// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A pass that checks to make sure private fields and methods aren't used //! outside their scopes. This pass will also generate a set of exported items //! which are available for use externally when compiled as a library. use std::mem::replace; use metadata::csearch; use middle::def; use middle::lint; use middle::resolve; use middle::ty; use middle::typeck::{MethodCall, MethodMap, MethodOrigin, MethodParam}; use middle::typeck::{MethodStatic, MethodObject}; use util::nodemap::{NodeMap, NodeSet}; use syntax::ast; use syntax::ast_map; use syntax::ast_util::{is_local, local_def}; use syntax::attr; use syntax::codemap::Span; use syntax::parse::token; use syntax::owned_slice::OwnedSlice; use syntax::visit; use syntax::visit::Visitor; type Context<'a> = (&'a MethodMap, &'a resolve::ExportMap2); /// A set of AST nodes exported by the crate. pub type ExportedItems = NodeSet; /// A set of AST nodes that are fully public in the crate. This map is used for /// documentation purposes (reexporting a private struct inlines the doc, /// reexporting a public struct doesn't inline the doc). pub type PublicItems = NodeSet; /// Result of a checking operation - None => no errors were found. Some => an /// error and contains the span and message for reporting that error and /// optionally the same for a note about the error. type CheckResult = Option<(Span, String, Option<(Span, String)>)>; //////////////////////////////////////////////////////////////////////////////// /// The parent visitor, used to determine what's the parent of what (node-wise) //////////////////////////////////////////////////////////////////////////////// struct ParentVisitor { parents: NodeMap, curparent: ast::NodeId, } impl Visitor<()> for ParentVisitor { fn visit_item(&mut self, item: &ast::Item, _: ()) { self.parents.insert(item.id, self.curparent); let prev = self.curparent; match item.node { ast::ItemMod(..) => { self.curparent = item.id; } // Enum variants are parented to the enum definition itself because // they inherit privacy ast::ItemEnum(ref def, _) => { for variant in def.variants.iter() { // The parent is considered the enclosing enum because the // enum will dictate the privacy visibility of this variant // instead. self.parents.insert(variant.node.id, item.id); } } // Trait methods are always considered "public", but if the trait is // private then we need some private item in the chain from the // method to the root. In this case, if the trait is private, then // parent all the methods to the trait to indicate that they're // private. ast::ItemTrait(_, _, _, ref methods) if item.vis != ast::Public => { for m in methods.iter() { match *m { ast::Provided(ref m) => self.parents.insert(m.id, item.id), ast::Required(ref m) => self.parents.insert(m.id, item.id), }; } } _ => {} } visit::walk_item(self, item, ()); self.curparent = prev; } fn visit_foreign_item(&mut self, a: &ast::ForeignItem, _: ()) { self.parents.insert(a.id, self.curparent); visit::walk_foreign_item(self, a, ()); } fn visit_fn(&mut self, a: &visit::FnKind, b: &ast::FnDecl, c: &ast::Block, d: Span, id: ast::NodeId, _: ()) { // We already took care of some trait methods above, otherwise things // like impl methods and pub trait methods are parented to the // containing module, not the containing trait. if !self.parents.contains_key(&id) { self.parents.insert(id, self.curparent); } visit::walk_fn(self, a, b, c, d, ()); } fn visit_struct_def(&mut self, s: &ast::StructDef, _: ast::Ident, _: &ast::Generics, n: ast::NodeId, _: ()) { // Struct constructors are parented to their struct definitions because // they essentially are the struct definitions. match s.ctor_id { Some(id) => { self.parents.insert(id, n); } None => {} } // While we have the id of the struct definition, go ahead and parent // all the fields. for field in s.fields.iter() { self.parents.insert(field.node.id, self.curparent); } visit::walk_struct_def(self, s, ()) } } //////////////////////////////////////////////////////////////////////////////// /// The embargo visitor, used to determine the exports of the ast //////////////////////////////////////////////////////////////////////////////// struct EmbargoVisitor<'a> { tcx: &'a ty::ctxt, exp_map2: &'a resolve::ExportMap2, // This flag is an indicator of whether the previous item in the // hierarchical chain was exported or not. This is the indicator of whether // children should be exported as well. Note that this can flip from false // to true if a reexported module is entered (or an action similar). prev_exported: bool, // This is a list of all exported items in the AST. An exported item is any // function/method/item which is usable by external crates. This essentially // means that the result is "public all the way down", but the "path down" // may jump across private boundaries through reexport statements. exported_items: ExportedItems, // This sets contains all the destination nodes which are publicly // re-exported. This is *not* a set of all reexported nodes, only a set of // all nodes which are reexported *and* reachable from external crates. This // means that the destination of the reexport is exported, and hence the // destination must