// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Sorting methods use core::cmp::{Eq, Ord}; use core::prelude::*; use core::util; use core::vec::{len, push}; use core::vec; type Le = &'self fn(v1: &T, v2: &T) -> bool; /** * Merge sort. Returns a new vector containing the sorted list. * * Has worst case O(n log n) performance, best case O(n), but * is not space efficient. This is a stable sort. */ pub fn merge_sort(v: &[const T], le: Le) -> ~[T] { type Slice = (uint, uint); unsafe {return merge_sort_(v, (0u, len(v)), le);} fn merge_sort_(v: &[const T], slice: Slice, le: Le) -> ~[T] { let begin = slice.first(); let end = slice.second(); let v_len = end - begin; if v_len == 0 { return ~[]; } if v_len == 1 { return ~[v[begin]]; } let mid = v_len / 2 + begin; let a = (begin, mid); let b = (mid, end); return merge(le, merge_sort_(v, a, le), merge_sort_(v, b, le)); } fn merge(le: Le, a: &[T], b: &[T]) -> ~[T] { let mut rs = vec::with_capacity(len(a) + len(b)); let a_len = len(a); let mut a_ix = 0; let b_len = len(b); let mut b_ix = 0; while a_ix < a_len && b_ix < b_len { if le(&a[a_ix], &b[b_ix]) { rs.push(a[a_ix]); a_ix += 1; } else { rs.push(b[b_ix]); b_ix += 1; } } rs.push_all(vec::slice(a, a_ix, a_len)); rs.push_all(vec::slice(b, b_ix, b_len)); rs } } fn part(arr: &mut [T], left: uint, right: uint, pivot: uint, compare_func: Le) -> uint { arr[pivot] <-> arr[right]; let mut storage_index: uint = left; let mut i: uint = left; while i < right { // XXX: Unsafe because borrow check doesn't handle this right unsafe { let a: &T = cast::transmute(&mut arr[i]); let b: &T = cast::transmute(&mut arr[right]); if compare_func(a, b) { arr[i] <-> arr[storage_index]; storage_index += 1; } } i += 1; } arr[storage_index] <-> arr[right]; return storage_index; } fn qsort(arr: &mut [T], left: uint, right: uint, compare_func: Le) { if right > left { let pivot = (left + right) / 2u; let new_pivot = part::(arr, left, right, pivot, compare_func); if new_pivot != 0u { // Need to do this check before recursing due to overflow qsort::(arr, left, new_pivot - 1u, compare_func); } qsort::(arr, new_pivot + 1u, right, compare_func); } } /** * Quicksort. Sorts a mut vector in place. * * Has worst case O(n^2) performance, average case O(n log n). * This is an unstable sort. */ pub fn quick_sort(arr: &mut [T], compare_func: Le) { if len::(arr) == 0u { return; } qsort::(arr, 0u, len::(arr) - 1u, compare_func); } fn qsort3(arr: &mut [T], left: int, right: int) { if right <= left { return; } let v: T = arr[right]; let mut i: int = left - 1; let mut j: int = right; let mut p: int = i; let mut q: int = j; loop { i += 1; while arr[i] < v { i += 1; } j -= 1; while v < arr[j] { if j == left { break; } j -= 1; } if i >= j { break; } arr[i] <-> arr[j]; if arr[i] == v { p += 1; arr[p] <-> arr[i]; } if v == arr[j] { q -= 1; arr[j] <-> arr[q]; } } arr[i] <-> arr[right]; j = i - 1; i += 1; let mut k: int = left; while k < p { arr[k] <-> arr[j]; k += 1; j -= 1; if k == len::(arr) as int { break; } } k = right - 1; while k > q { arr[i] <-> arr[k]; k -= 1; i += 1; if k == 0 { break; } } qsort3::(arr, left, j); qsort3::(arr, i, right); } /** * Fancy quicksort. Sorts a mut vector in place. * * Based on algorithm presented by ~[Sedgewick and Bentley] * (http://www.cs.princeton.edu/~rs/talks/QuicksortIsOptimal.pdf). * According to these slides this is the algorithm