// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use middle::freevars::freevar_entry; use middle::freevars; use middle::ty; use middle::typeck; use util::ppaux::{Repr, ty_to_str}; use util::ppaux::UserString; use syntax::ast::*; use syntax::attr; use syntax::codemap::Span; use syntax::opt_vec; use syntax::print::pprust::expr_to_str; use syntax::{visit,ast_util}; use syntax::visit::Visitor; // Kind analysis pass. // // There are several kinds defined by various operations. The most restrictive // kind is noncopyable. The noncopyable kind can be extended with any number // of the following attributes. // // send: Things that can be sent on channels or included in spawned closures. // freeze: Things thare are deeply immutable. They are guaranteed never to // change, and can be safely shared without copying between tasks. // 'static: Things that do not contain borrowed pointers. // // Send includes scalar types as well as classes and unique types containing // only sendable types. // // Freeze include scalar types, things without non-const fields, and pointers // to freezable things. // // This pass ensures that type parameters are only instantiated with types // whose kinds are equal or less general than the way the type parameter was // annotated (with the `Send` or `Freeze` bound). // // It also verifies that noncopyable kinds are not copied. Sendability is not // applied, since none of our language primitives send. Instead, the sending // primitives in the stdlib are explicitly annotated to only take sendable // types. #[deriving(Clone)] pub struct Context { tcx: ty::ctxt, method_map: typeck::method_map, } impl Visitor<()> for Context { fn visit_expr(&mut self, ex:@Expr, _:()) { check_expr(self, ex); } fn visit_fn(&mut self, fk:&visit::fn_kind, fd:&fn_decl, b:&Block, s:Span, n:NodeId, _:()) { check_fn(self, fk, fd, b, s, n); } fn visit_ty(&mut self, t:&Ty, _:()) { check_ty(self, t); } fn visit_item(&mut self, i:@item, _:()) { check_item(self, i); } } pub fn check_crate(tcx: ty::ctxt, method_map: typeck::method_map, crate: &Crate) { let mut ctx = Context { tcx: tcx, method_map: method_map, }; visit::walk_crate(&mut ctx, crate, ()); tcx.sess.abort_if_errors(); } fn check_struct_safe_for_destructor(cx: &mut Context, span: Span, struct_did: DefId) { let struct_tpt = ty::lookup_item_type(cx.tcx, struct_did); if !struct_tpt.generics.has_type_params() { let struct_ty = ty::mk_struct(cx.tcx, struct_did, ty::substs { regions: ty::NonerasedRegions(opt_vec::Empty), self_ty: None, tps: ~[] }); if !ty::type_is_sendable(cx.tcx, struct_ty) { cx.tcx.sess.span_err(span, "cannot implement a destructor on a \ structure that does not satisfy Send"); cx.tcx.sess.span_note(span, "use \"#[unsafe_destructor]\" on the \ implementation to force the compiler to \ allow this"); } } else { cx.tcx.sess.span_err(span, "cannot implement a destructor on a structure \ with type parameters"); cx.tcx.sess.span_note(span, "use \"#[unsafe_destructor]\" on the \ implementation to force the compiler to \ allow this"); } } fn check_impl_of_trait(cx: &mut Context, it: @item, trait_ref: &trait_ref, self_type: &Ty) { let ast_trait_def = cx.tcx.def_map.find(&trait_ref.ref_id) .expect("trait ref not in def map!"); let trait_def_id = ast_util::def_id_of_def(*ast_trait_def); let trait_def = cx.tcx.trait_defs.find(&trait_def_id) .expect("trait def not in trait-defs map!"); // If this trait has builtin-kind supertraits, meet them. let self_ty: ty::t = ty::node_id_to_type(cx.tcx, it.id); debug!("checking impl with self type {:?}", ty::get(self_ty).sty); check_builtin_bounds(cx, self_ty, trait_def.bounds, |missing| { cx.tcx.sess.span_err(self_type.span, format!("the type `{}', which does not fulfill `{}`, cannot implement this \ trait", ty_to_str(cx.tcx, self_ty), missing.user_string(cx.tcx))); cx.tcx.sess.span_note(self_type.span, format!("types implementing this trait must fulfill `{}`", trait_def.bounds.user_string(cx.tcx))); }); // If this is a destructor, check kinds. if cx.tcx.lang_items.drop_trait() == Some(trait_def_id) { match self_type.node { ty_path(_, ref bounds, path_node_id) => { assert!