// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. #[allow(non_camel_case_types)]; use metadata::csearch; use middle::astencode; use middle::ty; use middle::typeck::astconv; use middle; use syntax::ast::*; use syntax::parse::token::InternedString; use syntax::visit::Visitor; use syntax::visit; use syntax::{ast, ast_map, ast_util}; use std::cell::RefCell; use collections::HashMap; use std::rc::Rc; // // This pass classifies expressions by their constant-ness. // // Constant-ness comes in 3 flavours: // // - Integer-constants: can be evaluated by the frontend all the way down // to their actual value. They are used in a few places (enum // discriminants, switch arms) and are a subset of // general-constants. They cover all the integer and integer-ish // literals (nil, bool, int, uint, char, iNN, uNN) and all integer // operators and copies applied to them. // // - General-constants: can be evaluated by LLVM but not necessarily by // the frontend; usually due to reliance on target-specific stuff such // as "where in memory the value goes" or "what floating point mode the // target uses". This _includes_ integer-constants, plus the following // constructors: // // fixed-size vectors and strings: [] and ""/_ // vector and string slices: &[] and &"" // tuples: (,) // records: {...} // enums: foo(...) // floating point literals and operators // & and * pointers // copies of general constants // // (in theory, probably not at first: if/match on integer-const // conditions / descriminants) // // - Non-constants: everything else. // pub enum constness { integral_const, general_const, non_const } type constness_cache = HashMap; pub fn join(a: constness, b: constness) -> constness { match (a, b) { (integral_const, integral_const) => integral_const, (integral_const, general_const) | (general_const, integral_const) | (general_const, general_const) => general_const, _ => non_const } } pub fn join_all>(mut cs: It) -> constness { cs.fold(integral_const, |a, b| join(a, b)) } pub fn lookup_const(tcx: ty::ctxt, e: &Expr) -> Option<@Expr> { let opt_def = { let def_map = tcx.def_map.borrow(); def_map.get().find_copy(&e.id) }; match opt_def { Some(ast::DefStatic(def_id, false)) => { lookup_const_by_id(tcx, def_id) } Some(ast::DefVariant(enum_def, variant_def, _)) => { lookup_variant_by_id(tcx, enum_def, variant_def) } _ => None } } pub fn lookup_variant_by_id(tcx: ty::ctxt, enum_def: ast::DefId, variant_def: ast::DefId) -> Option<@Expr> { fn variant_expr(variants: &[ast::P], id: ast::NodeId) -> Option<@Expr> { for variant in variants.iter() { if variant.node.id == id { return variant.node.disr_expr; } } None } if ast_util::is_local(enum_def) { { match tcx.map.find(enum_def.node) { None => None, Some(ast_map::NodeItem(it)) => match it.node { ItemEnum(ast::EnumDef { variants: ref variants }, _) => { variant_expr(*variants, variant_def.node) } _ => None }, Some(_) => None } } } else { { let extern_const_variants = tcx.extern_const_variants.borrow(); match extern_const_variants.get().find(&variant_def) { Some(&e) => return e, None => {} } } let maps = astencode::Maps { root_map: @RefCell::new(HashMap::new()), method_map: @RefCell::new(HashMap::new()), vtable_map: @RefCell::new(HashMap::new()), capture_map: @RefCell::new(HashMap::new()) }; let e = match csearch::maybe_get_item_ast(tcx, enum_def, |a, b, c, d| astencode::decode_inlined_item(a, b, maps, c, d)) { csearch::found(ast::IIItem(item)) => match