also be exported. reexports: NodeSet, // These two fields are closely related to one another in that they are only // used for generation of the 'PublicItems' set, not for privacy checking at // all public_items: PublicItems, prev_public: bool, } impl<'a> EmbargoVisitor<'a> { // There are checks inside of privacy which depend on knowing whether a // trait should be exported or not. The two current consumers of this are: // // 1. Should default methods of a trait be exported? // 2. Should the methods of an implementation of a trait be exported? // // The answer to both of these questions partly rely on whether the trait // itself is exported or not. If the trait is somehow exported, then the // answers to both questions must be yes. Right now this question involves // more analysis than is currently done in rustc, so we conservatively // answer "yes" so that all traits need to be exported. fn exported_trait(&self, _id: ast::NodeId) -> bool { true } } impl<'a> Visitor<()> for EmbargoVisitor<'a> { fn visit_item(&mut self, item: &ast::Item, _: ()) { let orig_all_pub = self.prev_public; self.prev_public = orig_all_pub && item.vis == ast::Public; if self.prev_public { self.public_items.insert(item.id); } let orig_all_exported = self.prev_exported; match item.node { // impls/extern blocks do not break the "public chain" because they // cannot have visibility qualifiers on them anyway ast::ItemImpl(..) | ast::ItemForeignMod(..) => {} // Traits are a little special in that even if they themselves are // not public they may still be exported. ast::ItemTrait(..) => { self.prev_exported = self.exported_trait(item.id); } // Private by default, hence we only retain the "public chain" if // `pub` is explicitly listed. _ => { self.prev_exported = (orig_all_exported && item.vis == ast::Public) || self.reexports.contains(&item.id); } } let public_first = self.prev_exported && self.exported_items.insert(item.id); match item.node { // Enum variants inherit from their parent, so if the enum is // public all variants are public unless they're explicitly priv ast::ItemEnum(ref def, _) if public_first => { for variant in def.variants.iter() { self.exported_items.insert(variant.node.id); } } // Implementations are a little tricky to determine what's exported // out of them. Here's a few cases which are currently defined: // // * Impls for private types do not need to export their methods // (either public or private methods) // // * Impls for public types only have public methods exported // // * Public trait impls for public types must have all methods // exported. // // * Private trait impls for public types can be ignored // // * Public trait impls for private types have their methods // exported. I'm not entirely certain that this is the correct // thing to do, but I have seen use cases of where this will cause // undefined symbols at linkage time if this case is not handled. // // * Private trait impls for private types can be completely ignored ast::ItemImpl(_, _, ref ty, ref methods) => { let public_ty = match ty.node { ast::TyPath(_, _, id) => { match self.tcx.def_map.borrow().get_copy(&id) { def::DefPrimTy(..) => true, def => { let did = def.def_id(); !is_local(did) || self.exported_items.contains(&did.node) } } } _ => true, }; let tr = ty::impl_trait_ref(self.tcx, local_def(item.id)); let public_trait = tr.clone().map_or(false, |tr| { !is_local(tr.def_id) || self.exported_items.contains(&tr.def_id.node) }); if public_ty || public_trait { for method in methods.iter() { let meth_public = match method.explicit_self.node { ast::SelfStatic => public_ty, _ => true, } && method.vis == ast::Public; if meth_public || tr.is_some() { self.exported_items.insert(method.id); } } } } // Default methods on traits are all public so long as the trait // is public ast::ItemTrait(_, _, _, ref methods) if public_first => { for method in methods.iter() { match *method { ast::Provided(ref m) => { debug!("provided {}", m.id); self.exported_items.insert(m.id); } ast::Required(ref m) => { debug!("required {}", m.id); self.exported_items.insert(m.id); } } } } // Struct constructors are public if the struct is all public. ast::ItemStruct(ref def, _) if public_first => { match def.ctor_id { Some(id) => { self.exported_items.insert(id); } None => {} } } ast::ItemTy(ref ty, _) if public_first => { match ty.node { ast::TyPath(_, _, id) => { match self.tcx.def_map.borrow().get_copy(&id) { def::DefPrimTy(..) => {}, def => { let did = def.def_id(); if is_local(did) { self.exported_items.insert(did.node); } } } } _ => {} } } _ => {} } visit::walk_item(self, item, ()); self.prev_exported = orig_all_exported; self.prev_public = orig_all_pub; } fn visit_foreign_item(&mut self, a: &ast::ForeignItem, _: ()) { if self.prev_exported && a.vis == ast::Public { self.exported_items.insert(a.id); } } fn visit_mod(&mut self, m: &ast::Mod, _sp: Span, id: ast::NodeId, _: ()) { // This code is here instead of in visit_item so that the // crate module gets processed as well. if self.prev_exported { let exp_map2 = self.exp_map2.borrow(); assert!(exp_map2.contains_key(&id), "wut {:?