(bounds.is_none()); let struct_def = cx.tcx.def_map.get_copy(&path_node_id); let struct_did = ast_util::def_id_of_def(struct_def); check_struct_safe_for_destructor(cx, self_type.span, struct_did); } _ => { cx.tcx.sess.span_bug(self_type.span, "the self type for the Drop trait impl is not a path"); } } } } fn check_item(cx: &mut Context, item: @item) { if !attr::contains_name(item.attrs, "unsafe_destructor") { match item.node { item_impl(_, Some(ref trait_ref), ref self_type, _) => { check_impl_of_trait(cx, item, trait_ref, self_type); } _ => {} } } visit::walk_item(cx, item, ()); } // Yields the appropriate function to check the kind of closed over // variables. `id` is the NodeId for some expression that creates the // closure. fn with_appropriate_checker(cx: &Context, id: NodeId, b: |checker: |&Context, @freevar_entry||) { fn check_for_uniq(cx: &Context, fv: &freevar_entry, bounds: ty::BuiltinBounds) { // all captured data must be owned, regardless of whether it is // moved in or copied in. let id = ast_util::def_id_of_def(fv.def).node; let var_t = ty::node_id_to_type(cx.tcx, id); // check that only immutable variables are implicitly copied in check_imm_free_var(cx, fv.def, fv.span); check_freevar_bounds(cx, fv.span, var_t, bounds, None); } fn check_for_box(cx: &Context, fv: &freevar_entry, bounds: ty::BuiltinBounds) { // all captured data must be owned let id = ast_util::def_id_of_def(fv.def).node; let var_t = ty::node_id_to_type(cx.tcx, id); // check that only immutable variables are implicitly copied in check_imm_free_var(cx, fv.def, fv.span); check_freevar_bounds(cx, fv.span, var_t, bounds, None); } fn check_for_block(cx: &Context, fv: &freevar_entry, bounds: ty::BuiltinBounds, region: ty::Region) { let id = ast_util::def_id_of_def(fv.def).node; let var_t = ty::node_id_to_type(cx.tcx, id); // FIXME(#3569): Figure out whether the implicit borrow is actually // mutable. Currently we assume all upvars are referenced mutably. let implicit_borrowed_type = ty::mk_mut_rptr(cx.tcx, region, var_t); check_freevar_bounds(cx, fv.span, implicit_borrowed_type, bounds, Some(var_t)); } fn check_for_bare(cx: &Context, fv: @freevar_entry) { cx.tcx.sess.span_err( fv.span, "can't capture dynamic environment in a fn item; \ use the || { ... } closure form instead"); } // same check is done in resolve.rs, but shouldn't be done let fty = ty::node_id_to_type(cx.tcx, id); match ty::get(fty).sty { ty::ty_closure(ty::ClosureTy { sigil: OwnedSigil, bounds: bounds, .. }) => { b(|cx, fv| check_for_uniq(cx, fv, bounds)) } ty::ty_closure(ty::ClosureTy { sigil: ManagedSigil, .. }) => { // can't happen } ty::ty_closure(ty::ClosureTy { sigil: BorrowedSigil, bounds: bounds, region: region, .. }) => { b(|cx, fv| check_for_block(cx, fv, bounds, region)) } ty::ty_bare_fn(_) => { b(check_for_bare) } ref s => { cx.tcx.sess.bug( format!("expect fn type in kind checker, not {:?}", s)); } } } // Check that the free variables used in a shared/sendable closure conform // to the copy/move kind bounds. Then recursively check the function body. fn check_fn( cx: &mut Context, fk: &visit::fn_kind, decl: &fn_decl, body: &Block, sp: Span, fn_id: NodeId) { // Check kinds on free variables: with_appropriate_checker(cx, fn_id, |chk| { let r = freevars::get_freevars(cx.tcx, fn_id); for fv in r.iter() { chk(cx, *fv); } }); visit::walk_fn(cx, fk, decl, body, sp, fn_id, ()); } pub fn check_expr(cx: &mut Context, e: @Expr) { debug!("kind::check_expr({})", expr_to_str(e, cx.tcx.sess.intr())); // Handle any kind bounds on type parameters let type_parameter_id = match e.get_callee_id() { Some(callee_id) => callee_id, None => e.id, }; { let r = cx.tcx.node_type_substs.find(&type_parameter_id); for ts in r.iter() { let type_param_defs = match e.node { ExprPath(_) => { let did = ast_util::def_id_of_def(cx.tcx.def_map.get_copy(&e.id)); ty::lookup_item_type(cx.tcx, did).generics.type_param_defs } _ => { // Type substitutions should only occur on paths and // method calls, so this needs to be a method call. // Even though the callee_id may have been the id with // node_type_substs, e.id is correct here. ty::method_call_type_param_defs(cx.tcx, cx.method_map, e.id).expect( "non path/method call expr has type substs??") } }; if ts.len() != type_param_defs.len() { // Fail earlier to make debugging easier fail!