item.node { ItemEnum(ast::EnumDef { variants: ref variants }, _) => { variant_expr(*variants, variant_def.node) } _ => None }, _ => None }; { let mut extern_const_variants = tcx.extern_const_variants .borrow_mut(); extern_const_variants.get().insert(variant_def, e); return e; } } } pub fn lookup_const_by_id(tcx: ty::ctxt, def_id: ast::DefId) -> Option<@Expr> { if ast_util::is_local(def_id) { { match tcx.map.find(def_id.node) { None => None, Some(ast_map::NodeItem(it)) => match it.node { ItemStatic(_, ast::MutImmutable, const_expr) => { Some(const_expr) } _ => None }, Some(_) => None } } } else { { let extern_const_statics = tcx.extern_const_statics.borrow(); match extern_const_statics.get().find(&def_id) { Some(&e) => return e, None => {} } } let maps = astencode::Maps { root_map: @RefCell::new(HashMap::new()), method_map: @RefCell::new(HashMap::new()), vtable_map: @RefCell::new(HashMap::new()), capture_map: @RefCell::new(HashMap::new()) }; let e = match csearch::maybe_get_item_ast(tcx, def_id, |a, b, c, d| astencode::decode_inlined_item(a, b, maps, c, d)) { csearch::found(ast::IIItem(item)) => match item.node { ItemStatic(_, ast::MutImmutable, const_expr) => Some(const_expr), _ => None }, _ => None }; { let mut extern_const_statics = tcx.extern_const_statics .borrow_mut(); extern_const_statics.get().insert(def_id, e); return e; } } } struct ConstEvalVisitor { tcx: ty::ctxt, ccache: constness_cache, } impl ConstEvalVisitor { fn classify(&mut self, e: &Expr) -> constness { let did = ast_util::local_def(e.id); match self.ccache.find(&did) { Some(&x) => return x, None => {} } let cn = match e.node { ast::ExprLit(lit) => { match lit.node { ast::LitStr(..) | ast::LitFloat(..) => general_const, _ => integral_const } } ast::ExprUnary(_, _, inner) | ast::ExprParen(inner) => self.classify(inner), ast::ExprBinary(_, _, a, b) => join(self.classify(a), self.classify(b)), ast::ExprTup(ref es) | ast::ExprVec(ref es, ast::MutImmutable) => join_all(es.iter().map(|e| self.classify(*e))), ast::ExprVstore(e, vstore) => { match vstore { ast::ExprVstoreSlice => self.classify(e), ast::ExprVstoreUniq | ast::ExprVstoreMutSlice => non_const } } ast::ExprStruct(_, ref fs, None) => { let cs = fs.iter().map(|f| self.classify(f.expr)); join_all(cs) } ast::ExprCast(base, _) => { let ty = ty::expr_ty(self.tcx, e); let base = self.classify(base); if ty::type_is_integral(ty) { join(integral_const, base) } else if ty::type_is_fp(ty) { join(general_const, base) } else { non_const } } ast::ExprField(base, _, _) => self.classify(base), ast::ExprIndex(_, base, idx) => join(self.classify(base), self.classify(idx)), ast::ExprAddrOf(ast::MutImmutable, base) => self.classify(base), // FIXME: (#3728) we can probably do something CCI-ish // surrounding nonlocal constants. But we don't yet. ast::ExprPath(_) => self.lookup_constness(e), ast::ExprRepeat(..) => general_const, _ => non_const }; self.ccache.insert(did, cn); cn } fn lookup_constness(&self, e: &Expr) -> constness { match lookup_const(self.tcx, e) { Some(rhs) => { let ty = ty::expr_ty(self.tcx, rhs); if ty::type_is_integral(ty) { integral_const } else { general_const } } None => non_const } } } impl Visitor<()> for ConstEvalVisitor { fn visit_expr_post(&mut self, e: &Expr, _: ()) { self.classify(e); } } pub fn process_crate(krate: &ast::Crate, tcx: ty::ctxt) { let mut v = ConstEvalVisitor { tcx: tcx, ccache: HashMap::new(), }; visit::walk_crate(&mut v, krate, ()); tcx.sess.abort_if_errors(); } // FIXME (#33): this doesn't handle big integer/float literals correctly // (nor does the rest of our literal handling). #[deriving(Clone, Eq)] pub enum const_val { const_float(f64), const_int(i64), const_uint(u64), const_str(InternedString), const_binary(Rc<~[u8]>), const_bool(bool) } pub fn eval_const_expr(tcx: middle::ty::ctxt, e: &Expr) -> const_val { match eval_const_expr_partial(&tcx, e) { Ok(r) => r, Err(s) => tcx.sess.span_fatal(e.span, s) } } pub fn eval_const_expr_partial(tcx: &T, e: &Expr) -> Result { use middle::ty; fn fromb(b: bool) -> Result { Ok(const_int(b as i64)) } match e.node { ExprUnary(_, UnNeg, inner) => { match eval_const_expr_partial(tcx, inner) { Ok(const_float(f)) => Ok(const_float(-f)), Ok(const_int(i)) => Ok(const_int(-i)), Ok(const_uint(i)) => Ok(const_uint(-i)), Ok(const_str(_)) => Err(~"negate on string"), Ok(const_bool(_)) => Err(~"negate on boolean"), ref err => ((*err).clone()) } } ExprUnary(_, UnNot, inner) => { match eval_const_expr_partial(tcx, inner) { Ok(const_int(i)) => Ok(const_int(!i)), Ok(const_uint(i)) => Ok(const_uint(!i)), Ok(const_bool(b)) => Ok(const_bool(!b)), _ => Err(~"not on float or string") } } ExprBinary(_, op, a, b) => { match (eval_const_expr_partial(tcx, a), eval_const_expr_partial(tcx, b)) { (Ok(const_float(a)), Ok(const_float(b))) => { match op { BiAdd => Ok(const_float(a + b)), BiSub => Ok(const_float(a - b)), BiMul => Ok(const_float(a * b)), BiDiv => Ok(const_float(a / b)), BiRem => Ok(const_float(a % b)), BiEq => fromb(a == b), BiLt => fromb(a < b), BiLe => fromb(a <= b), BiNe => fromb(a != b), BiGe => fromb(a >= b), BiGt => fromb(a > b), _ => Err(~"can't do this op on floats") } } (Ok(const_int(a)), Ok(const_int(b))) => { match op { BiAdd => Ok(const_int(a + b)), BiSub => Ok(const_int(a - b)), BiMul => Ok(const_int(a * b)), BiDiv if b == 0 => Err(~"attempted to divide by zero"), BiDiv => Ok(const_int(a / b)), BiRem if b == 0 => Err(~"attempted remainder with a divisor of zero"), BiRem => Ok(const_int(a % b)), BiAnd | BiBitAnd => Ok(const_int(a & b)), BiOr | BiBitOr => Ok(const_int(a | b)), BiBitXor => Ok(const_int(a ^ b)), BiShl => Ok(const_int(a << b)), BiShr => Ok(const_int(a >> b)), BiEq => fromb(a == b), BiLt => fromb(a < b), BiLe => fromb(a <= b), BiNe => fromb(a != b), BiGe => fromb(a >= b), BiGt => fromb(a > b) } } (Ok(const_uint(a)), Ok(const_uint(b))) => { match op { BiAdd => Ok(const_uint(a + b)), BiSub => Ok(const_uint(a - b)), BiMul => Ok(const_uint(a * b)), BiDiv if b == 0 => Err(~"attempted to divide by zero"), BiDiv => Ok(const_uint(a / b)), BiRem if b == 0 => Err(~"attempted remainder with a divisor of zero"), BiRem => Ok(const_uint(a % b)), BiAnd | BiBitAnd => Ok(const_uint(a & b)), BiOr | BiBitOr => Ok(const_uint(a | b)), BiBitXor => Ok(const_uint(a ^ b)), BiShl => Ok(const_uint(a << b)), BiShr => Ok(const_uint(a >> b)), BiEq => fromb(a == b), BiLt => fromb(a < b), BiLe => fromb(a <= b), BiNe => fromb(a != b), BiGe => fromb(a >= b), BiGt => fromb(a > b), } } // shifts can have any integral type as their rhs (Ok(const_int(a)), Ok(const_uint(b))) => { match op { BiShl => Ok(const_int(a << b)), BiShr => Ok(const_int(a >> b)), _ => Err(~"can't do this op on an int and uint") } } (Ok(const_uint(a)), Ok(const_int(b))) => { match