}", id); for export in exp_map2.get(&id).iter() { if is_local(export.def_id) { self.reexports.insert(export.def_id.node); } } } visit::walk_mod(self, m, ()) } } //////////////////////////////////////////////////////////////////////////////// /// The privacy visitor, where privacy checks take place (violations reported) //////////////////////////////////////////////////////////////////////////////// struct PrivacyVisitor<'a> { tcx: &'a ty::ctxt, curitem: ast::NodeId, in_fn: bool, in_foreign: bool, parents: NodeMap, external_exports: resolve::ExternalExports, last_private_map: resolve::LastPrivateMap, } enum PrivacyResult { Allowable, ExternallyDenied, DisallowedBy(ast::NodeId), } enum FieldName { UnnamedField(uint), // index // FIXME #6993: change type (and name) from Ident to Name NamedField(ast::Ident), } impl<'a> PrivacyVisitor<'a> { // used when debugging fn nodestr(&self, id: ast::NodeId) -> String { self.tcx.map.node_to_str(id).to_string() } // Determines whether the given definition is public from the point of view // of the current item. fn def_privacy(&self, did: ast::DefId) -> PrivacyResult { if !is_local(did) { if self.external_exports.contains(&did) { debug!("privacy - {:?} was externally exported", did); return Allowable; } debug!("privacy - is {:?} a public method", did); return match self.tcx.methods.borrow().find(&did) { Some(meth) => { debug!("privacy - well at least it's a method: {:?}", meth); match meth.container { ty::TraitContainer(id) => { debug!("privacy - recursing on trait {:?}", id); self.def_privacy(id) } ty::ImplContainer(id) => { match ty::impl_trait_ref(self.tcx, id) { Some(t) => { debug!("privacy - impl of trait {:?}", id); self.def_privacy(t.def_id) } None => { debug!("privacy - found a method {:?}", meth.vis); if meth.vis == ast::Public { Allowable } else { ExternallyDenied } } } } } } None => { debug!("privacy - nope, not even a method"); ExternallyDenied } }; } debug!("privacy - local {} not public all the way down", self.tcx.map.node_to_str(did.node)); // return quickly for things in the same module if self.parents.find(&did.node) == self.parents.find(&self.curitem) { debug!("privacy - same parent, we're done here"); return Allowable; } // We now know that there is at least one private member between the // destination and the root. let mut closest_private_id = did.node; loop { debug!("privacy - examining {}", self.nodestr(closest_private_id)); let vis = match self.tcx.map.find(closest_private_id) { // If this item is a method, then we know for sure that it's an // actual method and not a static method. The reason for this is // that these cases are only hit in the ExprMethodCall // expression, and ExprCall will have its path checked later // (the path of the trait/impl) if it's a static method. // // With this information, then we can completely ignore all // trait methods. The privacy violation would be if the trait // couldn't get imported, not if the method couldn't be used // (all trait methods are public). // // However, if this is an impl method, then we dictate this // decision solely based on the privacy of the method // invocation. // FIXME(#10573) is this the right behavior? Why not consider // where the method was defined? Some(ast_map::NodeMethod(ref m)) => { let imp = self.tcx.map.get_parent_did(closest_private_id); match ty::impl_trait_ref(self.tcx, imp) { Some(..) => return Allowable, _ if m.vis == ast::Public => return Allowable, _ => m.vis } } Some(ast_map::NodeTraitMethod(_)) => { return Allowable; } // This is not a method call, extract the visibility as one // would normally look at it Some(ast_map::NodeItem(it)) => it.vis, Some(ast_map::NodeForeignItem(_)) => { self.tcx.map.get_foreign_vis(closest_private_id) } Some(ast_map::NodeVariant(..)) => { ast::Public // need to move up a level (to the enum) } _ => ast::Public, }; if vis != ast::Public { break } // if we've reached the root, then everything was allowable and this // access is public. if closest_private_id == ast::CRATE_NODE_ID { return Allowable } closest_private_id = *self.parents.get(&closest_private_id); // If we reached the top, then we were public all the way down and // we can allow this access. if closest_private_id == ast::DUMMY_NODE_ID { return Allowable } } debug!("privacy - closest priv {}", self.nodestr(closest_private_id)); if self.private_accessible(closest_private_id) { Allowable } else { DisallowedBy(closest_private_id) } } /// For a local private node in the AST, this function will determine /// whether the node is accessible by the current module that iteration is /// inside. fn private_accessible(&self, id: ast::NodeId) -> bool { let parent = *self.parents.get(&id); debug!("privacy - accessible parent {}", self.nodestr(parent)); // After finding `did`'s closest private member, we roll ourselves back // to see if this private member's parent is anywhere in our ancestry. // By the privacy rules, we can access all of our ancestor's private // members, so that's why we test the parent, and not the did itself. let mut cur = self.curitem; loop { debug!("privacy - questioning {}, {:?