("internal error: in kind::check_expr, length \ mismatch between actual and declared bounds: actual = \ {}, declared = {}", ts.repr(cx.tcx), type_param_defs.repr(cx.tcx)); } for (&ty, type_param_def) in ts.iter().zip(type_param_defs.iter()) { check_typaram_bounds(cx, type_parameter_id, e.span, ty, type_param_def) } } } match e.node { ExprUnary(_, UnBox(_), interior) => { let interior_type = ty::expr_ty(cx.tcx, interior); let _ = check_durable(cx.tcx, interior_type, interior.span); } ExprCast(source, _) => { check_cast_for_escaping_regions(cx, source, e); match ty::get(ty::expr_ty(cx.tcx, e)).sty { ty::ty_trait(_, _, _, _, bounds) => { let source_ty = ty::expr_ty(cx.tcx, source); check_trait_cast_bounds(cx, e.span, source_ty, bounds) } _ => { } } } ExprRepeat(element, count_expr, _) => { let count = ty::eval_repeat_count(&cx.tcx, count_expr); if count > 1 { let element_ty = ty::expr_ty(cx.tcx, element); check_copy(cx, element_ty, element.span, "repeated element will be copied"); } } _ => {} } visit::walk_expr(cx, e, ()); } fn check_ty(cx: &mut Context, aty: &Ty) { match aty.node { ty_path(_, _, id) => { let r = cx.tcx.node_type_substs.find(&id); for ts in r.iter() { let did = ast_util::def_id_of_def(cx.tcx.def_map.get_copy(&id)); let type_param_defs = ty::lookup_item_type(cx.tcx, did).generics.type_param_defs; for (&ty, type_param_def) in ts.iter().zip(type_param_defs.iter()) { check_typaram_bounds(cx, aty.id, aty.span, ty, type_param_def) } } } _ => {} } visit::walk_ty(cx, aty, ()); } // Calls "any_missing" if any bounds were missing. pub fn check_builtin_bounds(cx: &Context, ty: ty::t, bounds: ty::BuiltinBounds, any_missing: |ty::BuiltinBounds|) { let kind = ty::type_contents(cx.tcx, ty); let mut missing = ty::EmptyBuiltinBounds(); for bound in bounds.iter() { if !kind.meets_bound(cx.tcx, bound) { missing.add(bound); } } if !missing.is_empty() { any_missing(missing); } } pub fn check_typaram_bounds(cx: &Context, _type_parameter_id: NodeId, sp: Span, ty: ty::t, type_param_def: &ty::TypeParameterDef) { check_builtin_bounds(cx, ty, type_param_def.bounds.builtin_bounds, |missing| { cx.tcx.sess.span_err( sp, format!("instantiating a type parameter with an incompatible type \ `{}`, which does not fulfill `{}`", ty_to_str(cx.tcx, ty), missing.user_string(cx.tcx))); }); } pub fn check_freevar_bounds(cx: &Context, sp: Span, ty: ty::t, bounds: ty::BuiltinBounds, referenced_ty: Option) { check_builtin_bounds(cx, ty, bounds, |missing| { // Will be Some if the freevar is implicitly borrowed (stack closure). // Emit a less mysterious error message in this case. match referenced_ty { Some(rty) => cx.tcx.sess.span_err(sp, format!("cannot implicitly borrow variable of type `{}` in a bounded \ stack closure (implicit reference does not fulfill `{}`)", ty_to_str(cx.tcx, rty), missing.user_string(cx.tcx))), None => cx.tcx.sess.span_err(sp, format!("cannot capture variable of type `{}`, which does \ not fulfill `{}`, in a bounded closure", ty_to_str(cx.tcx, ty), missing.user_string(cx.tcx))), } cx.tcx.sess.span_note( sp, format!("this closure's environment must satisfy `{}`", bounds.user_string(cx.tcx))); }); } pub fn check_trait_cast_bounds(cx: &Context, sp: Span, ty: ty::t, bounds: ty::BuiltinBounds) { check_builtin_bounds(cx, ty, bounds, |missing| { cx.tcx.sess.span_err(sp, format!("cannot pack type `{}`, which does not fulfill \ `{}`, as a trait bounded by {}", ty_to_str(cx.tcx, ty), missing.user_string(cx.tcx), bounds.user_string(cx.tcx))); }); } fn is_nullary_variant(cx: &Context, ex: @Expr) -> bool { match ex.node { ExprPath(_) => { match cx.tcx.def_map.get_copy(&ex.id) { DefVariant(edid, vdid, _) => { ty::enum_variant_with_id(cx.tcx, edid, vdid).args.is_empty() } _ => false } } _ => false } } fn check_imm_free_var(cx: &Context, def: Def, sp: Span) { match def { DefLocal(_, BindByValue(MutMutable)) => { cx.tcx.sess.span_err( sp, "mutable variables cannot be implicitly captured"); } DefLocal(..) | DefArg(..) => { /* ok */ } DefUpvar(_, def1, _, _) => { check_imm_free_var(cx, *def1, sp); } DefBinding(..) | DefSelf(..) => { /*ok*/ } _ => { cx.tcx.sess.span_bug( sp, format!("unknown def for free variable: {:?