of choice for * 'randomly ordered keys, abstract compare' & 'small number of key values'. * * This is an unstable sort. */ pub fn quick_sort3(arr: &mut [T]) { if arr.len() <= 1 { return; } qsort3(arr, 0, (arr.len() - 1) as int); } pub trait Sort { fn qsort(self); } impl Sort for &'self mut [T] { fn qsort(self) { quick_sort3(self); } } static MIN_MERGE: uint = 64; static MIN_GALLOP: uint = 7; static INITIAL_TMP_STORAGE: uint = 128; pub fn tim_sort(array: &mut [T]) { let size = array.len(); if size < 2 { return; } if size < MIN_MERGE { let init_run_len = count_run_ascending(array); binarysort(array, init_run_len); return; } let mut ms = MergeState(); let min_run = min_run_length(size); let mut idx = 0; let mut remaining = size; loop { let arr = vec::mut_slice(array, idx, size); let mut run_len: uint = count_run_ascending(arr); if run_len < min_run { let force = if remaining <= min_run {remaining} else {min_run}; let slice = vec::mut_slice(arr, 0, force); binarysort(slice, run_len); run_len = force; } ms.push_run(idx, run_len); ms.merge_collapse(array); idx += run_len; remaining -= run_len; if remaining == 0 { break; } } ms.merge_force_collapse(array); } fn binarysort(array: &mut [T], start: uint) { let size = array.len(); let mut start = start; fail_unless!(start <= size); if start == 0 { start += 1; } while start < size { let pivot = array[start]; let mut left = 0; let mut right = start; fail_unless!(left <= right); while left < right { let mid = (left + right) >> 1; if pivot < array[mid] { right = mid; } else { left = mid+1; } } fail_unless!(left == right); let mut n = start-left; copy_vec(array, left+1, array, left, n); array[left] = pivot; start += 1; } } // Reverse the order of elements in a slice, in place fn reverse_slice(v: &mut [T], start: uint, end:uint) { let mut i = start; while i < end / 2 { util::swap(&mut v[i], &mut v[end - i - 1]); i += 1; } } fn min_run_length(n: uint) -> uint { let mut n = n; let mut r = 0; // becomes 1 if any 1 bits are shifted off while n >= MIN_MERGE { r |= n & 1; n >>= 1; } return n + r; } fn count_run_ascending(array: &mut [T]) -> uint { let size = array.len(); fail_unless!(size > 0); if size == 1 { return 1; } let mut run = 2; if array[1] < array[0] { while run < size && array[run] < array[run-1] { run += 1; } reverse_slice(array, 0, run); } else { while run < size && array[run] >= array[run-1] { run += 1; } } return run; } fn gallop_left(key: &const T, array: &[const T], hint: uint) -> uint { let size = array.len(); fail_unless!(size != 0 && hint < size); let mut last_ofs = 0; let mut ofs = 1; if *key > array[hint] { // Gallop right until array[hint+last_ofs] < key <= array[hint+ofs] let max_ofs = size - hint; while ofs < max_ofs && *key > array[hint+ofs] { last_ofs = ofs; ofs = (ofs << 1) + 1; if ofs < last_ofs { ofs = max_ofs; } // uint overflow guard } if ofs > max_ofs { ofs = max_ofs; } last_ofs += hint; ofs += hint; } else { let max_ofs = hint + 1; while ofs < max_ofs && *key <= array[hint-ofs] { last_ofs = ofs; ofs = (ofs << 1) + 1; if ofs < last_ofs { ofs = max_ofs; } // uint overflow guard } if ofs > max_ofs { ofs = max_ofs; } let tmp = last_ofs; last_ofs = hint - ofs; ofs = hint - tmp; } fail_unless!((last_ofs < ofs || last_ofs+1 < ofs+1) && ofs <= size); last_ofs += 1; while last_ofs < ofs { let m = last_ofs + ((ofs - last_ofs) >> 1); if *key > array[m] { last_ofs = m+1; } else { ofs = m; } } fail_unless!