}", self.nodestr(cur), cur); match cur { // If the relevant parent is in our history, then we're allowed // to look inside any of our ancestor's immediate private items, // so this access is valid. x if x == parent => return true, // If we've reached the root, then we couldn't access this item // in the first place ast::DUMMY_NODE_ID => return false, // Keep going up _ => {} } cur = *self.parents.get(&cur); } } fn report_error(&self, result: CheckResult) -> bool { match result { None => true, Some((span, msg, note)) => { self.tcx.sess.span_err(span, msg.as_slice()); match note { Some((span, msg)) => { self.tcx.sess.span_note(span, msg.as_slice()) } None => {}, } false }, } } /// Guarantee that a particular definition is public. Returns a CheckResult /// which contains any errors found. These can be reported using `report_error`. /// If the result is `None`, no errors were found. fn ensure_public(&self, span: Span, to_check: ast::DefId, source_did: Option, msg: &str) -> CheckResult { let id = match self.def_privacy(to_check) { ExternallyDenied => { return Some((span, format!("{} is private", msg), None)) } Allowable => return None, DisallowedBy(id) => id, }; // If we're disallowed by a particular id, then we attempt to give a // nice error message to say why it was disallowed. It was either // because the item itself is private or because its parent is private // and its parent isn't in our ancestry. let (err_span, err_msg) = if id == source_did.unwrap_or(to_check).node { return Some((span, format!("{} is private", msg), None)); } else { (span, format!("{} is inaccessible", msg)) }; let item = match self.tcx.map.find(id) { Some(ast_map::NodeItem(item)) => { match item.node { // If an impl disallowed this item, then this is resolve's // way of saying that a struct/enum's static method was // invoked, and the struct/enum itself is private. Crawl // back up the chains to find the relevant struct/enum that // was private. ast::ItemImpl(_, _, ref ty, _) => { let id = match ty.node { ast::TyPath(_, _, id) => id, _ => return Some((err_span, err_msg, None)), }; let def = self.tcx.def_map.borrow().get_copy(&id); let did = def.def_id(); assert!(is_local(did)); match self.tcx.map.get(did.node) { ast_map::NodeItem(item) => item, _ => self.tcx.sess.span_bug(item.span, "path is not an item") } } _ => item } } Some(..) | None => return Some((err_span, err_msg, None)), }; let desc = match item.node { ast::ItemMod(..) => "module", ast::ItemTrait(..) => "trait", ast::ItemStruct(..) => "struct", ast::ItemEnum(..) => "enum", _ => return Some((err_span, err_msg, None)) }; let msg = format!("{} `{}` is private", desc, token::get_ident(item.ident)); Some((err_span, err_msg, Some((span, msg)))) } // Checks that a field is in scope. fn check_field(&mut self, span: Span, id: ast::DefId, name: FieldName) { let fields = ty::lookup_struct_fields(self.tcx, id); let field = match name { NamedField(ident) => { debug!("privacy - check named field {} in struct {}", ident.name, id); fields.iter().find(|f| f.name == ident.name).unwrap() } UnnamedField(idx) => fields.get(idx) }; if field.vis == ast::Public || (is_local(field.id) && self.private_accessible(field.id.node)) { return } let struct_type = ty::lookup_item_type(self.tcx, id).ty; let struct_desc = match ty::get(struct_type).sty { ty::ty_struct(_, _) => format!("struct `{}`", ty::item_path_str(self.tcx, id)), ty::ty_bare_fn(ty::BareFnTy { sig: ty::FnSig { output, .. }, .. }) => { // Struct `id` is really a struct variant of an enum, // and we're really looking at the variant's constructor // function. So get the return type for a detailed error // message. let enum_id = match ty::get(output).sty { ty::ty_enum(id, _) => id, _ => self.tcx.sess.span_bug(span, "enum variant doesn't \ belong to an enum") }; format!("variant `{}` of enum `{}`", ty::with_path(self.tcx, id, |mut p| p.last().unwrap()), ty::item_path_str(self.tcx, enum_id)) } _ => self.tcx.sess.span_bug(span, "can't find struct for field") }; let msg = match name { NamedField(name) => format!("field `{}` of {} is private", token::get_ident(name), struct_desc), UnnamedField(idx) => format!("field \\#{} of {} is private", idx + 1, struct_desc), }; self.tcx.sess.span_err(span, msg.as_slice()); } // Given the ID of a method, checks to ensure it's in scope. fn check_static_method(&mut self, span: Span, method_id: ast::DefId, name: ast::Ident) { // If the method is a default method, we need to use the def_id of // the default implementation. let method_id = ty::method(self.tcx, method_id).provided_source .unwrap_or(method_id); let string = token::get_ident(name); self.report_error(self.ensure_public(span, method_id, None, format!("method `{}`", string).as_slice())); } // Checks that a path is in scope. fn check_path(&mut self, span: Span, path_id: ast::NodeId, path: &ast::Path) { debug!("privacy - path {}", self.nodestr(path_id)); let orig_def = self.tcx.def_map.borrow().get_copy(&path_id); let ck = |tyname: &str| { let ck_public = |def: ast::DefId| { let name = token::get_ident(path.segments .last() .unwrap() .identifier); let origdid = orig_def.def_id(); self.ensure_public(span, def, Some(origdid), format!