op { BiShl => Ok(const_uint(a << b)), BiShr => Ok(const_uint(a >> b)), _ => Err(~"can't do this op on a uint and int") } } (Ok(const_bool(a)), Ok(const_bool(b))) => { Ok(const_bool(match op { BiAnd => a && b, BiOr => a || b, BiBitXor => a ^ b, BiBitAnd => a & b, BiBitOr => a | b, BiEq => a == b, BiNe => a != b, _ => return Err(~"can't do this op on bools") })) } _ => Err(~"bad operands for binary") } } ExprCast(base, target_ty) => { // This tends to get called w/o the type actually having been // populated in the ctxt, which was causing things to blow up // (#5900). Fall back to doing a limited lookup to get past it. let ety = ty::expr_ty_opt(tcx.ty_ctxt(), e) .or_else(|| astconv::ast_ty_to_prim_ty(tcx.ty_ctxt(), target_ty)) .unwrap_or_else(|| tcx.ty_ctxt().sess.span_fatal( target_ty.span, format!("target type not found for const cast") )); let base = eval_const_expr_partial(tcx, base); match base { Err(_) => base, Ok(val) => { match ty::get(ety).sty { ty::ty_float(_) => { match val { const_uint(u) => Ok(const_float(u as f64)), const_int(i) => Ok(const_float(i as f64)), const_float(f) => Ok(const_float(f)), _ => Err(~"can't cast float to str"), } } ty::ty_uint(_) => { match val { const_uint(u) => Ok(const_uint(u)), const_int(i) => Ok(const_uint(i as u64)), const_float(f) => Ok(const_uint(f as u64)), _ => Err(~"can't cast str to uint"), } } ty::ty_int(_) | ty::ty_bool => { match val { const_uint(u) => Ok(const_int(u as i64)), const_int(i) => Ok(const_int(i)), const_float(f) => Ok(const_int(f as i64)), _ => Err(~"can't cast str to int"), } } _ => Err(~"can't cast this type") } } } } ExprPath(_) => { match lookup_const(tcx.ty_ctxt(), e) { Some(actual_e) => eval_const_expr_partial(&tcx.ty_ctxt(), actual_e), None => Err(~"non-constant path in constant expr") } } ExprLit(lit) => Ok(lit_to_const(lit)), // If we have a vstore, just keep going; it has to be a string ExprVstore(e, _) => eval_const_expr_partial(tcx, e), ExprParen(e) => eval_const_expr_partial(tcx, e), _ => Err(~"unsupported constant expr") } } pub fn lit_to_const(lit: &Lit) -> const_val { match lit.node { LitStr(ref s, _) => const_str((*s).clone()), LitBinary(ref data) => const_binary(data.clone()), LitChar(n) => const_uint(n as u64), LitInt(n, _) => const_int(n), LitUint(n, _) => const_uint(n), LitIntUnsuffixed(n) => const_int(n), LitFloat(ref n, _) | LitFloatUnsuffixed(ref n) => { const_float(from_str::(n.get()).unwrap() as f64) } LitNil => const_int(0i64), LitBool(b) => const_bool(b) } } fn compare_vals(a: T, b: T) -> Option { Some(if a == b { 0 } else if a < b { -1 } else { 1 }) } pub fn compare_const_vals(a: &const_val, b: &const_val) -> Option { match (a, b) { (&const_int(a), &const_int(b)) => compare_vals(a, b), (&const_uint(a), &const_uint(b)) => compare_vals(a, b), (&const_float(a), &const_float(b)) => compare_vals(a, b), (&const_str(ref a), &const_str(ref b)) => compare_vals(a, b), (&const_bool(a), &const_bool(b)) => compare_vals(a, b), _ => None } } pub fn compare_lit_exprs(tcx: middle::ty::ctxt, a: &Expr, b: &Expr) -> Option { compare_const_vals(&eval_const_expr(tcx, a), &eval_const_expr(tcx, b)) } pub fn lit_expr_eq(tcx: middle::ty::ctxt, a: &Expr, b: &Expr) -> Option { compare_lit_exprs(tcx, a, b).map(|val| val == 0) } pub fn lit_eq(a: &Lit, b: &Lit) -> Option { compare_const_vals(&lit_to_const(a), &lit_to_const(b)).map(|val| val == 0) }