t: ty::t}; type ctxt = {mutable next_tag_id: u16, pad: u16, tag_id_to_index: hashmap, mutable tag_order: [ast::def_id], resources: interner::interner, llshapetablesty: TypeRef, llshapetables: ValueRef}; const shape_u8: u8 = 0u8; const shape_u16: u8 = 1u8; const shape_u32: u8 = 2u8; const shape_u64: u8 = 3u8; const shape_i8: u8 = 4u8; const shape_i16: u8 = 5u8; const shape_i32: u8 = 6u8; const shape_i64: u8 = 7u8; const shape_f32: u8 = 8u8; const shape_f64: u8 = 9u8; // (10 is currently unused, was evec) const shape_vec: u8 = 11u8; const shape_tag: u8 = 12u8; const shape_box: u8 = 13u8; const shape_struct: u8 = 17u8; const shape_fn: u8 = 18u8; const shape_obj: u8 = 19u8; const shape_res: u8 = 20u8; const shape_var: u8 = 21u8; const shape_uniq: u8 = 22u8; // FIXME: This is a bad API in trans_common. fn C_u8(n: u8) -> ValueRef { ret trans_common::C_u8(n as uint); } fn hash_res_info(ri: res_info) -> uint { let h = 5381u; h *= 33u; h += ri.did.crate as uint; h *= 33u; h += ri.did.node as uint; h *= 33u; h += ri.t as uint; ret h; } fn eq_res_info(a: res_info, b: res_info) -> bool { ret a.did.crate == b.did.crate && a.did.node == b.did.node && a.t == b.t; } fn mk_global(ccx: @crate_ctxt, name: str, llval: ValueRef, internal: bool) -> ValueRef { let llglobal = str::as_buf(name, {|buf| lib::llvm::llvm::LLVMAddGlobal(ccx.llmod, val_ty(llval), buf) }); lib::llvm::llvm::LLVMSetInitializer(llglobal, llval); lib::llvm::llvm::LLVMSetGlobalConstant(llglobal, True); if internal { lib::llvm::llvm::LLVMSetLinkage(llglobal, lib::llvm::LLVMInternalLinkage as lib::llvm::llvm::Linkage); } ret llglobal; } // Computes a set of variants of a tag that are guaranteed to have size and // alignment at least as large as any other variant of the tag. This is an // important performance optimization. // // TODO: Use this in dynamic_size_of() as well. fn largest_variants(ccx: @crate_ctxt, tag_id: ast::def_id) -> [uint] { // Compute the minimum and maximum size and alignment for each variant. // // TODO: We could do better here; e.g. we know that any variant that // contains (T,T) must be as least as large as any variant that contains // just T. let ranges = []; let variants = ty::tag_variants(ccx.tcx, tag_id); for variant: ty::variant_info in variants { let bounded = true; let {a: min_size, b: min_align} = {a: 0u, b: 0u}; for elem_t: ty::t in variant.args { if ty::type_contains_params(ccx.tcx, elem_t) { // TODO: We could do better here; this causes us to // conservatively assume that (int, T) has minimum size 0, // when in fact it has minimum size sizeof(int). bounded = false; } else { // Could avoid this check: the constraint should // follow from how elem_t doesn't contain params. // (Could add a postcondition to type_contains_params, // once we implement Issue #586.) check (trans_common::type_has_static_size(ccx, elem_t)); let llty = trans::type_of(ccx, dummy_sp(), elem_t); min_size += trans::llsize_of_real(ccx, llty); min_align += trans::llalign_of_real(ccx, llty); } } ranges += [{size: {min: min_size, bounded: bounded}, align: {min: min_align, bounded: bounded}}]; } // Initialize the candidate set to contain all variants. let candidates = [mutable]; for variant in variants { candidates += [mutable true]; } // Do a pairwise comparison among all variants still in the candidate set. // Throw out any variant that we know has size and alignment at least as // small as some other variant. let i = 0u; while i < vec::len(ranges) - 1u { if candidates[i] { let j = i + 1u; while j < vec::len(ranges) { if candidates[j] { if ranges[i].size.bounded && ranges[i].align.bounded && ranges[j].size.bounded && ranges[j].align.bounded { if ranges[i].size >= ranges[j].size && ranges[i].align >= ranges[j].align { // Throw out j. candidates[j] = false; } else if ranges[j].size >= ranges[i].size && ranges[j].align >= ranges[j].align { // Throw out i. candidates[i] = false; } } } j += 1u; } } i += 1u; } // Return the resulting set. let result = []; i = 0u; while i < vec::len(candidates) { if candidates[i] { result += [i]; } i += 1u; } ret result; } // Computes the static size of a tag, without using mk_tup(), which is // bad for performance. // // TODO: Migrate trans over to use this. fn round_up(size: u16, align: u8) -> u16 { assert (align >= 1u8); let alignment = align as u16; ret size - 1u16 + alignment & !(alignment - 1u16); } type size_align = {size: u16, align: u8}; fn compute_static_tag_size(ccx: @crate_ctxt, largest_variants: [uint], did: ast::def_id) -> size_align { let max_size = 0u16; let max_align = 1u8; let variants = ty::tag_variants(ccx.tcx, did); for vid: uint in largest_variants { // We increment a "virtual data pointer" to compute the size. let lltys = []; for typ: ty::t in variants[vid].args { // FIXME: there should really be a postcondition // on tag_variants that would obviate the need for // this check. (Issue #586) check (trans_common::type_has_static_size(ccx, typ)); lltys += [trans::type_of(ccx, dummy_sp(), typ)]; } let llty = trans_common::T_struct(lltys); let dp = trans::llsize_of_real(ccx, llty) as u16; let variant_align = trans::llalign_of_real(ccx, llty) as u8; if max_size < dp { max_size = dp; } if max_align < variant_align { max_align = variant_align; } } // Add space for the tag if applicable. // FIXME (issue #792): This is wrong. If the tag starts with an 8 byte // aligned quantity, we don't align it. if vec::len(variants) > 1u { let variant_t = T_tag_variant(ccx); max_size += trans::llsize_of_real(ccx, variant_t) as u16; let align = trans::llalign_of_real(ccx, variant_t) as u8; if max_align < align { max_align = align; } } ret {size: max_size, align: max_align}; } tag tag_kind { tk_unit; tk_enum; tk_complex; } fn tag_kind(ccx: @crate_ctxt, did: ast::def_id) -> tag_kind { let variants = ty::tag_variants(ccx.tcx, did); if vec::len(variants) == 0u { ret tk_complex; } for v: ty::variant_info in variants { if vec::len(v.args) > 0u { ret tk_complex; } } if vec::len(variants) == 1u { ret tk_unit; } ret tk_enum; } // Returns the code corresponding to the pointer size on this architecture. fn s_int(tcx: ty_ctxt) -> u8 { ret alt tcx.sess.get_targ_cfg().arch { session::arch_x86. { shape_i32 } session::arch_x86_64. { shape_i64 } session::arch_arm. { shape_i32 } }; } fn s_uint(tcx: ty_ctxt) -> u8 { ret alt tcx.sess.get_targ_cfg().arch { session::arch_x86. { shape_u32 } session::arch_x86_64. { shape_u64 } session::arch_arm. { shape_u32 } }; } fn s_float(tcx: ty_ctxt) -> u8 { ret alt tcx.sess.get_targ_cfg().arch { session::arch_x86. { shape_f64 } session::arch_x86_64. { shape_f64 } session::arch_arm. { shape_f64 } }; } fn s_variant_tag_t(tcx: ty_ctxt) -> u8 { ret s_int(tcx); } fn mk_ctxt(llmod: ModuleRef) -> ctxt { let llshapetablesty = trans_common::T_named_struct("shapes"); let llshapetables = str::as_buf("shapes", {|buf| lib::llvm::llvm::LLVMAddGlobal(llmod, llshapetablesty, buf) }); ret {mutable next_tag_id: 0u16, pad: 0u16, tag_id_to_index: common::new_def_hash(), mutable tag_order: [], resources: interner::mk(hash_res_info, eq_res_info), llshapetablesty: llshapetablesty, llshapetables: llshapetables}; } fn add_bool(&dest: [u8], val: bool) { dest += [if val { 1u8 } else { 0u8 }]; } fn add_u16(&dest: [u8], val: u16) { dest += [val & 0xffu16 as u8, val >> 8u16 as u8]; } fn add_substr(&dest: [u8], src: [u8]) { add_u16(dest, vec::len(src) as u16); dest += src; } fn shape_of(ccx: @crate_ctxt, t: ty::t, ty_param_map: [uint], is_obj_body: bool) -> [u8] { let s = []; alt ty::struct(ccx.tcx, t) { ty::ty_nil. | ty::ty_bool. | ty::ty_machine(ast::ty_u8.) | ty::ty_bot. { s += [shape_u8]; } ty::ty_int. { s += [s_int(ccx.tcx)]; } ty::ty_float. { s += [s_float(ccx.tcx)]; } ty::ty_uint. | ty::ty_ptr(_) | ty::ty_type. | ty::ty_native(_) { s += [s_uint(ccx.tcx)]; } ty::ty_machine(ast::ty_i8.) { s += [shape_i8]; } ty::ty_machine(ast::ty_u16.) { s += [shape_u16]; } ty::ty_machine(ast::ty_i16.) { s += [shape_i16]; } ty::ty_machine(ast::ty_u32.) | ty::ty_char. { s += [shape_u32]; } ty::ty_machine(ast::ty_i32.) { s += [shape_i32]; } ty::ty_machine(ast::ty_u64.) { s += [shape_u64]; } ty::ty_machine(ast::ty_i64.) { s += [shape_i64]; } ty::ty_machine(ast::ty_f32.) { s += [shape_f32]; } ty::ty_machine(ast::ty_f64.) { s += [shape_f64]; } ty::ty_str. { s += [shape_vec]; add_bool(s, true); // type is POD let unit_ty = ty::mk_mach(ccx.tcx, ast::ty_u8); add_substr(s, shape_of(ccx, unit_ty, ty_param_map, is_obj_body)); } ty::ty_tag(did, tps) { alt tag_kind(ccx, did) { tk_unit. { // FIXME: For now we do this. s += [s_variant_tag_t(ccx.tcx)]; } tk_enum. { s += [s_variant_tag_t(ccx.tcx)]; } tk_complex. { s += [shape_tag]; let sub = []; let id; alt ccx.shape_cx.tag_id_to_index.find(did) { none. { id = ccx.shape_cx.next_tag_id; ccx.shape_cx.tag_id_to_index.insert(did, id); ccx.shape_cx.tag_order += [did]; ccx.shape_cx.next_tag_id += 1u16; } some(existing_id) { id = existing_id; } } add_u16(sub, id as u16); add_u16(sub, vec::len(tps) as u16); for tp: ty::t in tps { let subshape = shape_of(ccx, tp, ty_param_map, is_obj_body); add_u16(sub, vec::len(subshape) as u16); sub += subshape; } s += sub; } } } ty::ty_box(mt) { s += [shape_box]; add_substr(s, shape_of(ccx, mt.ty, ty_param_map, is_obj_body)); } ty::ty_uniq(mt) { s += [shape_uniq]; add_substr(s, shape_of(ccx, mt.ty, ty_param_map, is_obj_body)); } ty::ty_vec(mt) { s += [shape_vec]; add_bool(s, ty::type_is_pod(ccx.tcx, mt.ty)); add_substr(s, shape_of(ccx, mt.ty, ty_param_map, is_obj_body)); } ty::ty_rec(fields) { s += [shape_struct]; let sub = []; for f: field in fields { sub += shape_of(ccx, f.mt.ty, ty_param_map, is_obj_body); } add_substr(s, sub); } ty::ty_tup(elts) { s += [shape_struct]; let sub = []; for elt in elts { sub += shape_of(ccx, elt, ty_param_map, is_obj_body); } add_substr(s, sub); } ty::ty_fn(_, _, _, _, _) { s += [shape_fn]; } ty::ty_native_fn(_, _) { s += [shape_u32]; } ty::ty_obj(_) { s += [shape_obj]; } ty::ty_res(did, raw_subt, tps) { let subt = ty::substitute_type_params(ccx.tcx, tps, raw_subt); let ri = {did: did, t: subt}; let id = interner::intern(ccx.shape_cx.resources, ri); s += [shape_res]; add_u16(s, id as u16); add_u16(s, vec::len(tps) as u16); for tp: ty::t in tps { add_substr(s, shape_of(ccx, tp, ty_param_map, is_obj_body)); } add_substr(s, shape_of(ccx, subt, ty_param_map, is_obj_body)); } ty::ty_var(n) { fail "shape_of ty_var"; } ty::ty_param(n, _) { if is_obj_body { // Just write in the parameter number. s += [shape_var, n as u8]; } else { // Find the type parameter in the parameter list. let found = false; let i = 0u; while i < vec::len(ty_param_map) { if n == ty_param_map[i] { s += [shape_var, i as u8]; found = true; break; } i += 1u; } assert (found); } } } ret s; } // FIXME: We might discover other variants as we traverse these. Handle this. fn shape_of_variant(ccx: @crate_ctxt, v: ty::variant_info, ty_param_count: uint) -> [u8] { let ty_param_map = []; let i = 0u; while i < ty_param_count { ty_param_map += [i]; i += 1u; } let s = []; for t: ty::t in v.args { s += shape_of(ccx, t, ty_param_map, false); } ret s; } fn gen_tag_shapes(ccx: @crate_ctxt) -> ValueRef { // Loop over all the tag variants and