("{} `{}`", tyname, name).as_slice()) }; match *self.last_private_map.get(&path_id) { resolve::LastMod(resolve::AllPublic) => {}, resolve::LastMod(resolve::DependsOn(def)) => { self.report_error(ck_public(def)); }, resolve::LastImport{value_priv: value_priv, value_used: check_value, type_priv: type_priv, type_used: check_type} => { // This dance with found_error is because we don't want to report // a privacy error twice for the same directive. let found_error = match (type_priv, check_type) { (Some(resolve::DependsOn(def)), resolve::Used) => { !self.report_error(ck_public(def)) }, _ => false, }; if !found_error { match (value_priv, check_value) { (Some(resolve::DependsOn(def)), resolve::Used) => { self.report_error(ck_public(def)); }, _ => {}, } } // If an import is not used in either namespace, we still // want to check that it could be legal. Therefore we check // in both namespaces and only report an error if both would // be illegal. We only report one error, even if it is // illegal to import from both namespaces. match (value_priv, check_value, type_priv, check_type) { (Some(p), resolve::Unused, None, _) | (None, _, Some(p), resolve::Unused) => { let p = match p { resolve::AllPublic => None, resolve::DependsOn(def) => ck_public(def), }; if p.is_some() { self.report_error(p); } }, (Some(v), resolve::Unused, Some(t), resolve::Unused) => { let v = match v { resolve::AllPublic => None, resolve::DependsOn(def) => ck_public(def), }; let t = match t { resolve::AllPublic => None, resolve::DependsOn(def) => ck_public(def), }; match (v, t) { (Some(_), Some(t)) => { self.report_error(Some(t)); }, _ => {}, } }, _ => {}, } }, } }; // FIXME(#12334) Imports can refer to definitions in both the type and // value namespaces. The privacy information is aware of this, but the // def map is not. Therefore the names we work out below will not always // be accurate and we can get slightly wonky error messages (but type // checking is always correct). match self.tcx.def_map.borrow().get_copy(&path_id) { def::DefStaticMethod(..) => ck("static method"), def::DefFn(..) => ck("function"), def::DefStatic(..) => ck("static"), def::DefVariant(..) => ck("variant"), def::DefTy(..) => ck("type"), def::DefTrait(..) => ck("trait"), def::DefStruct(..) => ck("struct"), def::DefMethod(_, Some(..)) => ck("trait method"), def::DefMethod(..) => ck("method"), def::DefMod(..) => ck("module"), _ => {} } } // Checks that a method is in scope. fn check_method(&mut self, span: Span, origin: MethodOrigin, ident: ast::Ident) { match origin { MethodStatic(method_id) => { self.check_static_method(span, method_id, ident) } // Trait methods are always all public. The only controlling factor // is whether the trait itself is accessible or not. MethodParam(MethodParam { trait_id: trait_id, .. }) | MethodObject(MethodObject { trait_id: trait_id, .. }) => { self.report_error(self.ensure_public(span, trait_id, None, "source trait")); } } } } impl<'a> Visitor<()> for PrivacyVisitor<'a> { fn visit_item(&mut self, item: &ast::Item, _: ()) { // Do not check privacy inside items with the resolve_unexported // attribute. This is used for the test runner. if attr::contains_name(item.attrs.as_slice(), "!resolve_unexported") { return; } let orig_curitem = replace(&mut self.curitem, item.id); visit::walk_item(self, item, ()); self.curitem = orig_curitem; } fn visit_expr(&mut self, expr: &ast::Expr, _: ()) { match expr.node { ast::ExprField(base, ident, _) => { match ty::get(ty::expr_ty_adjusted(self.tcx, base)).sty { ty::ty_struct(id, _) => { self.check_field(expr.span, id, NamedField(ident)); } _ => {} } } ast::ExprMethodCall(ident, _, _) => { let method_call = MethodCall::expr(expr.id); match self.tcx.method_map.borrow().find(&method_call) { None => { self.tcx.sess.span_bug(expr.span, "method call not in \ method map"); } Some(method) => { debug!("(privacy checking) checking impl method"); self.check_method(expr.span, method.origin, ident.node); } } } ast::ExprStruct(_, ref fields, _) => { match ty::get(ty::expr_ty(self.tcx, expr)).sty { ty::ty_struct(id, _) => { for field in (*fields).iter() { self.check_field(expr.span, id, NamedField(field.ident.node)); } } ty::ty_enum(_, _) => { match self.tcx.def_map.borrow().get_copy(&expr.id) { def::DefVariant(_, variant_id, _) => { for field in fields.iter() { self.check_field(expr.span, variant_id, NamedField(field.ident.node)); } } _ => self.tcx.sess.span_bug(expr.span, "resolve didn't \ map enum struct \ constructor to a \ variant def"), } } _ => self.tcx.sess.span_bug(expr.span, "struct expr \ didn't have \ struct type?!"), } } ast::ExprPath(..) => { let guard = |did: ast::DefId| { let fields = ty::lookup_struct_fields(self.tcx, did); let any_priv = fields.iter().any(|f| { f.vis != ast::Public && ( !is_local(f.id) || !self.private_accessible(f.id.node)) }); if any_priv { self.tcx.sess.span_err(expr.span, "cannot invoke tuple struct constructor \ with private fields"); } }; match self.tcx.def_map.borrow().find(&expr.id) { Some(&def::DefStruct(did)) => { guard(if is_local(did) { local_def(self.tcx.map.get_parent(did.node)) } else { // "tuple structs" with zero fields (such as // `pub struct Foo;`) don't have a ctor_id, hence // the unwrap_or to the same struct id. let maybe_did = csearch::get_tuple_struct_definition_if_ctor( &self.tcx.sess.cstore, did); maybe_did.unwrap_or(did) }) } // Tuple struct constructors across crates are identified as // DefFn types, so we explicitly handle that case here. Some(&def::DefFn(did, _)) if !is_local(did) => { match csearch::get_tuple_struct_definition_if_ctor( &self.tcx.sess.cstore, did) { Some(did) => guard(did), None => {} } } _ => {} } } _ => {} } visit::walk_expr(self, expr, ()); } fn visit_view_item(&mut self, a: &ast::ViewItem, _: ()) { match a.node { ast::ViewItemExternCrate(..) => {} ast::ViewItemUse(ref vpath) => { match vpath.node { ast::ViewPathSimple(..) | ast::ViewPathGlob(..) => {} ast::ViewPathList(_, ref list, _) => { for pid in list.iter() { debug!