(last_ofs == ofs); return ofs; } fn gallop_right(key: &const T, array: &[const T], hint: uint) -> uint { let size = array.len(); fail_unless!(size != 0 && hint < size); let mut last_ofs = 0; let mut ofs = 1; if *key >= array[hint] { // Gallop right until array[hint+last_ofs] <= key < array[hint+ofs] let max_ofs = size - hint; while ofs < max_ofs && *key >= array[hint+ofs] { last_ofs = ofs; ofs = (ofs << 1) + 1; if ofs < last_ofs { ofs = max_ofs; } } if ofs > max_ofs { ofs = max_ofs; } last_ofs += hint; ofs += hint; } else { // Gallop left until array[hint-ofs] <= key < array[hint-last_ofs] let max_ofs = hint + 1; while ofs < max_ofs && *key < array[hint-ofs] { last_ofs = ofs; ofs = (ofs << 1) + 1; if ofs < last_ofs { ofs = max_ofs; } } if ofs > max_ofs { ofs = max_ofs; } let tmp = last_ofs; last_ofs = hint - ofs; ofs = hint - tmp; } fail_unless!((last_ofs < ofs || last_ofs+1 < ofs+1) && ofs <= size); last_ofs += 1; while last_ofs < ofs { let m = last_ofs + ((ofs - last_ofs) >> 1); if *key >= array[m] { last_ofs = m + 1; } else { ofs = m; } } fail_unless!(last_ofs == ofs); return ofs; } struct RunState { base: uint, len: uint, } struct MergeState { min_gallop: uint, runs: ~[RunState], } // Fixme (#3853) Move into MergeState fn MergeState() -> MergeState { MergeState { min_gallop: MIN_GALLOP, runs: ~[], } } impl MergeState { fn push_run(&mut self, run_base: uint, run_len: uint) { let tmp = RunState{base: run_base, len: run_len}; self.runs.push(tmp); } fn merge_at(&mut self, n: uint, array: &mut [T]) { let mut size = self.runs.len(); fail_unless!(size >= 2); fail_unless!(n == size-2 || n == size-3); let mut b1 = self.runs[n].base; let mut l1 = self.runs[n].len; let b2 = self.runs[n+1].base; let l2 = self.runs[n+1].len; fail_unless!(l1 > 0 && l2 > 0); fail_unless!(b1 + l1 == b2); self.runs[n].len = l1 + l2; if n == size-3 { self.runs[n+1].base = self.runs[n+2].base; self.runs[n+1].len = self.runs[n+2].len; } let slice = vec::mut_slice(array, b1, b1+l1); let k = gallop_right(&const array[b2], slice, 0); b1 += k; l1 -= k; if l1 != 0 { let slice = vec::mut_slice(array, b2, b2+l2); let l2 = gallop_left( &const array[b1+l1-1],slice,l2-1); if l2 > 0 { if l1 <= l2 { self.merge_lo(array, b1, l1, b2, l2); } else { self.merge_hi(array, b1, l1, b2, l2); } } } self.runs.pop(); } fn merge_lo(&mut self, array: &mut [T], base1: uint, len1: uint, base2: uint, len2: uint) { fail_unless!(len1 != 0 && len2 != 0 && base1+len1 == base2); let mut tmp = ~[]; for uint::range(base1, base1+len1) |i| { tmp.push(array[i]); } let mut c1 = 0; let mut c2 = base2; let mut dest = base1; let mut len1 = len1; let mut len2 = len2; array[dest] <-> array[c2]; dest += 1; c2 += 1; len2 -= 1; if len2 == 0 { copy_vec(array, dest, tmp, 0, len1); return; } if len1 == 1 { copy_vec(array, dest, array, c2, len2); array[dest+len2] <-> tmp[c1]; return; } let mut min_gallop = self.min_gallop; loop { let mut count1 = 0; let mut count2 = 0; let mut break_outer = false; loop { fail_unless!(len1 > 1 && len2 != 0); if array[c2] < tmp[c1] { array[dest] <-> array[c2]; dest += 1; c2 += 1; len2 -= 1; count2 += 1; count1 = 0; if len2 == 0 { break_outer = true; } } else { array[dest] <-> tmp[c1]; dest += 1; c1 += 1; len1 -= 1; count1 += 1; count2 = 0; if len1 == 1 { break_outer = true; } } if break_outer || ((count1 | count2) >= min_gallop) { break; } } if break_outer { break; } // Start to gallop loop { fail_unless!