use std::ops::Deref; use rustc_front::hir::*; use reexport::*; use syntax::codemap::Span; use rustc_front::visit::FnKind; use rustc::lint::*; use rustc::middle::def::Def::{DefVariant, DefStruct}; use utils::{in_external_macro, snippet, span_lint, span_note_and_lint}; declare_lint!(pub SHADOW_SAME, Allow, "rebinding a name to itself, e.g. `let mut x = &mut x`"); declare_lint!(pub SHADOW_REUSE, Allow, "rebinding a name to an expression that re-uses the original value, e.g. \ `let x = x + 1`"); declare_lint!(pub SHADOW_UNRELATED, Allow, "The name is re-bound without even using the original value"); #[derive(Copy, Clone)] pub struct ShadowPass; impl LintPass for ShadowPass { fn get_lints(&self) -> LintArray { lint_array!(SHADOW_SAME, SHADOW_REUSE, SHADOW_UNRELATED) } } impl LateLintPass for ShadowPass { fn check_fn(&mut self, cx: &LateContext, _: FnKind, decl: &FnDecl, block: &Block, _: Span, _: NodeId) { if in_external_macro(cx, block.span) { return; } check_fn(cx, decl, block); } } fn check_fn(cx: &LateContext, decl: &FnDecl, block: &Block) { let mut bindings = Vec::new(); for arg in &decl.inputs { if let PatIdent(_, ident, _) = arg.pat.node { bindings.push((ident.node.name, ident.span)) } } check_block(cx, block, &mut bindings); } fn check_block(cx: &LateContext, block: &Block, bindings: &mut Vec<(Name, Span)>) { let len = bindings.len(); for stmt in &block.stmts { match stmt.node { StmtDecl(ref decl, _) => check_decl(cx, decl, bindings), StmtExpr(ref e, _) | StmtSemi(ref e, _) => check_expr(cx, e, bindings) } } if let Some(ref o) = block.expr { check_expr(cx, o, bindings); } bindings.truncate(len); } fn check_decl(cx: &LateContext, decl: &Decl, bindings: &mut Vec<(Name, Span)>) { if in_external_macro(cx, decl.span) { return; } if let DeclLocal(ref local) = decl.node { let Local{ ref pat, ref ty, ref init, id: _, span } = **local; if let &Some(ref t) = ty { check_ty(cx, t, bindings) } if let &Some(ref o) = init { check_expr(cx, o, bindings); check_pat(cx, pat, &Some(o), span, bindings); } else { check_pat(cx, pat, &None, span, bindings); } } } fn is_binding(cx: &LateContext, pat: &Pat) -> bool { match cx.tcx.def_map.borrow().get(&pat.id).map(|d| d.full_def()) { Some(DefVariant(..)) | Some(DefStruct(..)) => false, _ => true } } fn check_pat(cx: &LateContext, pat: &Pat, init: &Option<&Expr>, span: Span, bindings: &mut Vec<(Name, Span)>) { //TODO: match more stuff / destructuring match pat.node { PatIdent(_, ref ident, ref inner) => { let name = ident.node.name; if is_binding(cx, pat) { let mut new_binding = true; for tup in bindings.iter_mut() { if tup.0 == name { lint_shadow(cx, name, span, pat.span, init, tup.1); tup.1 = ident.span; new_binding = false; break; } } if new_binding { bindings.push((name, ident.span)); } } if let Some(ref p) = *inner { check_pat(cx, p, init, span, bindings); } }, //PatEnum(Path, Option>>), PatStruct(_, ref pfields, _) => if let Some(ref init_struct) = *init { if let ExprStruct(_, ref efields, _) = init_struct.node { for field in pfields { let name = field.node.name; let efield = efields.iter() .find(|ref f| f.name.node == name) .map(|f| &*f.expr); check_pat(cx, &field.node.pat, &efield, span, bindings); } } else { for field in pfields { check_pat(cx, &field.node.pat, init, span, bindings); } } } else { for field in pfields { check_pat(cx, &field.node.pat, &None, span, bindings); } }, PatTup(ref inner) => if let Some(ref init_tup) = *init { if let ExprTup(ref tup) = init_tup.node { for (i, p) in inner.iter().enumerate() { check_pat(cx, p, &Some(&tup[i]), p.span, bindings); } } else { for p in inner { check_pat(cx, p, init, span, bindings); } } } else { for p in inner { check_pat(cx, p, &None, span, bindings); } }, PatBox(ref inner) => { if let Some(ref initp) = *init { if let ExprBox(ref inner_init) = initp.node { check_pat(cx, inner, &Some(&**inner_init), span, bindings); } else { check_pat(cx, inner, init, span, bindings); } } else { check_pat(cx, inner, init, span, bindings); } }, PatRegion(ref inner, _) => check_pat(cx, inner, init, span, bindings), //PatVec(Vec>, Option>, Vec>), _ => (), } } fn lint_shadow(cx: &LateContext, name: Name, span: Span, lspan: Span, init: &Option, prev_span: Span) where T: Deref { fn note_orig(cx: &LateContext, lint: &'static Lint, span: Span) { if cx.current_level(lint) != Level::Allow { cx.sess().span_note(span, "previous binding is here"); } } if let Some(ref expr) = *init { if is_self_shadow(name, expr) { span_lint(cx, SHADOW_SAME, span, &format!( "{} is shadowed by itself in {}", snippet(cx, lspan, "_"), snippet(cx, expr.span, ".."))); note_orig(cx, SHADOW_SAME, prev_span); } else { if contains_self(name, expr) { span_note_and_lint(cx, SHADOW_REUSE, lspan, &format!( "{} is shadowed by {} which reuses the original value", snippet(cx, lspan, "_"), snippet(cx, expr.span, "..")), expr.span, "initialization happens here"); note_orig(cx, SHADOW_REUSE, prev_span); } else { span_note_and_lint(cx, SHADOW_UNRELATED, lspan, &format!( "{} is shadowed by {}", snippet(cx, lspan, "_"), snippet(cx, expr.span, "..")), expr.span, "initialization happens here"); note_orig(cx, SHADOW_UNRELATED, prev_span); } } } else { span_lint(cx, SHADOW_UNRELATED, span, &format!( "{} shadows a previous declaration", snippet(cx, lspan, "_"))); note_orig(cx, SHADOW_UNRELATED, prev_span); } } fn check_expr(cx: &LateContext, expr: &Expr, bindings: &mut Vec<(Name, Span)>) { if in_external_macro(cx, expr.span) { return; } match expr.node { ExprUnary(_, ref e) | ExprField(ref e, _) | ExprTupField(ref e, _) | ExprAddrOf(_, ref e) | ExprBox(ref e) => { check_expr(cx, e, bindings) }, ExprBlock(ref block) | ExprLoop(ref block, _) => { check_block(cx, block, bindings) }, //ExprCall //ExprMethodCall ExprVec(ref v) | ExprTup(ref v) => for ref e in v { check_expr(cx, e, bindings) }, ExprIf(ref cond, ref then, ref otherwise) => { check_expr(cx, cond, bindings); check_block(cx, then, bindings); if let &Some(ref o) = otherwise { check_expr(cx, o, bindings); } }, ExprWhile(ref cond, ref block, _) => { check_expr(cx, cond, bindings); check_block(cx, block, bindings); }, ExprMatch(ref init, ref arms, _) => { check_expr(cx, init, bindings); let len = bindings.len(); for ref arm in arms { for ref pat in &arm.pats { check_pat(cx, &pat, &Some(&**init), pat.span, bindings); //This is ugly, but needed to get the right type if let Some(ref guard) = arm.guard { check_expr(cx, guard, bindings); } check_expr(cx, &arm.body, bindings); bindings.truncate(len); } } }, _ => () } } fn check_ty(cx: &LateContext, ty: &Ty, bindings: &mut Vec<(Name, Span)>) { match ty.node { TyParen(ref sty) | TyObjectSum(ref sty, _) | TyVec(ref sty) => check_ty(cx, sty, bindings), TyFixedLengthVec(ref fty, ref expr) => { check_ty(cx, fty, bindings); check_expr(cx, expr, bindings); }, TyPtr(MutTy{ ty: ref mty, .. }) | TyRptr(_, MutTy{ ty: ref mty, .. }) => check_ty(cx, mty, bindings), TyTup(ref tup) => { for ref t in tup { check_ty(cx, t, bindings) } }, TyTypeof(ref expr) => check_expr(cx, expr, bindings), _ => (), } } fn is_self_shadow(name: Name, expr: &Expr) -> bool { match expr.node { ExprBox(ref inner) | ExprAddrOf(_, ref inner) => is_self_shadow(name, inner), ExprBlock(ref block) => block.stmts.is_empty() && block.expr.as_ref(). map_or(false, |ref e| is_self_shadow(name, e)), ExprUnary(op, ref inner) => (UnDeref == op) && is_self_shadow(name, inner), ExprPath(_, ref path) => path_eq_name(name, path), _ => false, } } fn path_eq_name(name: Name, path: &Path) -> bool { !path.global && path.segments.len() == 1 && path.segments[0].identifier.name == name } fn contains_self(name: Name, expr: &Expr) -> bool { match expr.node { // the "self" name itself (maybe) ExprPath(_, ref path) => path_eq_name(name, path), // no subexprs ExprLit(_) => false, // one subexpr ExprUnary(_, ref e) | ExprField(ref e, _) | ExprTupField(ref e, _) | ExprAddrOf(_, ref e) | ExprBox(ref e) | ExprCast(ref e, _) => contains_self(name, e), // two subexprs ExprBinary(_, ref l, ref r) | ExprIndex(ref l, ref r) | ExprAssign(ref l, ref r) | ExprAssignOp(_, ref l, ref r) | ExprRepeat(ref l, ref r) => contains_self(name, l) || contains_self(name, r), // one optional subexpr ExprRet(ref oe) => oe.as_ref().map_or(false, |ref e| contains_self(name, e)), // two optional subexprs ExprRange(ref ol, ref or) => ol.as_ref().map_or(false, |ref e| contains_self(name, e)) || or.as_ref().map_or(false, |ref e| contains_self(name, e)), // one subblock ExprBlock(ref block) | ExprLoop(ref block, _) | ExprClosure(_, _, ref block) => contains_block_self(name, block), // one vec ExprMethodCall(_, _, ref v) | ExprVec(ref v) | ExprTup(ref v) => v.iter().any(|ref a| contains_self(name, a)), // one expr, one vec ExprCall(ref fun, ref args) => contains_self(name, fun) || args.iter().any(|ref a| contains_self(name, a)), // special ones ExprIf(ref cond, ref then, ref otherwise) => contains_self(name, cond) || contains_block_self(name, then) || otherwise.as_ref().map_or(false, |ref e| contains_self(name, e)), ExprWhile(ref e, ref block, _) => contains_self(name, e) || contains_block_self(name, block), ExprMatch(ref e, ref arms, _) => contains_self(name, e) || arms.iter().any( |ref arm| arm.pats.iter().any(|ref pat| contains_pat_self(name, pat)) || arm.guard.as_ref().map_or(false, |ref g| contains_self(name, g)) || contains_self(name, &arm.body)), ExprStruct(_, ref fields, ref other) => fields.iter().any(|ref f| contains_self(name, &f.expr)) || other.as_ref().map_or(false, |ref e| contains_self(name, e)), _ => false, } } fn contains_block_self(name: Name, block: &Block) -> bool { for stmt in &block.stmts { match stmt.node { StmtDecl(ref decl, _) => if let DeclLocal(ref local) = decl.node { //TODO: We don't currently handle the case where the name //is shadowed wiithin the block; this means code including this //degenerate pattern will get the wrong warning. if let Some(ref init) = local.init { if contains_self(name, init) { return true; } } }, StmtExpr(ref e, _) | StmtSemi(ref e, _) => if contains_self(name, e) { return true } } } if let Some(ref e) = block.expr { contains_self(name, e) } else { false } } fn contains_pat_self(name: Name, pat: &Pat) -> bool { match pat.node { PatIdent(_, ref ident, ref inner) => name == ident.node.name || inner.as_ref().map_or(false, |ref p| contains_pat_self(name, p)), PatEnum(_, ref opats) => opats.as_ref().map_or(false, |pats| pats.iter().any(|p| contains_pat_self(name, p))), PatQPath(_, ref path) => path_eq_name(name, path), PatStruct(_, ref fieldpats, _) => fieldpats.iter().any( |ref fp| contains_pat_self(name, &fp.node.pat)), PatTup(ref ps) => ps.iter().any(|ref p| contains_pat_self(name, p)), PatBox(ref p) | PatRegion(ref p, _) => contains_pat_self(name, p), PatRange(ref from, ref until) => contains_self(name, from) || contains_self(name, until), PatVec(ref pre, ref opt, ref post) => pre.iter().any(|ref p| contains_pat_self(name, p)) || opt.as_ref().map_or(false, |ref p| contains_pat_self(name, p)) || post.iter().any(|ref p| contains_pat_self(name, p)), _ => false, } }