//! This file implements "place projections"; basically a symmetric API for 3 types: MPlaceTy, OpTy, PlaceTy. //! //! OpTy and PlaceTy genrally work by "let's see if we are actually an MPlaceTy, and do something custom if not". //! For PlaceTy, the custom thing is basically always to call `force_allocation` and then use the MPlaceTy logic anyway. //! For OpTy, the custom thing on field pojections has to be pretty clever (since `Operand::Immediate` can have fields), //! but for array/slice operations it only has to worry about `Operand::Uninit`. That makes the value part trivial, //! but we still need to do bounds checking and adjust the layout. To not duplicate that with MPlaceTy, we actually //! implement the logic on OpTy, and MPlaceTy calls that. use std::hash::Hash; use rustc_middle::mir; use rustc_middle::ty; use rustc_middle::ty::layout::LayoutOf; use rustc_target::abi::{self, Abi, VariantIdx}; use super::{ ImmTy, Immediate, InterpCx, InterpResult, MPlaceTy, Machine, MemPlaceMeta, OpTy, PlaceTy, Provenance, Scalar, }; // FIXME: Working around https://github.com/rust-lang/rust/issues/54385 impl<'mir, 'tcx: 'mir, Tag, M> InterpCx<'mir, 'tcx, M> where Tag: Provenance + Eq + Hash + 'static, M: Machine<'mir, 'tcx, PointerTag = Tag>, { //# Field access /// Offset a pointer to project to a field of a struct/union. Unlike `place_field`, this is /// always possible without allocating, so it can take `&self`. Also return the field's layout. /// This supports both struct and array fields. /// /// This also works for arrays, but then the `usize` index type is restricting. /// For indexing into arrays, use `mplace_index`. pub fn mplace_field( &self, base: &MPlaceTy<'tcx, M::PointerTag>, field: usize, ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> { let offset = base.layout.fields.offset(field); let field_layout = base.layout.field(self, field); // Offset may need adjustment for unsized fields. let (meta, offset) = if field_layout.is_unsized() { // Re-use parent metadata to determine dynamic field layout. // With custom DSTS, this *will* execute user-defined code, but the same // happens at run-time so that's okay. match self.size_and_align_of(&base.meta, &field_layout)? { Some((_, align)) => (base.meta, offset.align_to(align)), None => { // For unsized types with an extern type tail we perform no adjustments. // NOTE: keep this in sync with `PlaceRef::project_field` in the codegen backend. assert!(matches!(base.meta, MemPlaceMeta::None)); (base.meta, offset) } } } else { // base.meta could be present; we might be accessing a sized field of an unsized // struct. (MemPlaceMeta::None, offset) }; // We do not look at `base.layout.align` nor `field_layout.align`, unlike // codegen -- mostly to see if we can get away with that base.offset(offset, meta, field_layout, self) } /// Gets the place of a field inside the place, and also the field's type. /// Just a convenience function, but used quite a bit. /// This is the only projection that might have a side-effect: We cannot project /// into the field of a local `ScalarPair`, we have to first allocate it. pub fn place_field( &mut self, base: &PlaceTy<'tcx, M::PointerTag>, field: usize, ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> { // FIXME: We could try to be smarter and avoid allocation for fields that span the // entire place. let base = self.force_allocation(base)?; Ok(self.mplace_field(&base, field)?.into()) } pub fn operand_field( &self, base: &OpTy<'tcx, M::PointerTag>, field: usize, ) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> { let base = match base.try_as_mplace() { Ok(ref mplace) => { // We can reuse the mplace field computation logic for indirect operands. let field = self.mplace_field(mplace, field)?; return Ok(field.into()); } Err(value) => value, }; let field_layout = base.layout.field(self, field); let offset = base.layout.fields.offset(field); // This makes several assumptions about what layouts we will encounter; we match what // codegen does as good as we can (see `extract_field` in `rustc_codegen_ssa/src/mir/operand.rs`). let field_val: Immediate<_> = match (*base, base.layout.abi) { // the field contains no information, can be left uninit _ if field_layout.is_zst() => Immediate::Uninit, // the field covers the entire type _ if field_layout.size == base.layout.size => { assert!