("privacy - list {}", pid.node.id); let seg = ast::PathSegment { identifier: pid.node.name, lifetimes: Vec::new(), types: OwnedSlice::empty(), }; let segs = vec!(seg); let path = ast::Path { global: false, span: pid.span, segments: segs, }; self.check_path(pid.span, pid.node.id, &path); } } } } } visit::walk_view_item(self, a, ()); } fn visit_pat(&mut self, pattern: &ast::Pat, _: ()) { // Foreign functions do not have their patterns mapped in the def_map, // and there's nothing really relevant there anyway, so don't bother // checking privacy. If you can name the type then you can pass it to an // external C function anyway. if self.in_foreign { return } match pattern.node { ast::PatStruct(_, ref fields, _) => { match ty::get(ty::pat_ty(self.tcx, pattern)).sty { ty::ty_struct(id, _) => { for field in fields.iter() { self.check_field(pattern.span, id, NamedField(field.ident)); } } ty::ty_enum(_, _) => { match self.tcx.def_map.borrow().find(&pattern.id) { Some(&def::DefVariant(_, variant_id, _)) => { for field in fields.iter() { self.check_field(pattern.span, variant_id, NamedField(field.ident)); } } _ => self.tcx.sess.span_bug(pattern.span, "resolve didn't \ map enum struct \ pattern to a \ variant def"), } } _ => self.tcx.sess.span_bug(pattern.span, "struct pattern didn't have \ struct type?!"), } } // Patterns which bind no fields are allowable (the path is check // elsewhere). ast::PatEnum(_, Some(ref fields)) => { match ty::get(ty::pat_ty(self.tcx, pattern)).sty { ty::ty_struct(id, _) => { for (i, field) in fields.iter().enumerate() { match field.node { ast::PatWild(..) => continue, _ => {} } self.check_field(field.span, id, UnnamedField(i)); } } ty::ty_enum(..) => { // enum fields have no privacy at this time } _ => {} } } _ => {} } visit::walk_pat(self, pattern, ()); } fn visit_foreign_item(&mut self, fi: &ast::ForeignItem, _: ()) { self.in_foreign = true; visit::walk_foreign_item(self, fi, ()); self.in_foreign = false; } fn visit_path(&mut self, path: &ast::Path, id: ast::NodeId, _: ()) { self.check_path(path.span, id, path); visit::walk_path(self, path, ()); } } //////////////////////////////////////////////////////////////////////////////// /// The privacy sanity check visitor, ensures unnecessary visibility isn't here //////////////////////////////////////////////////////////////////////////////// struct SanePrivacyVisitor<'a> { tcx: &'a ty::ctxt, in_fn: bool, } impl<'a> Visitor<()> for SanePrivacyVisitor<'a> { fn visit_item(&mut self, item: &ast::Item, _: ()) { if self.in_fn { self.check_all_inherited(item); } else { self.check_sane_privacy(item); } let orig_in_fn = replace(&mut self.in_fn, match item.node { ast::ItemMod(..) => false, // modules turn privacy back on _ => self.in_fn, // otherwise we inherit }); visit::walk_item(self, item, ()); self.in_fn = orig_in_fn; } fn visit_fn(&mut self, fk: &visit::FnKind, fd: &ast::FnDecl, b: &ast::Block, s: Span, _: ast::NodeId, _: ()) { // This catches both functions and methods let orig_in_fn = replace(&mut self.in_fn, true); visit::walk_fn(self, fk, fd, b, s, ()); self.in_fn = orig_in_fn; } fn visit_view_item(&mut self, i: &ast::ViewItem, _: ()) { match i.vis { ast::Inherited => {} ast::Public => { if self.in_fn { self.tcx.sess.span_err(i.span, "unnecessary `pub`, imports \ in functions are never \ reachable"); } else { match i.node { ast::ViewItemExternCrate(..) => { self.tcx.sess.span_err(i.span, "`pub` visibility \ is not allowed"); } _ => {} } } } } visit::walk_view_item(self, i, ()); } } impl<'a> SanePrivacyVisitor<'a> { /// Validates all of the visibility qualifiers placed on the item given. This /// ensures that there are no extraneous qualifiers that don't actually do /// anything. In theory these qualifiers wouldn't parse, but that may happen /// later on down the road... fn check_sane_privacy(&self, item: &ast::Item) { let tcx = self.tcx; let check_inherited = |sp: Span, vis: ast::Visibility, note: &str| { if vis != ast::Inherited { tcx.sess.span_err(sp, "unnecessary visibility qualifier"); if note.len() > 0 { tcx.sess.span_note(sp, note); } } }; match item.node { // implementations of traits don't need visibility qualifiers because // that's controlled by having the trait in scope. ast::ItemImpl(_, Some(..), _, ref methods) => { check_inherited(item.span, item.vis, "visibility qualifiers have no effect on trait \ impls"); for m in methods.iter() { check_inherited(m.span, m.vis, ""); } } ast::ItemImpl(..) => { check_inherited(item.span, item.vis, "place qualifiers on individual methods instead"); } ast::ItemForeignMod(..) => { check_inherited(item.span, item.vis, "place qualifiers on individual functions \ instead"); } ast::ItemEnum(ref def, _) => { for v in def.variants.iter() { match v.node.vis { ast::Public => { if item.vis == ast::Public { tcx.sess.span_err(v.span, "unnecessary `pub` \ visibility"); } } ast::Inherited => {} } } } ast::ItemTrait(_, _, _, ref methods) => { for m in methods.iter() { match *m { ast::Provided(ref m) => { check_inherited(m.span, m.vis, "unnecessary visibility"); } ast::Required(ref m) => { check_inherited(m.span, m.vis, "unnecessary visibility"); } } } } ast::ItemStatic(..) | ast::ItemStruct(..) | ast::ItemFn(..) | ast::ItemMod(..) | ast::ItemTy(..) | ast::ItemMac(..) => {} } } /// When inside of something like a function or a method, visibility has no /// control over anything so this forbids any mention of any visibility fn check_all_inherited(&self, item: &ast::Item) { let tcx = self.tcx; fn check_inherited(tcx: &ty::ctxt, sp: Span, vis: ast::Visibility) { if vis != ast::Inherited { tcx.sess.span_err(sp, "visibility has no effect inside functions"); } } let check_struct = |def: &@ast::StructDef| { for f in def.fields.iter() { match f.node.kind { ast::NamedField(_, p) => check_inherited(tcx, f.span, p), ast::UnnamedField(..) => {} } } }; check_inherited(tcx, item.span, item.vis); match item.node { ast::ItemImpl(_, _, _, ref methods) => { for m in methods.iter() { check_inherited(tcx, m.span, m.vis); } } ast::ItemForeignMod(ref fm) => { for i in fm.items.iter() { check_inherited(tcx, i.span, i.vis); } } ast::ItemEnum(ref def, _) => { for v in def.variants.iter() { check_inherited(tcx, v.span, v.node.vis); match v.node.kind { ast::StructVariantKind(ref s) => check_struct(s), ast::TupleVariantKind(..) => {} } } } ast::ItemStruct(ref def, _) => check_struct(def), ast::ItemTrait(_, _, _, ref methods) => { for m in methods.iter() { match *m { ast::Required(..) => {} ast::Provided(ref m) => check_inherited(tcx, m.span, m.vis), } } } ast::ItemStatic(..) | ast::ItemFn(..) | ast::ItemMod(..) | ast::ItemTy(..) | ast::ItemMac(..) => {} } } } struct VisiblePrivateTypesVisitor<'a> { tcx: &'a ty::ctxt, exported_items: &'a ExportedItems, public_items: &'a PublicItems, } struct CheckTypeForPrivatenessVisitor<'a, 'b> { inner: &'b VisiblePrivateTypesVisitor<'a>, /// whether the type refers to private types. contains_private: bool, /// whether we've recurred at all (i.e. if we're pointing at the /// first type on which visit_ty was called). at_outer_type: bool, // whether that first type is a public path. outer_type_is_public_path: bool, } impl<'a> VisiblePrivateTypesVisitor<'a> { fn path_is_private_type(&self, path_id: ast::NodeId) -> bool { let did = match self.tcx.def_map.borrow().find_copy(&path_id) { // `int` etc. (None doesn't seem to occur.) None | Some(def::DefPrimTy(..)) => return false, Some(def) => def.def_id() }; // A path can only be private if: // it's in this crate... is_local(did) && // ... it's not exported (obviously) ... !self.exported_items.contains(&did.node) && // .. and it corresponds to a type in the AST (this returns None for // type parameters) self.tcx.map.find(did.node).is_some() } fn trait_is_public(&self, trait_id: ast::NodeId) -> bool { // FIXME: this would preferably be using `exported_items`, but all // traits are exported currently (see `EmbargoVisitor.exported_trait`) self.public_items.contains(&trait_id) } } impl<'a, 'b> Visitor<()> for CheckTypeForPrivatenessVisitor<'a, 'b> { fn visit_ty(&mut self, ty: &ast::Ty, _: ()) { match ty.node { ast::TyPath(_, _, path_id) => { if self.inner.path_is_private_type(path_id) { self.contains_private = true; // found what we're looking for so let's stop // working. return } else if self.at_outer_type { self.outer_type_is_public_path = true; } } _ => {} } self.at_outer_type = false; visit::walk_ty(self, ty, ()) } // don't want to recurse into [, .. expr] fn visit_expr(&mut self, _: &ast::Expr, _: ()) {} } impl<'a> Visitor<()> for VisiblePrivateTypesVisitor<'a> { fn visit_item(&mut self, item: &ast::Item, _: ()) { match item.node { // contents of a private mod can be reexported, so we need // to check internals. ast::ItemMod(_) => {} // An `extern {}` doesn't introduce a new privacy // namespace (the contents have their own privacies). ast::ItemForeignMod(_) => {} ast::ItemTrait(..) if !self.trait_is_public(item.id) => return, // impls need some special handling to try to offer useful // error messages without (too many) false positives // (i.e. we could just return here to not check them at // all, or some worse estimation of whether an impl is // publically visible. ast::ItemImpl(ref g, ref trait_ref, self_, ref methods) => { // `impl [... for] Private` is never visible. let self_contains_private; // impl [... for] Public<...>, but not `impl [... for] // ~[Public]` or `(Public,)` etc. let self_is_public_path; // check the properties of the Self type: { let mut visitor = CheckTypeForPrivatenessVisitor { inner: self, contains_private: false, at_outer_type: true, outer_type_is_public_path: false, }; visitor.visit_ty(self_, ()); self_contains_private = visitor.contains_private; self_is_public_path = visitor.outer_type_is_public_path; } // miscellaneous info about the impl // `true` iff this is `impl Private for ...`. let not_private_trait = trait_ref.as_ref().map_or(true, // no trait counts as public trait |tr| { let did = ty::trait_ref_to_def_id(self.tcx, tr); !is_local(did) || self.trait_is_public(did.node) }); // `true` iff this is a trait impl or at least one method is public. // // `impl Public { $( fn ...