}", def)); } } } fn check_copy(cx: &Context, ty: ty::t, sp: Span, reason: &str) { debug!("type_contents({})={}", ty_to_str(cx.tcx, ty), ty::type_contents(cx.tcx, ty).to_str()); if ty::type_moves_by_default(cx.tcx, ty) { cx.tcx.sess.span_err( sp, format!("copying a value of non-copyable type `{}`", ty_to_str(cx.tcx, ty))); cx.tcx.sess.span_note(sp, format!("{}", reason)); } } pub fn check_send(cx: &Context, ty: ty::t, sp: Span) -> bool { if !ty::type_is_sendable(cx.tcx, ty) { cx.tcx.sess.span_err( sp, format!("value has non-sendable type `{}`", ty_to_str(cx.tcx, ty))); false } else { true } } // note: also used from middle::typeck::regionck! pub fn check_durable(tcx: ty::ctxt, ty: ty::t, sp: Span) -> bool { if !ty::type_is_static(tcx, ty) { match ty::get(ty).sty { ty::ty_param(..) => { tcx.sess.span_err(sp, "value may contain borrowed \ pointers; add `'static` bound"); } _ => { tcx.sess.span_err(sp, "value may contain borrowed \ pointers"); } } false } else { true } } /// This is rather subtle. When we are casting a value to a instantiated /// trait like `a as trait<'r>`, regionck already ensures that any borrowed /// pointers that appear in the type of `a` are bounded by `'r` (ed.: rem /// FIXME(#5723)). However, it is possible that there are *type parameters* /// in the type of `a`, and those *type parameters* may have borrowed pointers /// within them. We have to guarantee that the regions which appear in those /// type parameters are not obscured. /// /// Therefore, we ensure that one of three conditions holds: /// /// (1) The trait instance cannot escape the current fn. This is /// guaranteed if the region bound `&r` is some scope within the fn /// itself. This case is safe because whatever borrowed pointers are /// found within the type parameter, they must enclose the fn body /// itself. /// /// (2) The type parameter appears in the type of the trait. For /// example, if the type parameter is `T` and the trait type is /// `deque`, then whatever borrowed ptrs may appear in `T` also /// appear in `deque`. /// /// (3) The type parameter is sendable (and therefore does not contain /// borrowed ptrs). /// /// FIXME(#5723)---This code should probably move into regionck. pub fn check_cast_for_escaping_regions( cx: &Context, source: &Expr, target: &Expr) { // Determine what type we are casting to; if it is not an trait, then no // worries. let target_ty = ty::expr_ty(cx.tcx, target); match ty::get(target_ty).sty { ty::ty_trait(..) => {} _ => { return; } } // Collect up the regions that appear in the target type. We want to // ensure that these lifetimes are shorter than all lifetimes that are in // the source type. See test `src/test/compile-fail/regions-trait-2.rs` let mut target_regions = ~[]; ty::walk_regions_and_ty( cx.tcx, target_ty, |r| { if !r.is_bound() { target_regions.push(r); } }, |_| ()); // Check, based on the region associated with the trait, whether it can // possibly escape the enclosing fn item (note that all type parameters // must have been declared on the enclosing fn item). if target_regions.iter().any(|r| is_ReScope(*r)) { return; /* case (1) */ } // Assuming the trait instance can escape, then ensure that each parameter // either appears in the trait type or is sendable. let target_params = ty::param_tys_in_type(target_ty); let source_ty = ty::expr_ty(cx.tcx, source); ty::walk_regions_and_ty( cx.tcx, source_ty, |_r| { // FIXME(#5723) --- turn this check on once &Objects are usable // // if !target_regions.iter().any(|t_r| is_subregion_of(cx, *t_r, r)) { // cx.tcx.sess.span_err( // source.span, // format!("source contains borrowed pointer with lifetime \ // not found in the target type `{}`", // ty_to_str(cx.tcx, target_ty))); // note_and_explain_region( // cx.tcx, "source data is only valid for ", r, ""); // } }, |ty| { match ty::get(ty).sty { ty::ty_param(source_param) => { if target_params.iter().any(|x| x == &source_param) { /* case (2) */ } else { check_durable(cx.tcx, ty, source.span); /* case (3) */ } } _ => {} } }); fn is_ReScope(r: ty::Region) -> bool { match r { ty::ReScope(..) => true, _ => false } } fn is_subregion_of(cx: &Context, r_sub: ty::Region, r_sup: ty::Region) -> bool { cx.tcx.region_maps.is_subregion_of(r_sub, r_sup) } }