(len1 > 1 && len2 != 0); let tmp_view = vec::const_slice(tmp, c1, c1+len1); count1 = gallop_right(&const array[c2], tmp_view, 0); if count1 != 0 { copy_vec(array, dest, tmp, c1, count1); dest += count1; c1 += count1; len1 -= count1; if len1 <= 1 { break_outer = true; break; } } array[dest] <-> array[c2]; dest += 1; c2 += 1; len2 -= 1; if len2 == 0 { break_outer = true; break; } let tmp_view = vec::const_slice(array, c2, c2+len2); count2 = gallop_left(&const tmp[c1], tmp_view, 0); if count2 != 0 { copy_vec(array, dest, array, c2, count2); dest += count2; c2 += count2; len2 -= count2; if len2 == 0 { break_outer = true; break; } } array[dest] <-> tmp[c1]; dest += 1; c1 += 1; len1 -= 1; if len1 == 1 { break_outer = true; break; } min_gallop -= 1; if !(count1 >= MIN_GALLOP || count2 >= MIN_GALLOP) { break; } } if break_outer { break; } if min_gallop < 0 { min_gallop = 0; } min_gallop += 2; // Penalize for leaving gallop } self.min_gallop = if min_gallop < 1 { 1 } else { min_gallop }; if len1 == 1 { fail_unless!(len2 > 0); copy_vec(array, dest, array, c2, len2); array[dest+len2] <-> tmp[c1]; } else if len1 == 0 { fail!(~"Comparison violates its contract!"); } else { fail_unless!(len2 == 0); fail_unless!(len1 > 1); copy_vec(array, dest, tmp, c1, len1); } } fn merge_hi(&mut self, array: &mut [T], base1: uint, len1: uint, base2: uint, len2: uint) { fail_unless!(len1 != 1 && len2 != 0 && base1 + len1 == base2); let mut tmp = ~[]; for uint::range(base2, base2+len2) |i| { tmp.push(array[i]); } let mut c1 = base1 + len1 - 1; let mut c2 = len2 - 1; let mut dest = base2 + len2 - 1; let mut len1 = len1; let mut len2 = len2; array[dest] <-> array[c1]; dest -= 1; c1 -= 1; len1 -= 1; if len1 == 0 { copy_vec(array, dest-(len2-1), tmp, 0, len2); return; } if len2 == 1 { dest -= len1; c1 -= len1; copy_vec(array, dest+1, array, c1+1, len1); array[dest] <-> tmp[c2]; return; } let mut min_gallop = self.min_gallop; loop { let mut count1 = 0; let mut count2 = 0; let mut break_outer = false; loop { fail_unless!(len1 != 0 && len2 > 1); if tmp[c2] < array[c1] { array[dest] <-> array[c1]; dest -= 1; c1 -= 1; len1 -= 1; count1 += 1; count2 = 0; if len1 == 0 { break_outer = true; } } else { array[dest] <-> tmp[c2]; dest -= 1; c2 -= 1; len2 -= 1; count2 += 1; count1 = 0; if len2 == 1 { break_outer = true; } } if break_outer || ((count1 | count2) >= min_gallop) { break; } } if break_outer { break; } // Start to gallop loop { fail_unless!(len2 > 1 && len1 != 0); let tmp_view = vec::mut_slice(array, base1, base1+len1); count1 = len1 - gallop_right( &const tmp[c2], tmp_view, len1-1); if count1 != 0 { dest -= count1; c1 -= count1; len1 -= count1; copy_vec(array, dest+1, array, c1+1, count1); if len1 == 0 { break_outer = true; break; } } array[dest] <-> tmp[c2]; dest -= 1; c2 -= 1; len2 -= 1; if len2 == 1 { break_outer = true; break; } let count2; { let tmp_view = vec::mut_slice(tmp, 0, len2); count2 = len2 - gallop_left(&const array[c1], tmp_view, len2-1); // Make tmp_view go out of scope to appease borrowck. } if count2 != 0 { dest -= count2; c2 -= count2; len2 -= count2; copy_vec(array, dest+1, tmp, c2+1, count2); if len2 <= 1 { break_outer = true; break; } } array[dest] <-> array[c1]; dest -= 1; c1 -= 1; len1 -= 1; if len1 == 0 { break_outer = true; break; } min_gallop -= 1; if !