(match (base.layout.abi, field_layout.abi) { (Abi::Scalar(..), Abi::Scalar(..)) => true, (Abi::ScalarPair(..), Abi::ScalarPair(..)) => true, _ => false, }); assert!(offset.bytes() == 0); *base } // extract fields from types with `ScalarPair` ABI (Immediate::ScalarPair(a_val, b_val), Abi::ScalarPair(a, b)) => { assert!(matches!(field_layout.abi, Abi::Scalar(..))); Immediate::from(if offset.bytes() == 0 { debug_assert_eq!(field_layout.size, a.size(self)); a_val } else { debug_assert_eq!(offset, a.size(self).align_to(b.align(self).abi)); debug_assert_eq!(field_layout.size, b.size(self)); b_val }) } _ => span_bug!( self.cur_span(), "invalid field access on immediate {}, layout {:#?}", base, base.layout ), }; Ok(ImmTy::from_immediate(field_val, field_layout).into()) } //# Downcasting pub fn mplace_downcast( &self, base: &MPlaceTy<'tcx, M::PointerTag>, variant: VariantIdx, ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> { // Downcasts only change the layout. // (In particular, no check about whether this is even the active variant -- that's by design, // see https://github.com/rust-lang/rust/issues/93688#issuecomment-1032929496.) assert!(!base.meta.has_meta()); let mut base = *base; base.layout = base.layout.for_variant(self, variant); Ok(base) } pub fn place_downcast( &self, base: &PlaceTy<'tcx, M::PointerTag>, variant: VariantIdx, ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> { // Downcast just changes the layout let mut base = *base; base.layout = base.layout.for_variant(self, variant); Ok(base) } pub fn operand_downcast( &self, base: &OpTy<'tcx, M::PointerTag>, variant: VariantIdx, ) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> { // Downcast just changes the layout let mut base = *base; base.layout = base.layout.for_variant(self, variant); Ok(base) } //# Slice indexing #[inline(always)] pub fn operand_index( &self, base: &OpTy<'tcx, M::PointerTag>, index: u64, ) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> { // Not using the layout method because we want to compute on u64 match base.layout.fields { abi::FieldsShape::Array { stride, count: _ } => { // `count` is nonsense for slices, use the dynamic length instead. let len = base.len(self)?; if index >= len { // This can only be reached in ConstProp and non-rustc-MIR. throw_ub!(BoundsCheckFailed { len, index }); } let offset = stride * index; // `Size` multiplication // All fields have the same layout. let field_layout = base.layout.field(self, 0); assert!(!field_layout.is_unsized()); base.offset(offset, MemPlaceMeta::None, field_layout, self) } _ => span_bug!( self.cur_span(), "`mplace_index` called on non-array type {:?}", base.layout.ty ), } } // Iterates over all fields of an array. Much more efficient than doing the // same by repeatedly calling `operand_index`. pub fn operand_array_fields<'a>( &self, base: &'a OpTy<'tcx, Tag>, ) -> InterpResult<'tcx, impl Iterator>> + 'a> { let len = base.len(self)?; // also asserts that we have a type where this makes sense let abi::FieldsShape::Array { stride, .. } = base.layout.fields else { span_bug!(self.cur_span(), "operand_array_fields: expected an array layout"); }; let layout = base.layout.field(self, 0); let dl = &self.tcx.data_layout; // `Size` multiplication Ok((0..len).map(move |i| base.offset(stride * i, MemPlaceMeta::None, layout, dl))) } /// Index into an array. pub fn mplace_index( &self, base: &MPlaceTy<'tcx, M::PointerTag>, index: u64, ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::PointerTag>> { Ok(self.operand_index(&base.into(), index)?.assert_mem_place()) } pub fn place_index( &mut self, base: &PlaceTy<'tcx, M::PointerTag>, index: u64, ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> { // There's not a lot we can do here, since we cannot have a place to a part of a local. If // we are accessing the only element of a 1-element array, it's still the entire local... // that doesn't seem worth it. let base = self.force_allocation(base)?; Ok(self.mplace_index(&base, index)?.into()) } //# ConstantIndex support fn operand_constant_index( &self, base: &OpTy<'tcx, M::PointerTag>, offset: u64, min_length: u64, from_end: bool, ) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> { let n = base.len(self)?; if n < min_length { // This can only be reached in ConstProp and non-rustc-MIR. throw_ub!