() {} )* }` is not visible. // // This is required over just using the methods' privacy // directly because we might have `impl> ...`, // and we shouldn't warn about the generics if all the methods // are private (because `T` won't be visible externally). let trait_or_some_public_method = trait_ref.is_some() || methods.iter().any(|m| self.exported_items.contains(&m.id)); if !self_contains_private && not_private_trait && trait_or_some_public_method { visit::walk_generics(self, g, ()); match *trait_ref { None => { for method in methods.iter() { visit::walk_method_helper(self, *method, ()) } } Some(ref tr) => { // Any private types in a trait impl fall into two // categories. // 1. mentioned in the trait definition // 2. mentioned in the type params/generics // // Those in 1. can only occur if the trait is in // this crate and will've been warned about on the // trait definition (there's no need to warn twice // so we don't check the methods). // // Those in 2. are warned via walk_generics and this // call here. visit::walk_trait_ref_helper(self, tr, ()) } } } else if trait_ref.is_none() && self_is_public_path { // impl Public { ... }. Any public static // methods will be visible as `Public::foo`. let mut found_pub_static = false; for method in methods.iter() { if method.explicit_self.node == ast::SelfStatic && self.exported_items.contains(&method.id) { found_pub_static = true; visit::walk_method_helper(self, *method, ()); } } if found_pub_static { visit::walk_generics(self, g, ()) } } return } // `type ... = ...;` can contain private types, because // we're introducing a new name. ast::ItemTy(..) => return, // not at all public, so we don't care _ if !self.exported_items.contains(&item.id) => return, _ => {} } // we've carefully constructed it so that if we're here, then // any `visit_ty`'s will be called on things that are in // public signatures, i.e. things that we're interested in for // this visitor. visit::walk_item(self, item, ()); } fn visit_foreign_item(&mut self, item: &ast::ForeignItem, _: ()) { if self.exported_items.contains(&item.id) { visit::walk_foreign_item(self, item, ()) } } fn visit_fn(&mut self, fk: &visit::FnKind, fd: &ast::FnDecl, b: &ast::Block, s: Span, id: ast::NodeId, _: ()) { // needs special handling for methods. if self.exported_items.contains(&id) { visit::walk_fn(self, fk, fd, b, s, ()); } } fn visit_ty(&mut self, t: &ast::Ty, _: ()) { match t.node { ast::TyPath(ref p, _, path_id) => { if self.path_is_private_type(path_id) { self.tcx.sess.add_lint( lint::VisiblePrivateTypes, path_id, p.span, "private type in exported type \ signature".to_string()); } } _ => {} } visit::walk_ty(self, t, ()) } fn visit_variant(&mut self, v: &ast::Variant, g: &ast::Generics, _: ()) { if self.exported_items.contains(&v.node.id) { visit::walk_variant(self, v, g, ()); } } fn visit_struct_field(&mut self, s: &ast::StructField, _: ()) { match s.node.kind { ast::NamedField(_, ast::Public) => { visit::walk_struct_field(self, s, ()); } _ => {} } } // we don't need to introspect into these at all: an // expression/block context can't possibly contain exported // things, and neither do view_items. (Making them no-ops stops us // from traversing the whole AST without having to be super // careful about our `walk_...` calls above.) fn visit_view_item(&mut self, _: &ast::ViewItem, _: ()) {} fn visit_block(&mut self, _: &ast::Block, _: ()) {} fn visit_expr(&mut self, _: &ast::Expr, _: ()) {} } pub fn check_crate(tcx: &ty::ctxt, exp_map2: &resolve::ExportMap2, external_exports: resolve::ExternalExports, last_private_map: resolve::LastPrivateMap, krate: &ast::Crate) -> (ExportedItems, PublicItems) { // Figure out who everyone's parent is let mut visitor = ParentVisitor { parents: NodeMap::new(), curparent: ast::DUMMY_NODE_ID, }; visit::walk_crate(&mut visitor, krate, ()); // Use the parent map to check the privacy of everything let mut visitor = PrivacyVisitor { curitem: ast::DUMMY_NODE_ID, in_fn: false, in_foreign: false, tcx: tcx, parents: visitor.parents, external_exports: external_exports, last_private_map: last_private_map, }; visit::walk_crate(&mut visitor, krate, ()); // Sanity check to make sure that all privacy usage and controls are // reasonable. let mut visitor = SanePrivacyVisitor { in_fn: false, tcx: tcx, }; visit::walk_crate(&mut visitor, krate, ()); tcx.sess.abort_if_errors(); // Build up a set of all exported items in the AST. This is a set of all // items which are reachable from external crates based on visibility. let mut visitor = EmbargoVisitor { tcx: tcx, exported_items: NodeSet::new(), public_items: NodeSet::new(), reexports: NodeSet::new(), exp_map2: exp_map2, prev_exported: true, prev_public: true, }; loop { let before = visitor.exported_items.len(); visit::walk_crate(&mut visitor, krate, ()); if before == visitor.exported_items.len() { break } } let EmbargoVisitor { exported_items, public_items, .. } = visitor; { let mut visitor = VisiblePrivateTypesVisitor { tcx: tcx, exported_items: &exported_items, public_items: &public_items }; visit::walk_crate(&mut visitor, krate, ()); } return (exported_items, public_items); }