write their shapes into a data // buffer. As we do this, it's possible for us to discover new tags, so we // must do this first. let i = 0u; let data = []; let offsets = []; while i < vec::len(ccx.shape_cx.tag_order) { let did = ccx.shape_cx.tag_order[i]; let variants = ty::tag_variants(ccx.tcx, did); let item_tyt = ty::lookup_item_type(ccx.tcx, did); let ty_param_count = vec::len(item_tyt.kinds); for v: ty::variant_info in variants { offsets += [vec::len(data) as u16]; let variant_shape = shape_of_variant(ccx, v, ty_param_count); add_substr(data, variant_shape); } i += 1u; } // Now calculate the sizes of the header space (which contains offsets to // info records for each tag) and the info space (which contains offsets // to each variant shape). As we do so, build up the header. let header = []; let info = []; let header_sz = 2u16 * ccx.shape_cx.next_tag_id; let data_sz = vec::len(data) as u16; let info_sz = 0u16; for did_: ast::def_id in ccx.shape_cx.tag_order { let did = did_; // Satisfy alias checker. let variants = ty::tag_variants(ccx.tcx, did); add_u16(header, header_sz + info_sz); info_sz += 2u16 * ((vec::len(variants) as u16) + 2u16) + 3u16; } // Construct the info tables, which contain offsets to the shape of each // variant. Also construct the largest-variant table for each tag, which // contains the variants that the size-of operation needs to look at. let lv_table = []; i = 0u; for did_: ast::def_id in ccx.shape_cx.tag_order { let did = did_; // Satisfy alias checker. let variants = ty::tag_variants(ccx.tcx, did); add_u16(info, vec::len(variants) as u16); // Construct the largest-variants table. add_u16(info, header_sz + info_sz + data_sz + (vec::len(lv_table) as u16)); let lv = largest_variants(ccx, did); add_u16(lv_table, vec::len(lv) as u16); for v: uint in lv { add_u16(lv_table, v as u16); } // Determine whether the tag has dynamic size. let dynamic = false; for variant: ty::variant_info in variants { for typ: ty::t in variant.args { if ty::type_has_dynamic_size(ccx.tcx, typ) { dynamic = true; } } } // If we can, write in the static size and alignment of the tag. // Otherwise, write a placeholder. let size_align; if dynamic { size_align = {size: 0u16, align: 0u8}; } else { size_align = compute_static_tag_size(ccx, lv, did); } add_u16(info, size_align.size); info += [size_align.align]; // Now write in the offset of each variant. for v: ty::variant_info in variants { add_u16(info, header_sz + info_sz + offsets[i]); i += 1u; } } assert (i == vec::len(offsets)); assert (header_sz == vec::len(header) as u16); assert (info_sz == vec::len(info) as u16); assert (data_sz == vec::len(data) as u16); header += info; header += data; header += lv_table; ret mk_global(ccx, "tag_shapes", C_bytes(header), true); } fn gen_resource_shapes(ccx: @crate_ctxt) -> ValueRef { let dtors = []; let i = 0u; let len = interner::len(ccx.shape_cx.resources); while i < len { let ri = interner::get(ccx.shape_cx.resources, i); dtors += [trans_common::get_res_dtor(ccx, dummy_sp(), ri.did, ri.t)]; i += 1u; } ret mk_global(ccx, "resource_shapes", C_struct(dtors), true); } fn gen_shape_tables(ccx: @crate_ctxt) { let lltagstable = gen_tag_shapes(ccx); let llresourcestable = gen_resource_shapes(ccx); trans_common::set_struct_body(ccx.shape_cx.llshapetablesty, [val_ty(lltagstable), val_ty(llresourcestable)]); let lltables = C_named_struct(ccx.shape_cx.llshapetablesty, [lltagstable, llresourcestable]); lib::llvm::llvm::LLVMSetInitializer(ccx.shape_cx.llshapetables, lltables); lib::llvm::llvm::LLVMSetGlobalConstant(ccx.shape_cx.llshapetables, True); lib::llvm::llvm::LLVMSetLinkage(ccx.shape_cx.llshapetables, lib::llvm::LLVMInternalLinkage as lib::llvm::llvm::Linkage); }