(BoundsCheckFailed { len: min_length, index: n }); } let index = if from_end { assert!(0 < offset && offset <= min_length); n.checked_sub(offset).unwrap() } else { assert!(offset < min_length); offset }; self.operand_index(base, index) } fn place_constant_index( &mut self, base: &PlaceTy<'tcx, M::PointerTag>, offset: u64, min_length: u64, from_end: bool, ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> { let base = self.force_allocation(base)?; Ok(self .operand_constant_index(&base.into(), offset, min_length, from_end)? .assert_mem_place() .into()) } //# Subslicing fn operand_subslice( &self, base: &OpTy<'tcx, M::PointerTag>, from: u64, to: u64, from_end: bool, ) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> { let len = base.len(self)?; // also asserts that we have a type where this makes sense let actual_to = if from_end { if from.checked_add(to).map_or(true, |to| to > len) { // This can only be reached in ConstProp and non-rustc-MIR. throw_ub!(BoundsCheckFailed { len: len, index: from.saturating_add(to) }); } len.checked_sub(to).unwrap() } else { to }; // Not using layout method because that works with usize, and does not work with slices // (that have count 0 in their layout). let from_offset = match base.layout.fields { abi::FieldsShape::Array { stride, .. } => stride * from, // `Size` multiplication is checked _ => { span_bug!(self.cur_span(), "unexpected layout of index access: {:#?}", base.layout) } }; // Compute meta and new layout let inner_len = actual_to.checked_sub(from).unwrap(); let (meta, ty) = match base.layout.ty.kind() { // It is not nice to match on the type, but that seems to be the only way to // implement this. ty::Array(inner, _) => (MemPlaceMeta::None, self.tcx.mk_array(*inner, inner_len)), ty::Slice(..) => { let len = Scalar::from_machine_usize(inner_len, self); (MemPlaceMeta::Meta(len), base.layout.ty) } _ => { span_bug!(self.cur_span(), "cannot subslice non-array type: `{:?}`", base.layout.ty) } }; let layout = self.layout_of(ty)?; base.offset(from_offset, meta, layout, self) } pub fn place_subslice( &mut self, base: &PlaceTy<'tcx, M::PointerTag>, from: u64, to: u64, from_end: bool, ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> { let base = self.force_allocation(base)?; Ok(self.operand_subslice(&base.into(), from, to, from_end)?.assert_mem_place().into()) } //# Applying a general projection /// Projects into a place. #[instrument(skip(self), level = "trace")] pub fn place_projection( &mut self, base: &PlaceTy<'tcx, M::PointerTag>, proj_elem: mir::PlaceElem<'tcx>, ) -> InterpResult<'tcx, PlaceTy<'tcx, M::PointerTag>> { use rustc_middle::mir::ProjectionElem::*; Ok(match proj_elem { Field(field, _) => self.place_field(base, field.index())?, Downcast(_, variant) => self.place_downcast(base, variant)?, Deref => self.deref_operand(&self.place_to_op(base)?)?.into(), Index(local) => { let layout = self.layout_of(self.tcx.types.usize)?; let n = self.local_to_op(self.frame(), local, Some(layout))?; let n = self.read_scalar(&n)?.to_machine_usize(self)?; self.place_index(base, n)? } ConstantIndex { offset, min_length, from_end } => { self.place_constant_index(base, offset, min_length, from_end)? } Subslice { from, to, from_end } => self.place_subslice(base, from, to, from_end)?, }) } #[instrument(skip(self), level = "trace")] pub fn operand_projection( &self, base: &OpTy<'tcx, M::PointerTag>, proj_elem: mir::PlaceElem<'tcx>, ) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> { use rustc_middle::mir::ProjectionElem::*; Ok(match proj_elem { Field(field, _) => self.operand_field(base, field.index())?, Downcast(_, variant) => self.operand_downcast(base, variant)?, Deref => self.deref_operand(base)?.into(), Index(local) => { let layout = self.layout_of(self.tcx.types.usize)?; let n = self.local_to_op(self.frame(), local, Some(layout))?; let n = self.read_scalar(&n)?.to_machine_usize(self)?; self.operand_index(base, n)? } ConstantIndex { offset, min_length, from_end } => { self.operand_constant_index(base, offset, min_length, from_end)? } Subslice { from, to, from_end } => self.operand_subslice(base, from, to, from_end)?, }) } }