(count1 >= MIN_GALLOP || count2 >= MIN_GALLOP) { break; } } if break_outer { break; } if min_gallop < 0 { min_gallop = 0; } min_gallop += 2; // Penalize for leaving gallop } self.min_gallop = if min_gallop < 1 { 1 } else { min_gallop }; if len2 == 1 { fail_unless!(len1 > 0); dest -= len1; c1 -= len1; copy_vec(array, dest+1, array, c1+1, len1); array[dest] <-> tmp[c2]; } else if len2 == 0 { fail!(~"Comparison violates its contract!"); } else { fail_unless!(len1 == 0); fail_unless!(len2 != 0); copy_vec(array, dest-(len2-1), tmp, 0, len2); } } fn merge_collapse(&mut self, array: &mut [T]) { while self.runs.len() > 1 { let mut n = self.runs.len()-2; if n > 0 && self.runs[n-1].len <= self.runs[n].len + self.runs[n+1].len { if self.runs[n-1].len < self.runs[n+1].len { n -= 1; } } else if self.runs[n].len <= self.runs[n+1].len { /* keep going */ } else { break; } self.merge_at(n, array); } } fn merge_force_collapse(&mut self, array: &mut [T]) { while self.runs.len() > 1 { let mut n = self.runs.len()-2; if n > 0 { if self.runs[n-1].len < self.runs[n+1].len { n -= 1; } } self.merge_at(n, array); } } } #[inline(always)] fn copy_vec(dest: &mut [T], s1: uint, from: &[const T], s2: uint, len: uint) { fail_unless!(s1+len <= dest.len() && s2+len <= from.len()); let mut slice = ~[]; for uint::range(s2, s2+len) |i| { slice.push(from[i]); } for slice.eachi |i, v| { dest[s1+i] = *v; } } #[cfg(test)] mod test_qsort3 { use core::prelude::*; use sort::*; use core::vec; pub fn check_sort(v1: &mut [int], v2: &mut [int]) { let len = vec::len::(v1); quick_sort3::(v1); let mut i = 0; while i < len { // debug!(v2[i]); fail_unless!((v2[i] == v1[i])); i += 1; } } #[test] pub fn test() { { let mut v1 = ~[3, 7, 4, 5, 2, 9, 5, 8]; let mut v2 = ~[2, 3, 4, 5, 5, 7, 8, 9]; check_sort(v1, v2); } { let mut v1 = ~[1, 1, 1]; let mut v2 = ~[1, 1, 1]; check_sort(v1, v2); } { let mut v1: ~[int] = ~[]; let mut v2: ~[int] = ~[]; check_sort(v1, v2); } { let mut v1 = ~[9]; let mut v2 = ~[9]; check_sort(v1, v2); } { let mut v1 = ~[9, 3, 3, 3, 9]; let mut v2 = ~[3, 3, 3, 9, 9]; check_sort(v1, v2); } } } #[cfg(test)] mod test_qsort { use core::prelude::*; use sort::*; use core::int; use core::vec; pub fn check_sort(v1: &mut [int], v2: &mut [int]) { let len = vec::len::(v1); fn leual(a: &int, b: &int) -> bool { *a <= *b } quick_sort::(v1, leual); let mut i = 0u; while i < len { // debug!(v2[i]); fail_unless!((v2[i] == v1[i])); i += 1; } } #[test] pub fn test() { { let mut v1 = ~[3, 7, 4, 5, 2, 9, 5, 8]; let mut v2 = ~[2, 3, 4, 5, 5, 7, 8, 9]; check_sort(v1, v2); } { let mut v1 = ~[1, 1, 1]; let mut v2 = ~[1, 1, 1]; check_sort(v1, v2); } { let mut v1: ~[int] = ~[]; let mut v2: ~[int] = ~[]; check_sort(v1, v2); } { let mut v1 = ~[9]; let mut v2 = ~[9]; check_sort(v1, v2); } { let mut v1 = ~[9, 3, 3, 3, 9]; let mut v2 = ~[3, 3, 3, 9, 9]; check_sort(v1, v2); } } // Regression test for #750 #[test] pub fn test_simple() { let mut names = ~[2, 1, 3]; let expected = ~[1, 2, 3]; do quick_sort(names) |x, y| { int::le(*x, *y) }; let immut_names = names; let pairs = vec::zip_slice(expected, immut_names); for vec::each(pairs) |p| { let (a, b) = *p; debug!("%d %d", a, b); fail_unless!((a == b)); } } } #[cfg(test)] mod tests { use core::prelude::*; use sort::*; use core::vec; pub fn check_sort(v1: &[int], v2: &[int]) { let len = vec::len::(v1); pub fn le(a: &int, b: &int) -> bool { *a <= *b } let f = le; let v3 = merge_sort::(v1, f); let mut i = 0u; while i < len { debug!(v3[i]); fail_unless!((v3[i] == v2[i])); i += 1; } } #[test] pub fn test() { { let v1 = ~[3, 7, 4, 5, 2, 9, 5, 8]; let v2 = ~[2, 3, 4, 5, 5, 7, 8, 9]; check_sort(v1, v2); } { let v1 = ~[1, 1, 1]; let v2 = ~[1, 1, 1]; check_sort(v1, v2); } { let v1:~[int] = ~[]; let v2:~[int] = ~[]; check_sort(v1, v2); } { let v1 = ~[9]; let v2 = ~[9]; check_sort(v1, v2); } { let v1 = ~[9, 3, 3, 3, 9]; let v2 = ~[3, 3, 3, 9, 9]; check_sort(v1, v2); } } #[test] pub fn test_merge_sort_mutable() { pub fn le(a: &int, b: &int) -> bool { *a <= *b } let mut v1 = ~[3, 2, 1]; let v2 = merge_sort(v1, le); fail_unless!(v2 == ~[1, 2, 3]); } #[test] pub fn test_merge_sort_stability() { // tjc: funny that we have to use parens fn ile(x: &(&'static str), y: &(&'static str)) -> bool { unsafe // to_lower is not pure... { let x = x.to_lower(); let y = y.to_lower(); x <= y } } let names1 = ~["joe bob", "Joe Bob", "Jack Brown", "JOE Bob", "Sally Mae", "JOE BOB", "Alex Andy"]; let names2 = ~["Alex Andy", "Jack Brown", "joe bob", "Joe Bob", "JOE Bob", "JOE BOB", "Sally Mae"]; let names3 = merge_sort(names1, ile); fail_unless!(names3 == names2); } } #[cfg(test)] mod test_tim_sort { use core::prelude::*; use sort::tim_sort; use core::rand::RngUtil; use core::rand; use core::vec; struct CVal { val: float, } impl Ord for CVal { fn lt(&self, other: &CVal) -> bool { unsafe { let rng = rand::Rng(); if rng.gen_float() > 0.995 { fail!(~"It's happening!!!"); } } (*self).val < other.val } fn le(&self, other: &CVal) -> bool { (*self).val <= other.val } fn gt(&self, other: &CVal) -> bool { (*self).val > other.val } fn ge(&self, other: &CVal) -> bool { (*self).val >= other.val } } fn check_sort(v1: &mut [int], v2: &mut [int]) { let len = vec::len::(v1); tim_sort::(v1); let mut i = 0u; while i < len { // debug!(v2[i]); fail_unless!((v2[i] == v1[i])); i += 1u; } } #[test] fn test() { { let mut v1 = ~[3, 7, 4, 5, 2, 9, 5, 8]; let mut v2 = ~[2, 3, 4, 5, 5, 7, 8, 9]; check_sort(v1, v2); } { let mut v1 = ~[1, 1, 1]; let mut v2 = ~[1, 1, 1]; check_sort(v1, v2); } { let mut v1: ~[int] = ~[]; let mut v2: ~[int] = ~[]; check_sort(v1, v2); } { let mut v1 = ~[9]; let mut v2 = ~[9]; check_sort(v1, v2); } { let mut v1 = ~[9, 3, 3, 3, 9]; let mut v2 = ~[3, 3, 3, 9, 9]; check_sort(v1, v2); } } #[test] #[should_fail] #[cfg(unix)] fn crash_test() { let rng = rand::Rng(); let mut arr = do vec::from_fn(1000) |_i| { let randVal = rng.gen_float(); CVal { val: randVal } }; tim_sort(arr); fail!(~"Guarantee the fail"); } struct DVal { val: uint } impl Ord for DVal { fn lt(&self, _x: &DVal) -> bool { true } fn le(&self, _x: &DVal) -> bool { true } fn gt(&self, _x: &DVal) -> bool { true } fn ge(&self, _x: &DVal) -> bool { true } } #[test] fn test_bad_Ord_impl() { let rng = rand::Rng(); let mut arr = do vec::from_fn(500) |_i| { let randVal = rng.gen_uint(); DVal { val: randVal } }; tim_sort(arr); } } #[cfg(test)] mod big_tests { use core::prelude::*; use sort::*; use core::rand::RngUtil; use core::rand; use core::task; use core::uint; use core::vec; #[test] fn test_unique() { let low = 5; let high = 10; tabulate_unique(low, high); } #[test] fn test_managed() { let low = 5; let high = 10; tabulate_managed(low, high); } fn multiplyVec(arr: &[const T], num: uint) -> ~[T] { let size = arr.len(); let res = do vec::from_fn(num) |i| { arr[i % size] }; res } fn makeRange(n: uint) -> ~[uint] { let one = do vec::from_fn(n) |i| { i }; let mut two = copy one; vec::reverse(two); vec::append(two, one) } fn tabulate_unique(lo: uint, hi: uint) { fn isSorted(arr: &[const T]) { for uint::range(0, arr.len()-1) |i| { if arr[i] > arr[i+1] { fail!(~"Array not sorted"); } } } let rng = rand::Rng(); for uint::range(lo, hi) |i| { let n = 1 << i; let arr = do vec::from_fn(n) |_i| { rng.gen_float() }; let mut arr = arr; tim_sort(arr); // *sort isSorted(arr); vec::reverse(arr); tim_sort(arr); // \sort isSorted(arr); tim_sort(arr); // /sort isSorted(arr); for 3.times { let i1 = rng.gen_uint_range(0, n); let i2 = rng.gen_uint_range(0, n); arr[i1] <-> arr[i2]; } tim_sort(arr); // 3sort isSorted(arr); if n >= 10 { let size = arr.len(); let mut idx = 1; while idx <= 10 { arr[size-idx] = rng.gen_float(); idx += 1; } } tim_sort(arr); // +sort isSorted(arr); for (n/100).times { let idx = rng.gen_uint_range(0, n); arr[idx] = rng.gen_float(); } tim_sort(arr); isSorted(arr); let mut arr = if n > 4 { let part = vec::slice(arr, 0, 4); multiplyVec(part, n) } else { arr }; tim_sort(arr); // ~sort isSorted(arr); let mut arr = vec::from_elem(n, -0.5); tim_sort(arr); // =sort isSorted(arr); let half = n / 2; let mut arr = makeRange(half).map(|i| *i as float); tim_sort(arr); // !sort isSorted(arr); } } fn tabulate_managed(lo: uint, hi: uint) { fn isSorted(arr: &[const @T]) { for uint::range(0, arr.len()-1) |i| { if arr[i] > arr[i+1] { fail!(~"Array not sorted"); } } } let rng = rand::Rng(); for uint::range(lo, hi) |i| { let n = 1 << i; let arr = do vec::from_fn(n) |_i| { @rng.gen_float() }; let mut arr = arr; tim_sort(arr); // *sort isSorted(arr); vec::reverse(arr); tim_sort(arr); // \sort isSorted(arr); tim_sort(arr); // /sort isSorted(arr); for 3.times { let i1 = rng.gen_uint_range(0, n); let i2 = rng.gen_uint_range(0, n); arr[i1] <-> arr[i2]; } tim_sort(arr); // 3sort isSorted(arr); if n >= 10 { let size = arr.len(); let mut idx = 1; while idx <= 10 { arr[size-idx] = @rng.gen_float(); idx += 1; } } tim_sort(arr); // +sort isSorted(arr); for (n/100).times { let idx = rng.gen_uint_range(0, n); arr[idx] = @rng.gen_float(); } tim_sort(arr); isSorted(arr); let mut arr = if n > 4 { let part = vec::slice(arr, 0, 4); multiplyVec(part, n) } else { arr }; tim_sort(arr); // ~sort isSorted(arr); let mut arr = vec::from_elem(n, @(-0.5)); tim_sort(arr); // =sort isSorted(arr); let half = n / 2; let mut arr = makeRange(half).map(|i| @(*i as float)); tim_sort(arr); // !sort isSorted(arr); } } struct LVal { val: uint, key: &'self fn(@uint), } #[unsafe_destructor] impl<'self> Drop for LVal<'self> { fn finalize(&self) { let x = unsafe { task::local_data::local_data_get(self.key) }; match x { Some(@y) => { unsafe { task::local_data::local_data_set(self.key, @(y+1)); } } _ => fail!(~"Expected key to work"), } } } impl<'self> Ord for LVal<'self> { fn lt(&self, other: &'a LVal<'self>) -> bool { (*self).val < other.val } fn le(&self, other: &'a LVal<'self>) -> bool { (*self).val <= other.val } fn gt(&self, other: &'a LVal<'self>) -> bool { (*self).val > other.val } fn ge(&self, other: &'a LVal<'self>) -> bool { (*self).val >= other.val } } } // Local Variables: // mode: rust; // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: