#![doc(html_root_url = "https://doc.rust-lang.org/nightly/")] #![feature(in_band_lifetimes)] #![feature(nll)] #![recursion_limit="256"] #[macro_use] extern crate syntax; use rustc::bug; use rustc::hir::{self, Node, PatKind, AssocItemKind}; use rustc::hir::def::{Res, DefKind}; use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, CrateNum, DefId}; use rustc::hir::intravisit::{self, Visitor, NestedVisitorMap}; use rustc::hir::itemlikevisit::DeepVisitor; use rustc::lint; use rustc::middle::privacy::{AccessLevel, AccessLevels}; use rustc::ty::{self, TyCtxt, Ty, TraitRef, TypeFoldable, GenericParamDefKind}; use rustc::ty::fold::TypeVisitor; use rustc::ty::query::Providers; use rustc::ty::subst::InternalSubsts; use rustc::util::nodemap::HirIdSet; use rustc_data_structures::fx::FxHashSet; use syntax::ast::Ident; use syntax::attr; use syntax::symbol::{kw, sym}; use syntax_pos::hygiene::Transparency; use syntax_pos::Span; use std::{cmp, fmt, mem}; use std::marker::PhantomData; use rustc_error_codes::*; //////////////////////////////////////////////////////////////////////////////// /// Generic infrastructure used to implement specific visitors below. //////////////////////////////////////////////////////////////////////////////// /// Implemented to visit all `DefId`s in a type. /// Visiting `DefId`s is useful because visibilities and reachabilities are attached to them. /// The idea is to visit "all components of a type", as documented in /// https://github.com/rust-lang/rfcs/blob/master/text/2145-type-privacy.md#how-to-determine-visibility-of-a-type. /// The default type visitor (`TypeVisitor`) does most of the job, but it has some shortcomings. /// First, it doesn't have overridable `fn visit_trait_ref`, so we have to catch trait `DefId`s /// manually. Second, it doesn't visit some type components like signatures of fn types, or traits /// in `impl Trait`, see individual comments in `DefIdVisitorSkeleton::visit_ty`. trait DefIdVisitor<'tcx> { fn tcx(&self) -> TyCtxt<'tcx>; fn shallow(&self) -> bool { false } fn skip_assoc_tys(&self) -> bool { false } fn visit_def_id(&mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display) -> bool; /// Not overridden, but used to actually visit types and traits. fn skeleton(&mut self) -> DefIdVisitorSkeleton<'_, 'tcx, Self> { DefIdVisitorSkeleton { def_id_visitor: self, visited_opaque_tys: Default::default(), dummy: Default::default(), } } fn visit(&mut self, ty_fragment: impl TypeFoldable<'tcx>) -> bool { ty_fragment.visit_with(&mut self.skeleton()) } fn visit_trait(&mut self, trait_ref: TraitRef<'tcx>) -> bool { self.skeleton().visit_trait(trait_ref) } fn visit_predicates(&mut self, predicates: ty::GenericPredicates<'tcx>) -> bool { self.skeleton().visit_predicates(predicates) } } struct DefIdVisitorSkeleton<'v, 'tcx, V> where V: DefIdVisitor<'tcx> + ?Sized, { def_id_visitor: &'v mut V, visited_opaque_tys: FxHashSet, dummy: PhantomData>, } impl<'tcx, V> DefIdVisitorSkeleton<'_, 'tcx, V> where V: DefIdVisitor<'tcx> + ?Sized, { fn visit_trait(&mut self, trait_ref: TraitRef<'tcx>) -> bool { let TraitRef { def_id, substs } = trait_ref; self.def_id_visitor.visit_def_id(def_id, "trait", &trait_ref.print_only_trait_path()) || (!self.def_id_visitor.shallow() && substs.visit_with(self)) } fn visit_predicates(&mut self, predicates: ty::GenericPredicates<'tcx>) -> bool { let ty::GenericPredicates { parent: _, predicates } = predicates; for (predicate, _span) in predicates { match predicate { ty::Predicate::Trait(poly_predicate) => { let ty::TraitPredicate { trait_ref } = *poly_predicate.skip_binder(); if self.visit_trait(trait_ref) { return true; } } ty::Predicate::Projection(poly_predicate) => { let ty::ProjectionPredicate { projection_ty, ty } = *poly_predicate.skip_binder(); if ty.visit_with(self) { return true; } if self.visit_trait(projection_ty.trait_ref(self.def_id_visitor.tcx())) { return true; } } ty::Predicate::TypeOutlives(poly_predicate) => { let ty::OutlivesPredicate(ty, _region) = *poly_predicate.skip_binder(); if ty.visit_with(self) { return true; } } ty::Predicate::RegionOutlives(..) => {}, _ => bug!("unexpected predicate: {:?}", predicate), } } false } } impl<'tcx, V> TypeVisitor<'tcx> for DefIdVisitorSkeleton<'_, 'tcx, V> where V: DefIdVisitor<'tcx> + ?Sized, { fn visit_ty(&mut self, ty: Ty<'tcx>) -> bool { let tcx = self.def_id_visitor.tcx(); // InternalSubsts are not visited here because they are visited below in `super_visit_with`. match ty.kind { ty::Adt(&ty::AdtDef { did: def_id, .. }, ..) | ty::Foreign(def_id) | ty::FnDef(def_id, ..) | ty::Closure(def_id, ..) | ty::Generator(def_id, ..) => { if self.def_id_visitor.visit_def_id(def_id, "type", &ty) { return true; } if self.def_id_visitor.shallow() { return false; } // Default type visitor doesn't visit signatures of fn types. // Something like `fn() -> Priv {my_func}` is considered a private type even if // `my_func` is public, so we need to visit signatures. if let ty::FnDef(..) = ty.kind { if tcx.fn_sig(def_id).visit_with(self) { return true; } } // Inherent static methods don't have self type in substs. // Something like `fn() {my_method}` type of the method // `impl Pub { pub fn my_method() {} }` is considered a private type, // so we need to visit the self type additionally. if let Some(assoc_item) = tcx.opt_associated_item(def_id) { if let ty::ImplContainer(impl_def_id) = assoc_item.container { if tcx.type_of(impl_def_id).visit_with(self) { return true; } } } } ty::Projection(proj) | ty::UnnormalizedProjection(proj) => { if self.def_id_visitor.skip_assoc_tys() { // Visitors searching for minimal visibility/reachability want to // conservatively approximate associated types like `::Alias` // as visible/reachable even if both `Type` and `Trait` are private. // Ideally, associated types should be substituted in the same way as // free type aliases, but this isn't done yet. return false; } // This will also visit substs if necessary, so we don't need to recurse. return self.visit_trait(proj.trait_ref(tcx)); } ty::Dynamic(predicates, ..) => { // All traits in the list are considered the "primary" part of the type // and are visited by shallow visitors. for predicate in *predicates.skip_binder() { let trait_ref = match *predicate { ty::ExistentialPredicate::Trait(trait_ref) => trait_ref, ty::ExistentialPredicate::Projection(proj) => proj.trait_ref(tcx), ty::ExistentialPredicate::AutoTrait(def_id) => ty::ExistentialTraitRef { def_id, substs: InternalSubsts::empty() }, }; let ty::ExistentialTraitRef { def_id, substs: _ } = trait_ref; if self.def_id_visitor.visit_def_id(def_id, "trait", &trait_ref) { return true; } } } ty::Opaque(def_id, ..) => { // Skip repeated `Opaque`s to avoid infinite recursion. if self.visited_opaque_tys.insert(def_id) { // The intent is to treat `impl Trait1 + Trait2` identically to // `dyn Trait1 + Trait2`. Therefore we ignore def-id of the opaque type itself // (it either has no visibility, or its visibility is insignificant, like // visibilities of type aliases) and recurse into predicates instead to go // through the trait list (default type visitor doesn't visit those traits). // All traits in the list are considered the "primary" part of the type // and are visited by shallow visitors. if self.visit_predicates(tcx.predicates_of(def_id)) { return true; } } } // These types don't have their own def-ids (but may have subcomponents // with def-ids that should be visited recursively). ty::Bool | ty::Char | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Str | ty::Never | ty::Array(..) | ty::Slice(..) | ty::Tuple(..) | ty::RawPtr(..) | ty::Ref(..) | ty::FnPtr(..) | ty::Param(..) | ty::Error | ty::GeneratorWitness(..) => {} ty::Bound(..) | ty::Placeholder(..) | ty::Infer(..) => bug!("unexpected type: {:?}", ty), } !self.def_id_visitor.shallow() && ty.super_visit_with(self) } } fn def_id_visibility<'tcx>( tcx: TyCtxt<'tcx>, def_id: DefId, ) -> (ty::Visibility, Span, &'static str) { match tcx.hir().as_local_hir_id(def_id) { Some(hir_id) => { let vis = match tcx.hir().get(hir_id) { Node::Item(item) => &item.vis, Node::ForeignItem(foreign_item) => &foreign_item.vis, Node::MacroDef(macro_def) => { if attr::contains_name(¯o_def.attrs, sym::macro_export) { return (ty::Visibility::Public, macro_def.span, "public"); } else { ¯o_def.vis } }, Node::TraitItem(..) | Node::Variant(..) => { return def_id_visibility(tcx, tcx.hir().get_parent_did(hir_id)); } Node::ImplItem(impl_item) => { match tcx.hir().get(tcx.hir().get_parent_item(hir_id)) { Node::Item(item) => match &item.kind { hir::ItemKind::Impl(.., None, _, _) => &impl_item.vis, hir::ItemKind::Impl(.., Some(trait_ref), _, _) => return def_id_visibility(tcx, trait_ref.path.res.def_id()), kind => bug!("unexpected item kind: {:?}", kind), } node => bug!("unexpected node kind: {:?}", node), } } Node::Ctor(vdata) => { let parent_hir_id = tcx.hir().get_parent_node(hir_id); match tcx.hir().get(parent_hir_id) { Node::Variant(..) => { let parent_did = tcx.hir().local_def_id(parent_hir_id); let (mut ctor_vis, mut span, mut descr) = def_id_visibility( tcx, parent_did, ); let adt_def = tcx.adt_def(tcx.hir().get_parent_did(hir_id)); let ctor_did = tcx.hir().local_def_id( vdata.ctor_hir_id().unwrap()); let variant = adt_def.variant_with_ctor_id(ctor_did); if variant.is_field_list_non_exhaustive() && ctor_vis == ty::Visibility::Public { ctor_vis = ty::Visibility::Restricted( DefId::local(CRATE_DEF_INDEX)); let attrs = tcx.get_attrs(variant.def_id); span = attr::find_by_name(&attrs, sym::non_exhaustive) .unwrap().span; descr = "crate-visible"; } return (ctor_vis, span, descr); } Node::Item(..) => { let item = match tcx.hir().get(parent_hir_id) { Node::Item(item) => item, node => bug!("unexpected node kind: {:?}", node), }; let (mut ctor_vis, mut span, mut descr) = (ty::Visibility::from_hir(&item.vis, parent_hir_id, tcx), item.vis.span, item.vis.node.descr()); for field in vdata.fields() { let field_vis = ty::Visibility::from_hir(&field.vis, hir_id, tcx); if ctor_vis.is_at_least(field_vis, tcx) { ctor_vis = field_vis; span = field.vis.span; descr = field.vis.node.descr(); } } // If the structure is marked as non_exhaustive then lower the // visibility to within the crate. if ctor_vis == ty::Visibility::Public { let adt_def = tcx.adt_def(tcx.hir().get_parent_did(hir_id)); if adt_def.non_enum_variant().is_field_list_non_exhaustive() { ctor_vis = ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX)); span = attr::find_by_name(&item.attrs, sym::non_exhaustive) .unwrap().span; descr = "crate-visible"; } } return (ctor_vis, span, descr); } node => bug!("unexpected node kind: {:?}", node), } } Node::Expr(expr) => { return (ty::Visibility::Restricted( tcx.hir().get_module_parent(expr.hir_id)), expr.span, "private") } node => bug!("unexpected node kind: {:?}", node) }; (ty::Visibility::from_hir(vis, hir_id, tcx), vis.span, vis.node.descr()) } None => { let vis = tcx.visibility(def_id); let descr = if vis == ty::Visibility::Public { "public" } else { "private" }; (vis, tcx.def_span(def_id), descr) } } } // Set the correct `TypeckTables` for the given `item_id` (or an empty table if // there is no `TypeckTables` for the item). fn item_tables<'a, 'tcx>( tcx: TyCtxt<'tcx>, hir_id: hir::HirId, empty_tables: &'a ty::TypeckTables<'tcx>, ) -> &'a ty::TypeckTables<'tcx> { let def_id = tcx.hir().local_def_id(hir_id); if tcx.has_typeck_tables(def_id) { tcx.typeck_tables_of(def_id) } else { empty_tables } } fn min(vis1: ty::Visibility, vis2: ty::Visibility, tcx: TyCtxt<'_>) -> ty::Visibility { if vis1.is_at_least(vis2, tcx) { vis2 } else { vis1 } } //////////////////////////////////////////////////////////////////////////////// /// Visitor used to determine if pub(restricted) is used anywhere in the crate. /// /// This is done so that `private_in_public` warnings can be turned into hard errors /// in crates that have been updated to use pub(restricted). //////////////////////////////////////////////////////////////////////////////// struct PubRestrictedVisitor<'tcx> { tcx: TyCtxt<'tcx>, has_pub_restricted: bool, } impl Visitor<'tcx> for PubRestrictedVisitor<'tcx> { fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> { NestedVisitorMap::All(&self.tcx.hir()) } fn visit_vis(&mut self, vis: &'tcx hir::Visibility) { self.has_pub_restricted = self.has_pub_restricted || vis.node.is_pub_restricted(); } } //////////////////////////////////////////////////////////////////////////////// /// Visitor used to determine impl visibility and reachability. //////////////////////////////////////////////////////////////////////////////// struct FindMin<'a, 'tcx, VL: VisibilityLike> { tcx: TyCtxt<'tcx>, access_levels: &'a AccessLevels, min: VL, } impl<'a, 'tcx, VL: VisibilityLike> DefIdVisitor<'tcx> for FindMin<'a, 'tcx, VL> { fn tcx(&self) -> TyCtxt<'tcx> { self.tcx } fn shallow(&self) -> bool { VL::SHALLOW } fn skip_assoc_tys(&self) -> bool { true } fn visit_def_id(&mut self, def_id: DefId, _kind: &str, _descr: &dyn fmt::Display) -> bool { self.min = VL::new_min(self, def_id); false } } trait VisibilityLike: Sized { const MAX: Self; const SHALLOW: bool = false; fn new_min(find: &FindMin<'_, '_, Self>, def_id: DefId) -> Self; // Returns an over-approximation (`skip_assoc_tys` = true) of visibility due to // associated types for which we can't determine visibility precisely. fn of_impl( hir_id: hir::HirId, tcx: TyCtxt<'_>, access_levels: &AccessLevels, ) -> Self { let mut find = FindMin { tcx, access_levels, min: Self::MAX }; let def_id = tcx.hir().local_def_id(hir_id); find.visit(tcx.type_of(def_id)); if let Some(trait_ref) = tcx.impl_trait_ref(def_id) { find.visit_trait(trait_ref); } find.min } } impl VisibilityLike for ty::Visibility { const MAX: Self = ty::Visibility::Public; fn new_min(find: &FindMin<'_, '_, Self>, def_id: DefId) -> Self { min(def_id_visibility(find.tcx, def_id).0, find.min, find.tcx) } } impl VisibilityLike for Option { const MAX: Self = Some(AccessLevel::Public); // Type inference is very smart sometimes. // It can make an impl reachable even some components of its type or trait are unreachable. // E.g. methods of `impl ReachableTrait for ReachableTy { ... }` // can be usable from other crates (#57264). So we skip substs when calculating reachability // and consider an impl reachable if its "shallow" type and trait are reachable. // // The assumption we make here is that type-inference won't let you use an impl without knowing // both "shallow" version of its self type and "shallow" version of its trait if it exists // (which require reaching the `DefId`s in them). const SHALLOW: bool = true; fn new_min(find: &FindMin<'_, '_, Self>, def_id: DefId) -> Self { cmp::min(if let Some(hir_id) = find.tcx.hir().as_local_hir_id(def_id) { find.access_levels.map.get(&hir_id).cloned() } else { Self::MAX }, find.min) } } //////////////////////////////////////////////////////////////////////////////// /// The embargo visitor, used to determine the exports of the AST. //////////////////////////////////////////////////////////////////////////////// struct EmbargoVisitor<'tcx> { tcx: TyCtxt<'tcx>, /// Accessibility levels for reachable nodes. access_levels: AccessLevels, /// A set of pairs corresponding to modules, where the first module is /// reachable via a macro that's defined in the second module. This cannot /// be represented as reachable because it can't handle the following case: /// /// pub mod n { // Should be `Public` /// pub(crate) mod p { // Should *not* be accessible /// pub fn f() -> i32 { 12 } // Must be `Reachable` /// } /// } /// pub macro m() { /// n::p::f() /// } macro_reachable: FxHashSet<(hir::HirId, DefId)>, /// Previous accessibility level; `None` means unreachable. prev_level: Option, /// Has something changed in the level map? changed: bool, } struct ReachEverythingInTheInterfaceVisitor<'a, 'tcx> { access_level: Option, item_def_id: DefId, ev: &'a mut EmbargoVisitor<'tcx>, } impl EmbargoVisitor<'tcx> { fn get(&self, id: hir::HirId) -> Option { self.access_levels.map.get(&id).cloned() } /// Updates node level and returns the updated level. fn update(&mut self, id: hir::HirId, level: Option) -> Option { let old_level = self.get(id); // Accessibility levels can only grow. if level > old_level { self.access_levels.map.insert(id, level.unwrap()); self.changed = true; level } else { old_level } } fn reach( &mut self, item_id: hir::HirId, access_level: Option, ) -> ReachEverythingInTheInterfaceVisitor<'_, 'tcx> { ReachEverythingInTheInterfaceVisitor { access_level: cmp::min(access_level, Some(AccessLevel::Reachable)), item_def_id: self.tcx.hir().local_def_id(item_id), ev: self, } } /// Updates the item as being reachable through a macro defined in the given /// module. Returns `true` if the level has changed. fn update_macro_reachable(&mut self, reachable_mod: hir::HirId, defining_mod: DefId) -> bool { if self.macro_reachable.insert((reachable_mod, defining_mod)) { self.update_macro_reachable_mod(reachable_mod, defining_mod); true } else { false } } fn update_macro_reachable_mod(&mut self, reachable_mod: hir::HirId, defining_mod: DefId) { let module_def_id = self.tcx.hir().local_def_id(reachable_mod); let module = self.tcx.hir().get_module(module_def_id).0; for item_id in &module.item_ids { let hir_id = item_id.id; let item_def_id = self.tcx.hir().local_def_id(hir_id); if let Some(def_kind) = self.tcx.def_kind(item_def_id) { let item = self.tcx.hir().expect_item(hir_id); let vis = ty::Visibility::from_hir(&item.vis, hir_id, self.tcx); self.update_macro_reachable_def(hir_id, def_kind, vis, defining_mod); } } if let Some(exports) = self.tcx.module_exports(module_def_id) { for export in exports { if export.vis.is_accessible_from(defining_mod, self.tcx) { if let Res::Def(def_kind, def_id) = export.res { let vis = def_id_visibility(self.tcx, def_id).0; if let Some(hir_id) = self.tcx.hir().as_local_hir_id(def_id) { self.update_macro_reachable_def(hir_id, def_kind, vis, defining_mod); } } } } } } fn update_macro_reachable_def( &mut self, hir_id: hir::HirId, def_kind: DefKind, vis: ty::Visibility, module: DefId, ) { let level = Some(AccessLevel::Reachable); if let ty::Visibility::Public = vis { self.update(hir_id, level); } match def_kind { // No type privacy, so can be directly marked as reachable. DefKind::Const | DefKind::Macro(_) | DefKind::Static | DefKind::TraitAlias | DefKind::TyAlias => { if vis.is_accessible_from(module, self.tcx) { self.update(hir_id, level); } }, // We can't use a module name as the final segment of a path, except // in use statements. Since re-export checking doesn't consider // hygiene these don't need to be marked reachable. The contents of // the module, however may be reachable. DefKind::Mod => { if vis.is_accessible_from(module, self.tcx) { self.update_macro_reachable(hir_id, module); } } DefKind::Struct | DefKind::Union => { // While structs and unions have type privacy, their fields do // not. if let ty::Visibility::Public = vis { let item = self.tcx.hir().expect_item(hir_id); if let hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) = item.kind { for field in struct_def.fields() { let field_vis = ty::Visibility::from_hir( &field.vis, field.hir_id, self.tcx, ); if field_vis.is_accessible_from(module, self.tcx) { self.reach(field.hir_id, level).ty(); } } } else { bug!("item {:?} with DefKind {:?}", item, def_kind); } } } // These have type privacy, so are not reachable unless they're // public DefKind::AssocConst | DefKind::AssocTy | DefKind::AssocOpaqueTy | DefKind::ConstParam | DefKind::Ctor(_, _) | DefKind::Enum | DefKind::ForeignTy | DefKind::Fn | DefKind::OpaqueTy | DefKind::Method | DefKind::Trait | DefKind::TyParam | DefKind::Variant => (), } } /// Given the path segments of a `ItemKind::Use`, then we need /// to update the visibility of the intermediate use so that it isn't linted /// by `unreachable_pub`. /// /// This isn't trivial as `path.res` has the `DefId` of the eventual target /// of the use statement not of the next intermediate use statement. /// /// To do this, consider the last two segments of the path to our intermediate /// use statement. We expect the penultimate segment to be a module and the /// last segment to be the name of the item we are exporting. We can then /// look at the items contained in the module for the use statement with that /// name and update that item's visibility. /// /// FIXME: This solution won't work with glob imports and doesn't respect /// namespaces. See . fn update_visibility_of_intermediate_use_statements(&mut self, segments: &[hir::PathSegment]) { if let Some([module, segment]) = segments.rchunks_exact(2).next() { if let Some(item) = module.res .and_then(|res| res.mod_def_id()) .and_then(|def_id| self.tcx.hir().as_local_hir_id(def_id)) .map(|module_hir_id| self.tcx.hir().expect_item(module_hir_id)) { if let hir::ItemKind::Mod(m) = &item.kind { for item_id in m.item_ids.as_ref() { let item = self.tcx.hir().expect_item(item_id.id); let def_id = self.tcx.hir().local_def_id(item_id.id); if !self.tcx.hygienic_eq(segment.ident, item.ident, def_id) { continue; } if let hir::ItemKind::Use(..) = item.kind { self.update(item.hir_id, Some(AccessLevel::Exported)); } } } } } } } impl Visitor<'tcx> for EmbargoVisitor<'tcx> { /// We want to visit items in the context of their containing /// module and so forth, so supply a crate for doing a deep walk. fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> { NestedVisitorMap::All(&self.tcx.hir()) } fn visit_item(&mut self, item: &'tcx hir::Item) { let inherited_item_level = match item.kind { hir::ItemKind::Impl(..) => Option::::of_impl(item.hir_id, self.tcx, &self.access_levels), // Foreign modules inherit level from parents. hir::ItemKind::ForeignMod(..) => self.prev_level, // Other `pub` items inherit levels from parents. hir::ItemKind::Const(..) | hir::ItemKind::Enum(..) | hir::ItemKind::ExternCrate(..) | hir::ItemKind::GlobalAsm(..) | hir::ItemKind::Fn(..) | hir::ItemKind::Mod(..) | hir::ItemKind::Static(..) | hir::ItemKind::Struct(..) | hir::ItemKind::Trait(..) | hir::ItemKind::TraitAlias(..) | hir::ItemKind::OpaqueTy(..) | hir::ItemKind::TyAlias(..) | hir::ItemKind::Union(..) | hir::ItemKind::Use(..) => { if item.vis.node.is_pub() { self.prev_level } else { None } } }; // Update level of the item itself. let item_level = self.update(item.hir_id, inherited_item_level); // Update levels of nested things. match item.kind { hir::ItemKind::Enum(ref def, _) => { for variant in &def.variants { let variant_level = self.update(variant.id, item_level); if let Some(ctor_hir_id) = variant.data.ctor_hir_id() { self.update(ctor_hir_id, item_level); } for field in variant.data.fields() { self.update(field.hir_id, variant_level); } } } hir::ItemKind::Impl(.., ref trait_ref, _, ref impl_item_refs) => { for impl_item_ref in impl_item_refs { if trait_ref.is_some() || impl_item_ref.vis.node.is_pub() { self.update(impl_item_ref.id.hir_id, item_level); } } } hir::ItemKind::Trait(.., ref trait_item_refs) => { for trait_item_ref in trait_item_refs { self.update(trait_item_ref.id.hir_id, item_level); } } hir::ItemKind::Struct(ref def, _) | hir::ItemKind::Union(ref def, _) => { if let Some(ctor_hir_id) = def.ctor_hir_id() { self.update(ctor_hir_id, item_level); } for field in def.fields() { if field.vis.node.is_pub() { self.update(field.hir_id, item_level); } } } hir::ItemKind::ForeignMod(ref foreign_mod) => { for foreign_item in &foreign_mod.items { if foreign_item.vis.node.is_pub() { self.update(foreign_item.hir_id, item_level); } } } hir::ItemKind::OpaqueTy(..) | hir::ItemKind::Use(..) | hir::ItemKind::Static(..) | hir::ItemKind::Const(..) | hir::ItemKind::GlobalAsm(..) | hir::ItemKind::TyAlias(..) | hir::ItemKind::Mod(..) | hir::ItemKind::TraitAlias(..) | hir::ItemKind::Fn(..) | hir::ItemKind::ExternCrate(..) => {} } // Mark all items in interfaces of reachable items as reachable. match item.kind { // The interface is empty. hir::ItemKind::ExternCrate(..) => {} // All nested items are checked by `visit_item`. hir::ItemKind::Mod(..) => {} // Re-exports are handled in `visit_mod`. However, in order to avoid looping over // all of the items of a mod in `visit_mod` looking for use statements, we handle // making sure that intermediate use statements have their visibilities updated here. hir::ItemKind::Use(ref path, _) => { if item_level.is_some() { self.update_visibility_of_intermediate_use_statements(path.segments.as_ref()); } } // The interface is empty. hir::ItemKind::GlobalAsm(..) => {} hir::ItemKind::OpaqueTy(..) => { // FIXME: This is some serious pessimization intended to workaround deficiencies // in the reachability pass (`middle/reachable.rs`). Types are marked as link-time // reachable if they are returned via `impl Trait`, even from private functions. let exist_level = cmp::max(item_level, Some(AccessLevel::ReachableFromImplTrait)); self.reach(item.hir_id, exist_level).generics().predicates().ty(); } // Visit everything. hir::ItemKind::Const(..) | hir::ItemKind::Static(..) | hir::ItemKind::Fn(..) | hir::ItemKind::TyAlias(..) => { if item_level.is_some() { self.reach(item.hir_id, item_level).generics().predicates().ty(); } } hir::ItemKind::Trait(.., ref trait_item_refs) => { if item_level.is_some() { self.reach(item.hir_id, item_level).generics().predicates(); for trait_item_ref in trait_item_refs { let mut reach = self.reach(trait_item_ref.id.hir_id, item_level); reach.generics().predicates(); if trait_item_ref.kind == AssocItemKind::Type && !trait_item_ref.defaultness.has_value() { // No type to visit. } else { reach.ty(); } } } } hir::ItemKind::TraitAlias(..) => { if item_level.is_some() { self.reach(item.hir_id, item_level).generics().predicates(); } } // Visit everything except for private impl items. hir::ItemKind::Impl(.., ref impl_item_refs) => { if item_level.is_some() { self.reach(item.hir_id, item_level).generics().predicates().ty().trait_ref(); for impl_item_ref in impl_item_refs { let impl_item_level = self.get(impl_item_ref.id.hir_id); if impl_item_level.is_some() { self.reach(impl_item_ref.id.hir_id, impl_item_level) .generics().predicates().ty(); } } } } // Visit everything, but enum variants have their own levels. hir::ItemKind::Enum(ref def, _) => { if item_level.is_some() { self.reach(item.hir_id, item_level).generics().predicates(); } for variant in &def.variants { let variant_level = self.get(variant.id); if variant_level.is_some() { for field in variant.data.fields() { self.reach(field.hir_id, variant_level).ty(); } // Corner case: if the variant is reachable, but its // enum is not, make the enum reachable as well. self.update(item.hir_id, variant_level); } } } // Visit everything, but foreign items have their own levels. hir::ItemKind::ForeignMod(ref foreign_mod) => { for foreign_item in &foreign_mod.items { let foreign_item_level = self.get(foreign_item.hir_id); if foreign_item_level.is_some() { self.reach(foreign_item.hir_id, foreign_item_level) .generics().predicates().ty(); } } } // Visit everything except for private fields. hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => { if item_level.is_some() { self.reach(item.hir_id, item_level).generics().predicates(); for field in struct_def.fields() { let field_level = self.get(field.hir_id); if field_level.is_some() { self.reach(field.hir_id, field_level).ty(); } } } } } let orig_level = mem::replace(&mut self.prev_level, item_level); intravisit::walk_item(self, item); self.prev_level = orig_level; } fn visit_block(&mut self, b: &'tcx hir::Block) { // Blocks can have public items, for example impls, but they always // start as completely private regardless of publicity of a function, // constant, type, field, etc., in which this block resides. let orig_level = mem::replace(&mut self.prev_level, None); intravisit::walk_block(self, b); self.prev_level = orig_level; } fn visit_mod(&mut self, m: &'tcx hir::Mod, _sp: Span, id: hir::HirId) { // This code is here instead of in visit_item so that the // crate module gets processed as well. if self.prev_level.is_some() { let def_id = self.tcx.hir().local_def_id(id); if let Some(exports) = self.tcx.module_exports(def_id) { for export in exports.iter() { if export.vis == ty::Visibility::Public { if let Some(def_id) = export.res.opt_def_id() { if let Some(hir_id) = self.tcx.hir().as_local_hir_id(def_id) { self.update(hir_id, Some(AccessLevel::Exported)); } } } } } } intravisit::walk_mod(self, m, id); } fn visit_macro_def(&mut self, md: &'tcx hir::MacroDef) { if attr::find_transparency(&md.attrs, md.legacy).0 != Transparency::Opaque { self.update(md.hir_id, Some(AccessLevel::Public)); return } let macro_module_def_id = ty::DefIdTree::parent( self.tcx, self.tcx.hir().local_def_id(md.hir_id) ).unwrap(); let mut module_id = match self.tcx.hir().as_local_hir_id(macro_module_def_id) { Some(module_id) if self.tcx.hir().is_hir_id_module(module_id) => module_id, // `module_id` doesn't correspond to a `mod`, return early (#63164, #65252). _ => return, }; let level = if md.vis.node.is_pub() { self.get(module_id) } else { None }; let new_level = self.update(md.hir_id, level); if new_level.is_none() { return; } loop { let changed_reachability = self.update_macro_reachable(module_id, macro_module_def_id); if changed_reachability || module_id == hir::CRATE_HIR_ID { break; } module_id = self.tcx.hir().get_parent_node(module_id); } } } impl ReachEverythingInTheInterfaceVisitor<'_, 'tcx> { fn generics(&mut self) -> &mut Self { for param in &self.ev.tcx.generics_of(self.item_def_id).params { match param.kind { GenericParamDefKind::Lifetime => {} GenericParamDefKind::Type { has_default, .. } => { if has_default { self.visit(self.ev.tcx.type_of(param.def_id)); } } GenericParamDefKind::Const => { self.visit(self.ev.tcx.type_of(param.def_id)); } } } self } fn predicates(&mut self) -> &mut Self { self.visit_predicates(self.ev.tcx.predicates_of(self.item_def_id)); self } fn ty(&mut self) -> &mut Self { self.visit(self.ev.tcx.type_of(self.item_def_id)); self } fn trait_ref(&mut self) -> &mut Self { if let Some(trait_ref) = self.ev.tcx.impl_trait_ref(self.item_def_id) { self.visit_trait(trait_ref); } self } } impl DefIdVisitor<'tcx> for ReachEverythingInTheInterfaceVisitor<'_, 'tcx> { fn tcx(&self) -> TyCtxt<'tcx> { self.ev.tcx } fn visit_def_id(&mut self, def_id: DefId, _kind: &str, _descr: &dyn fmt::Display) -> bool { if let Some(hir_id) = self.ev.tcx.hir().as_local_hir_id(def_id) { if let ((ty::Visibility::Public, ..), _) | (_, Some(AccessLevel::ReachableFromImplTrait)) = (def_id_visibility(self.tcx(), def_id), self.access_level) { self.ev.update(hir_id, self.access_level); } } false } } ////////////////////////////////////////////////////////////////////////////////////// /// Name privacy visitor, checks privacy and reports violations. /// Most of name privacy checks are performed during the main resolution phase, /// or later in type checking when field accesses and associated items are resolved. /// This pass performs remaining checks for fields in struct expressions and patterns. ////////////////////////////////////////////////////////////////////////////////////// struct NamePrivacyVisitor<'a, 'tcx> { tcx: TyCtxt<'tcx>, tables: &'a ty::TypeckTables<'tcx>, current_item: hir::HirId, empty_tables: &'a ty::TypeckTables<'tcx>, } impl<'a, 'tcx> NamePrivacyVisitor<'a, 'tcx> { // Checks that a field in a struct constructor (expression or pattern) is accessible. fn check_field(&mut self, use_ctxt: Span, // syntax context of the field name at the use site span: Span, // span of the field pattern, e.g., `x: 0` def: &'tcx ty::AdtDef, // definition of the struct or enum field: &'tcx ty::FieldDef) { // definition of the field let ident = Ident::new(kw::Invalid, use_ctxt); let current_hir = self.current_item; let def_id = self.tcx.adjust_ident_and_get_scope(ident, def.did, current_hir).1; if !def.is_enum() && !field.vis.is_accessible_from(def_id, self.tcx) { struct_span_err!(self.tcx.sess, span, E0451, "field `{}` of {} `{}` is private", field.ident, def.variant_descr(), self.tcx.def_path_str(def.did)) .span_label(span, format!("field `{}` is private", field.ident)) .emit(); } } } impl<'a, 'tcx> Visitor<'tcx> for NamePrivacyVisitor<'a, 'tcx> { /// We want to visit items in the context of their containing /// module and so forth, so supply a crate for doing a deep walk. fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> { NestedVisitorMap::All(&self.tcx.hir()) } fn visit_mod(&mut self, _m: &'tcx hir::Mod, _s: Span, _n: hir::HirId) { // Don't visit nested modules, since we run a separate visitor walk // for each module in `privacy_access_levels` } fn visit_nested_body(&mut self, body: hir::BodyId) { let orig_tables = mem::replace(&mut self.tables, self.tcx.body_tables(body)); let body = self.tcx.hir().body(body); self.visit_body(body); self.tables = orig_tables; } fn visit_item(&mut self, item: &'tcx hir::Item) { let orig_current_item = mem::replace(&mut self.current_item, item.hir_id); let orig_tables = mem::replace(&mut self.tables, item_tables(self.tcx, item.hir_id, self.empty_tables)); intravisit::walk_item(self, item); self.current_item = orig_current_item; self.tables = orig_tables; } fn visit_trait_item(&mut self, ti: &'tcx hir::TraitItem) { let orig_tables = mem::replace(&mut self.tables, item_tables(self.tcx, ti.hir_id, self.empty_tables)); intravisit::walk_trait_item(self, ti); self.tables = orig_tables; } fn visit_impl_item(&mut self, ii: &'tcx hir::ImplItem) { let orig_tables = mem::replace(&mut self.tables, item_tables(self.tcx, ii.hir_id, self.empty_tables)); intravisit::walk_impl_item(self, ii); self.tables = orig_tables; } fn visit_expr(&mut self, expr: &'tcx hir::Expr) { match expr.kind { hir::ExprKind::Struct(ref qpath, ref fields, ref base) => { let res = self.tables.qpath_res(qpath, expr.hir_id); let adt = self.tables.expr_ty(expr).ty_adt_def().unwrap(); let variant = adt.variant_of_res(res); if let Some(ref base) = *base { // If the expression uses FRU we need to make sure all the unmentioned fields // are checked for privacy (RFC 736). Rather than computing the set of // unmentioned fields, just check them all. for (vf_index, variant_field) in variant.fields.iter().enumerate() { let field = fields.iter().find(|f| { self.tcx.field_index(f.hir_id, self.tables) == vf_index }); let (use_ctxt, span) = match field { Some(field) => (field.ident.span, field.span), None => (base.span, base.span), }; self.check_field(use_ctxt, span, adt, variant_field); } } else { for field in fields { let use_ctxt = field.ident.span; let index = self.tcx.field_index(field.hir_id, self.tables); self.check_field(use_ctxt, field.span, adt, &variant.fields[index]); } } } _ => {} } intravisit::walk_expr(self, expr); } fn visit_pat(&mut self, pat: &'tcx hir::Pat) { match pat.kind { PatKind::Struct(ref qpath, ref fields, _) => { let res = self.tables.qpath_res(qpath, pat.hir_id); let adt = self.tables.pat_ty(pat).ty_adt_def().unwrap(); let variant = adt.variant_of_res(res); for field in fields { let use_ctxt = field.ident.span; let index = self.tcx.field_index(field.hir_id, self.tables); self.check_field(use_ctxt, field.span, adt, &variant.fields[index]); } } _ => {} } intravisit::walk_pat(self, pat); } } //////////////////////////////////////////////////////////////////////////////////////////// /// Type privacy visitor, checks types for privacy and reports violations. /// Both explicitly written types and inferred types of expressions and patters are checked. /// Checks are performed on "semantic" types regardless of names and their hygiene. //////////////////////////////////////////////////////////////////////////////////////////// struct TypePrivacyVisitor<'a, 'tcx> { tcx: TyCtxt<'tcx>, tables: &'a ty::TypeckTables<'tcx>, current_item: DefId, in_body: bool, span: Span, empty_tables: &'a ty::TypeckTables<'tcx>, } impl<'a, 'tcx> TypePrivacyVisitor<'a, 'tcx> { fn item_is_accessible(&self, did: DefId) -> bool { def_id_visibility(self.tcx, did).0.is_accessible_from(self.current_item, self.tcx) } // Take node-id of an expression or pattern and check its type for privacy. fn check_expr_pat_type(&mut self, id: hir::HirId, span: Span) -> bool { self.span = span; if self.visit(self.tables.node_type(id)) || self.visit(self.tables.node_substs(id)) { return true; } if let Some(adjustments) = self.tables.adjustments().get(id) { for adjustment in adjustments { if self.visit(adjustment.target) { return true; } } } false } fn check_def_id(&mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display) -> bool { let is_error = !self.item_is_accessible(def_id); if is_error { self.tcx.sess.span_err(self.span, &format!("{} `{}` is private", kind, descr)); } is_error } } impl<'a, 'tcx> Visitor<'tcx> for TypePrivacyVisitor<'a, 'tcx> { /// We want to visit items in the context of their containing /// module and so forth, so supply a crate for doing a deep walk. fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> { NestedVisitorMap::All(&self.tcx.hir()) } fn visit_mod(&mut self, _m: &'tcx hir::Mod, _s: Span, _n: hir::HirId) { // Don't visit nested modules, since we run a separate visitor walk // for each module in `privacy_access_levels` } fn visit_nested_body(&mut self, body: hir::BodyId) { let orig_tables = mem::replace(&mut self.tables, self.tcx.body_tables(body)); let orig_in_body = mem::replace(&mut self.in_body, true); let body = self.tcx.hir().body(body); self.visit_body(body); self.tables = orig_tables; self.in_body = orig_in_body; } fn visit_ty(&mut self, hir_ty: &'tcx hir::Ty) { self.span = hir_ty.span; if self.in_body { // Types in bodies. if self.visit(self.tables.node_type(hir_ty.hir_id)) { return; } } else { // Types in signatures. // FIXME: This is very ineffective. Ideally each HIR type should be converted // into a semantic type only once and the result should be cached somehow. if self.visit(rustc_typeck::hir_ty_to_ty(self.tcx, hir_ty)) { return; } } intravisit::walk_ty(self, hir_ty); } fn visit_trait_ref(&mut self, trait_ref: &'tcx hir::TraitRef) { self.span = trait_ref.path.span; if !self.in_body { // Avoid calling `hir_trait_to_predicates` in bodies, it will ICE. // The traits' privacy in bodies is already checked as a part of trait object types. let bounds = rustc_typeck::hir_trait_to_predicates(self.tcx, trait_ref); for (trait_predicate, _) in bounds.trait_bounds { if self.visit_trait(*trait_predicate.skip_binder()) { return; } } for (poly_predicate, _) in bounds.projection_bounds { let tcx = self.tcx; if self.visit(poly_predicate.skip_binder().ty) || self.visit_trait(poly_predicate.skip_binder().projection_ty.trait_ref(tcx)) { return; } } } intravisit::walk_trait_ref(self, trait_ref); } // Check types of expressions fn visit_expr(&mut self, expr: &'tcx hir::Expr) { if self.check_expr_pat_type(expr.hir_id, expr.span) { // Do not check nested expressions if the error already happened. return; } match expr.kind { hir::ExprKind::Assign(.., ref rhs) | hir::ExprKind::Match(ref rhs, ..) => { // Do not report duplicate errors for `x = y` and `match x { ... }`. if self.check_expr_pat_type(rhs.hir_id, rhs.span) { return; } } hir::ExprKind::MethodCall(_, span, _) => { // Method calls have to be checked specially. self.span = span; if let Some(def_id) = self.tables.type_dependent_def_id(expr.hir_id) { if self.visit(self.tcx.type_of(def_id)) { return; } } else { self.tcx.sess.delay_span_bug(expr.span, "no type-dependent def for method call"); } } _ => {} } intravisit::walk_expr(self, expr); } // Prohibit access to associated items with insufficient nominal visibility. // // Additionally, until better reachability analysis for macros 2.0 is available, // we prohibit access to private statics from other crates, this allows to give // more code internal visibility at link time. (Access to private functions // is already prohibited by type privacy for function types.) fn visit_qpath(&mut self, qpath: &'tcx hir::QPath, id: hir::HirId, span: Span) { let def = match self.tables.qpath_res(qpath, id) { Res::Def(kind, def_id) => Some((kind, def_id)), _ => None, }; let def = def.filter(|(kind, _)| { match kind { DefKind::Method | DefKind::AssocConst | DefKind::AssocTy | DefKind::AssocOpaqueTy | DefKind::Static => true, _ => false, } }); if let Some((kind, def_id)) = def { let is_local_static = if let DefKind::Static = kind { def_id.is_local() } else { false }; if !self.item_is_accessible(def_id) && !is_local_static { let name = match *qpath { hir::QPath::Resolved(_, ref path) => path.to_string(), hir::QPath::TypeRelative(_, ref segment) => segment.ident.to_string(), }; let msg = format!("{} `{}` is private", kind.descr(def_id), name); self.tcx.sess.span_err(span, &msg); return; } } intravisit::walk_qpath(self, qpath, id, span); } // Check types of patterns. fn visit_pat(&mut self, pattern: &'tcx hir::Pat) { if self.check_expr_pat_type(pattern.hir_id, pattern.span) { // Do not check nested patterns if the error already happened. return; } intravisit::walk_pat(self, pattern); } fn visit_local(&mut self, local: &'tcx hir::Local) { if let Some(ref init) = local.init { if self.check_expr_pat_type(init.hir_id, init.span) { // Do not report duplicate errors for `let x = y`. return; } } intravisit::walk_local(self, local); } // Check types in item interfaces. fn visit_item(&mut self, item: &'tcx hir::Item) { let orig_current_item = mem::replace(&mut self.current_item, self.tcx.hir().local_def_id(item.hir_id)); let orig_in_body = mem::replace(&mut self.in_body, false); let orig_tables = mem::replace(&mut self.tables, item_tables(self.tcx, item.hir_id, self.empty_tables)); intravisit::walk_item(self, item); self.tables = orig_tables; self.in_body = orig_in_body; self.current_item = orig_current_item; } fn visit_trait_item(&mut self, ti: &'tcx hir::TraitItem) { let orig_tables = mem::replace(&mut self.tables, item_tables(self.tcx, ti.hir_id, self.empty_tables)); intravisit::walk_trait_item(self, ti); self.tables = orig_tables; } fn visit_impl_item(&mut self, ii: &'tcx hir::ImplItem) { let orig_tables = mem::replace(&mut self.tables, item_tables(self.tcx, ii.hir_id, self.empty_tables)); intravisit::walk_impl_item(self, ii); self.tables = orig_tables; } } impl DefIdVisitor<'tcx> for TypePrivacyVisitor<'a, 'tcx> { fn tcx(&self) -> TyCtxt<'tcx> { self.tcx } fn visit_def_id(&mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display) -> bool { self.check_def_id(def_id, kind, descr) } } /////////////////////////////////////////////////////////////////////////////// /// Obsolete visitors for checking for private items in public interfaces. /// These visitors are supposed to be kept in frozen state and produce an /// "old error node set". For backward compatibility the new visitor reports /// warnings instead of hard errors when the erroneous node is not in this old set. /////////////////////////////////////////////////////////////////////////////// struct ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx> { tcx: TyCtxt<'tcx>, access_levels: &'a AccessLevels, in_variant: bool, // Set of errors produced by this obsolete visitor. old_error_set: HirIdSet, } struct ObsoleteCheckTypeForPrivatenessVisitor<'a, 'b, 'tcx> { inner: &'a ObsoleteVisiblePrivateTypesVisitor<'b, 'tcx>, /// Whether the type refers to private types. contains_private: bool, /// Whether we've recurred at all (i.e., if we're pointing at the /// first type on which `visit_ty` was called). at_outer_type: bool, /// Whether that first type is a public path. outer_type_is_public_path: bool, } impl<'a, 'tcx> ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx> { fn path_is_private_type(&self, path: &hir::Path) -> bool { let did = match path.res { Res::PrimTy(..) | Res::SelfTy(..) | Res::Err => return false, res => res.def_id(), }; // A path can only be private if: // it's in this crate... if let Some(hir_id) = self.tcx.hir().as_local_hir_id(did) { // .. and it corresponds to a private type in the AST (this returns // `None` for type parameters). match self.tcx.hir().find(hir_id) { Some(Node::Item(ref item)) => !item.vis.node.is_pub(), Some(_) | None => false, } } else { return false } } fn trait_is_public(&self, trait_id: hir::HirId) -> bool { // FIXME: this would preferably be using `exported_items`, but all // traits are exported currently (see `EmbargoVisitor.exported_trait`). self.access_levels.is_public(trait_id) } fn check_generic_bound(&mut self, bound: &hir::GenericBound) { if let hir::GenericBound::Trait(ref trait_ref, _) = *bound { if self.path_is_private_type(&trait_ref.trait_ref.path) { self.old_error_set.insert(trait_ref.trait_ref.hir_ref_id); } } } fn item_is_public(&self, id: &hir::HirId, vis: &hir::Visibility) -> bool { self.access_levels.is_reachable(*id) || vis.node.is_pub() } } impl<'a, 'b, 'tcx, 'v> Visitor<'v> for ObsoleteCheckTypeForPrivatenessVisitor<'a, 'b, 'tcx> { fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'v> { NestedVisitorMap::None } fn visit_ty(&mut self, ty: &hir::Ty) { if let hir::TyKind::Path(hir::QPath::Resolved(_, ref path)) = ty.kind { if self.inner.path_is_private_type(path) { self.contains_private = true; // Found what we're looking for, so let's stop working. return } } if let hir::TyKind::Path(_) = ty.kind { if self.at_outer_type { self.outer_type_is_public_path = true; } } self.at_outer_type = false; intravisit::walk_ty(self, ty) } // Don't want to recurse into `[, .. expr]`. fn visit_expr(&mut self, _: &hir::Expr) {} } impl<'a, 'tcx> Visitor<'tcx> for ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx> { /// We want to visit items in the context of their containing /// module and so forth, so supply a crate for doing a deep walk. fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> { NestedVisitorMap::All(&self.tcx.hir()) } fn visit_item(&mut self, item: &'tcx hir::Item) { match item.kind { // Contents of a private mod can be re-exported, so we need // to check internals. hir::ItemKind::Mod(_) => {} // An `extern {}` doesn't introduce a new privacy // namespace (the contents have their own privacies). hir::ItemKind::ForeignMod(_) => {} hir::ItemKind::Trait(.., ref bounds, _) => { if !self.trait_is_public(item.hir_id) { return } for bound in bounds.iter() { self.check_generic_bound(bound) } } // Impls need some special handling to try to offer useful // error messages without (too many) false positives // (i.e., we could just return here to not check them at // all, or some worse estimation of whether an impl is // publicly visible). hir::ItemKind::Impl(.., ref g, ref trait_ref, ref self_, ref impl_item_refs) => { // `impl [... for] Private` is never visible. let self_contains_private; // `impl [... for] Public<...>`, but not `impl [... for] // Vec` or `(Public,)`, etc. let self_is_public_path; // Check the properties of the `Self` type: { let mut visitor = ObsoleteCheckTypeForPrivatenessVisitor { inner: self, contains_private: false, at_outer_type: true, outer_type_is_public_path: false, }; visitor.visit_ty(&self_); self_contains_private = visitor.contains_private; self_is_public_path = visitor.outer_type_is_public_path; } // Miscellaneous info about the impl: // `true` iff this is `impl Private for ...`. let not_private_trait = trait_ref.as_ref().map_or(true, // no trait counts as public trait |tr| { let did = tr.path.res.def_id(); if let Some(hir_id) = self.tcx.hir().as_local_hir_id(did) { self.trait_is_public(hir_id) } else { true // external traits must be public } }); // `true` iff this is a trait impl or at least one method is public. // // `impl Public { $( fn ...() {} )* }` is not visible. // // This is required over just using the methods' privacy // directly because we might have `impl> ...`, // and we shouldn't warn about the generics if all the methods // are private (because `T` won't be visible externally). let trait_or_some_public_method = trait_ref.is_some() || impl_item_refs.iter() .any(|impl_item_ref| { let impl_item = self.tcx.hir().impl_item(impl_item_ref.id); match impl_item.kind { hir::ImplItemKind::Const(..) | hir::ImplItemKind::Method(..) => { self.access_levels.is_reachable( impl_item_ref.id.hir_id) } hir::ImplItemKind::OpaqueTy(..) | hir::ImplItemKind::TyAlias(_) => false, } }); if !self_contains_private && not_private_trait && trait_or_some_public_method { intravisit::walk_generics(self, g); match *trait_ref { None => { for impl_item_ref in impl_item_refs { // This is where we choose whether to walk down // further into the impl to check its items. We // should only walk into public items so that we // don't erroneously report errors for private // types in private items. let impl_item = self.tcx.hir().impl_item(impl_item_ref.id); match impl_item.kind { hir::ImplItemKind::Const(..) | hir::ImplItemKind::Method(..) if self.item_is_public(&impl_item.hir_id, &impl_item.vis) => { intravisit::walk_impl_item(self, impl_item) } hir::ImplItemKind::TyAlias(..) => { intravisit::walk_impl_item(self, impl_item) } _ => {} } } } Some(ref tr) => { // Any private types in a trait impl fall into three // categories. // 1. mentioned in the trait definition // 2. mentioned in the type params/generics // 3. mentioned in the associated types of the impl // // Those in 1. can only occur if the trait is in // this crate and will've been warned about on the // trait definition (there's no need to warn twice // so we don't check the methods). // // Those in 2. are warned via walk_generics and this // call here. intravisit::walk_path(self, &tr.path); // Those in 3. are warned with this call. for impl_item_ref in impl_item_refs { let impl_item = self.tcx.hir().impl_item(impl_item_ref.id); if let hir::ImplItemKind::TyAlias(ref ty) = impl_item.kind { self.visit_ty(ty); } } } } } else if trait_ref.is_none() && self_is_public_path { // `impl Public { ... }`. Any public static // methods will be visible as `Public::foo`. let mut found_pub_static = false; for impl_item_ref in impl_item_refs { if self.item_is_public(&impl_item_ref.id.hir_id, &impl_item_ref.vis) { let impl_item = self.tcx.hir().impl_item(impl_item_ref.id); match impl_item_ref.kind { AssocItemKind::Const => { found_pub_static = true; intravisit::walk_impl_item(self, impl_item); } AssocItemKind::Method { has_self: false } => { found_pub_static = true; intravisit::walk_impl_item(self, impl_item); } _ => {} } } } if found_pub_static { intravisit::walk_generics(self, g) } } return } // `type ... = ...;` can contain private types, because // we're introducing a new name. hir::ItemKind::TyAlias(..) => return, // Not at all public, so we don't care. _ if !self.item_is_public(&item.hir_id, &item.vis) => { return; } _ => {} } // We've carefully constructed it so that if we're here, then // any `visit_ty`'s will be called on things that are in // public signatures, i.e., things that we're interested in for // this visitor. intravisit::walk_item(self, item); } fn visit_generics(&mut self, generics: &'tcx hir::Generics) { for param in &generics.params { for bound in ¶m.bounds { self.check_generic_bound(bound); } } for predicate in &generics.where_clause.predicates { match predicate { hir::WherePredicate::BoundPredicate(bound_pred) => { for bound in bound_pred.bounds.iter() { self.check_generic_bound(bound) } } hir::WherePredicate::RegionPredicate(_) => {} hir::WherePredicate::EqPredicate(eq_pred) => { self.visit_ty(&eq_pred.rhs_ty); } } } } fn visit_foreign_item(&mut self, item: &'tcx hir::ForeignItem) { if self.access_levels.is_reachable(item.hir_id) { intravisit::walk_foreign_item(self, item) } } fn visit_ty(&mut self, t: &'tcx hir::Ty) { if let hir::TyKind::Path(hir::QPath::Resolved(_, ref path)) = t.kind { if self.path_is_private_type(path) { self.old_error_set.insert(t.hir_id); } } intravisit::walk_ty(self, t) } fn visit_variant(&mut self, v: &'tcx hir::Variant, g: &'tcx hir::Generics, item_id: hir::HirId) { if self.access_levels.is_reachable(v.id) { self.in_variant = true; intravisit::walk_variant(self, v, g, item_id); self.in_variant = false; } } fn visit_struct_field(&mut self, s: &'tcx hir::StructField) { if s.vis.node.is_pub() || self.in_variant { intravisit::walk_struct_field(self, s); } } // We don't need to introspect into these at all: an // expression/block context can't possibly contain exported things. // (Making them no-ops stops us from traversing the whole AST without // having to be super careful about our `walk_...` calls above.) fn visit_block(&mut self, _: &'tcx hir::Block) {} fn visit_expr(&mut self, _: &'tcx hir::Expr) {} } /////////////////////////////////////////////////////////////////////////////// /// SearchInterfaceForPrivateItemsVisitor traverses an item's interface and /// finds any private components in it. /// PrivateItemsInPublicInterfacesVisitor ensures there are no private types /// and traits in public interfaces. /////////////////////////////////////////////////////////////////////////////// struct SearchInterfaceForPrivateItemsVisitor<'tcx> { tcx: TyCtxt<'tcx>, item_id: hir::HirId, item_def_id: DefId, span: Span, /// The visitor checks that each component type is at least this visible. required_visibility: ty::Visibility, has_pub_restricted: bool, has_old_errors: bool, in_assoc_ty: bool, } impl SearchInterfaceForPrivateItemsVisitor<'tcx> { fn generics(&mut self) -> &mut Self { for param in &self.tcx.generics_of(self.item_def_id).params { match param.kind { GenericParamDefKind::Lifetime => {} GenericParamDefKind::Type { has_default, .. } => { if has_default { self.visit(self.tcx.type_of(param.def_id)); } } GenericParamDefKind::Const => { self.visit(self.tcx.type_of(param.def_id)); } } } self } fn predicates(&mut self) -> &mut Self { // N.B., we use `explicit_predicates_of` and not `predicates_of` // because we don't want to report privacy errors due to where // clauses that the compiler inferred. We only want to // consider the ones that the user wrote. This is important // for the inferred outlives rules; see // `src/test/ui/rfc-2093-infer-outlives/privacy.rs`. self.visit_predicates(self.tcx.explicit_predicates_of(self.item_def_id)); self } fn ty(&mut self) -> &mut Self { self.visit(self.tcx.type_of(self.item_def_id)); self } fn check_def_id(&mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display) -> bool { if self.leaks_private_dep(def_id) { self.tcx.lint_hir(lint::builtin::EXPORTED_PRIVATE_DEPENDENCIES, self.item_id, self.span, &format!("{} `{}` from private dependency '{}' in public \ interface", kind, descr, self.tcx.crate_name(def_id.krate))); } let hir_id = match self.tcx.hir().as_local_hir_id(def_id) { Some(hir_id) => hir_id, None => return false, }; let (vis, vis_span, vis_descr) = def_id_visibility(self.tcx, def_id); if !vis.is_at_least(self.required_visibility, self.tcx) { let msg = format!("{} {} `{}` in public interface", vis_descr, kind, descr); if self.has_pub_restricted || self.has_old_errors || self.in_assoc_ty { let mut err = if kind == "trait" { struct_span_err!(self.tcx.sess, self.span, E0445, "{}", msg) } else { struct_span_err!(self.tcx.sess, self.span, E0446, "{}", msg) }; err.span_label(self.span, format!("can't leak {} {}", vis_descr, kind)); err.span_label(vis_span, format!("`{}` declared as {}", descr, vis_descr)); err.emit(); } else { let err_code = if kind == "trait" { "E0445" } else { "E0446" }; self.tcx.lint_hir(lint::builtin::PRIVATE_IN_PUBLIC, hir_id, self.span, &format!("{} (error {})", msg, err_code)); } } false } /// An item is 'leaked' from a private dependency if all /// of the following are true: /// 1. It's contained within a public type /// 2. It comes from a private crate fn leaks_private_dep(&self, item_id: DefId) -> bool { let ret = self.required_visibility == ty::Visibility::Public && self.tcx.is_private_dep(item_id.krate); log::debug!("leaks_private_dep(item_id={:?})={}", item_id, ret); return ret; } } impl DefIdVisitor<'tcx> for SearchInterfaceForPrivateItemsVisitor<'tcx> { fn tcx(&self) -> TyCtxt<'tcx> { self.tcx } fn visit_def_id(&mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display) -> bool { self.check_def_id(def_id, kind, descr) } } struct PrivateItemsInPublicInterfacesVisitor<'a, 'tcx> { tcx: TyCtxt<'tcx>, has_pub_restricted: bool, old_error_set: &'a HirIdSet, } impl<'a, 'tcx> PrivateItemsInPublicInterfacesVisitor<'a, 'tcx> { fn check( &self, item_id: hir::HirId, required_visibility: ty::Visibility, ) -> SearchInterfaceForPrivateItemsVisitor<'tcx> { let mut has_old_errors = false; // Slow path taken only if there any errors in the crate. for &id in self.old_error_set { // Walk up the nodes until we find `item_id` (or we hit a root). let mut id = id; loop { if id == item_id { has_old_errors = true; break; } let parent = self.tcx.hir().get_parent_node(id); if parent == id { break; } id = parent; } if has_old_errors { break; } } SearchInterfaceForPrivateItemsVisitor { tcx: self.tcx, item_id, item_def_id: self.tcx.hir().local_def_id(item_id), span: self.tcx.hir().span(item_id), required_visibility, has_pub_restricted: self.has_pub_restricted, has_old_errors, in_assoc_ty: false, } } fn check_assoc_item( &self, hir_id: hir::HirId, assoc_item_kind: AssocItemKind, defaultness: hir::Defaultness, vis: ty::Visibility, ) { let mut check = self.check(hir_id, vis); let (check_ty, is_assoc_ty) = match assoc_item_kind { AssocItemKind::Const | AssocItemKind::Method { .. } => (true, false), AssocItemKind::Type => (defaultness.has_value(), true), // `ty()` for opaque types is the underlying type, // it's not a part of interface, so we skip it. AssocItemKind::OpaqueTy => (false, true), }; check.in_assoc_ty = is_assoc_ty; check.generics().predicates(); if check_ty { check.ty(); } } } impl<'a, 'tcx> Visitor<'tcx> for PrivateItemsInPublicInterfacesVisitor<'a, 'tcx> { fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> { NestedVisitorMap::OnlyBodies(&self.tcx.hir()) } fn visit_item(&mut self, item: &'tcx hir::Item) { let tcx = self.tcx; let item_visibility = ty::Visibility::from_hir(&item.vis, item.hir_id, tcx); match item.kind { // Crates are always public. hir::ItemKind::ExternCrate(..) => {} // All nested items are checked by `visit_item`. hir::ItemKind::Mod(..) => {} // Checked in resolve. hir::ItemKind::Use(..) => {} // No subitems. hir::ItemKind::GlobalAsm(..) => {} // Subitems of these items have inherited publicity. hir::ItemKind::Const(..) | hir::ItemKind::Static(..) | hir::ItemKind::Fn(..) | hir::ItemKind::TyAlias(..) => { self.check(item.hir_id, item_visibility).generics().predicates().ty(); } hir::ItemKind::OpaqueTy(..) => { // `ty()` for opaque types is the underlying type, // it's not a part of interface, so we skip it. self.check(item.hir_id, item_visibility).generics().predicates(); } hir::ItemKind::Trait(.., ref trait_item_refs) => { self.check(item.hir_id, item_visibility).generics().predicates(); for trait_item_ref in trait_item_refs { self.check_assoc_item( trait_item_ref.id.hir_id, trait_item_ref.kind, trait_item_ref.defaultness, item_visibility, ); } } hir::ItemKind::TraitAlias(..) => { self.check(item.hir_id, item_visibility).generics().predicates(); } hir::ItemKind::Enum(ref def, _) => { self.check(item.hir_id, item_visibility).generics().predicates(); for variant in &def.variants { for field in variant.data.fields() { self.check(field.hir_id, item_visibility).ty(); } } } // Subitems of foreign modules have their own publicity. hir::ItemKind::ForeignMod(ref foreign_mod) => { for foreign_item in &foreign_mod.items { let vis = ty::Visibility::from_hir(&foreign_item.vis, item.hir_id, tcx); self.check(foreign_item.hir_id, vis).generics().predicates().ty(); } } // Subitems of structs and unions have their own publicity. hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => { self.check(item.hir_id, item_visibility).generics().predicates(); for field in struct_def.fields() { let field_visibility = ty::Visibility::from_hir(&field.vis, item.hir_id, tcx); self.check(field.hir_id, min(item_visibility, field_visibility, tcx)).ty(); } } // An inherent impl is public when its type is public // Subitems of inherent impls have their own publicity. // A trait impl is public when both its type and its trait are public // Subitems of trait impls have inherited publicity. hir::ItemKind::Impl(.., ref trait_ref, _, ref impl_item_refs) => { let impl_vis = ty::Visibility::of_impl(item.hir_id, tcx, &Default::default()); self.check(item.hir_id, impl_vis).generics().predicates(); for impl_item_ref in impl_item_refs { let impl_item = tcx.hir().impl_item(impl_item_ref.id); let impl_item_vis = if trait_ref.is_none() { min(ty::Visibility::from_hir(&impl_item.vis, item.hir_id, tcx), impl_vis, tcx) } else { impl_vis }; self.check_assoc_item( impl_item_ref.id.hir_id, impl_item_ref.kind, impl_item_ref.defaultness, impl_item_vis, ); } } } } } pub fn provide(providers: &mut Providers<'_>) { *providers = Providers { privacy_access_levels, check_private_in_public, check_mod_privacy, ..*providers }; } fn check_mod_privacy(tcx: TyCtxt<'_>, module_def_id: DefId) { let empty_tables = ty::TypeckTables::empty(None); // Check privacy of names not checked in previous compilation stages. let mut visitor = NamePrivacyVisitor { tcx, tables: &empty_tables, current_item: hir::DUMMY_HIR_ID, empty_tables: &empty_tables, }; let (module, span, hir_id) = tcx.hir().get_module(module_def_id); intravisit::walk_mod(&mut visitor, module, hir_id); // Check privacy of explicitly written types and traits as well as // inferred types of expressions and patterns. let mut visitor = TypePrivacyVisitor { tcx, tables: &empty_tables, current_item: module_def_id, in_body: false, span, empty_tables: &empty_tables, }; intravisit::walk_mod(&mut visitor, module, hir_id); } fn privacy_access_levels(tcx: TyCtxt<'_>, krate: CrateNum) -> &AccessLevels { assert_eq!(krate, LOCAL_CRATE); // Build up a set of all exported items in the AST. This is a set of all // items which are reachable from external crates based on visibility. let mut visitor = EmbargoVisitor { tcx, access_levels: Default::default(), macro_reachable: Default::default(), prev_level: Some(AccessLevel::Public), changed: false, }; loop { intravisit::walk_crate(&mut visitor, tcx.hir().krate()); if visitor.changed { visitor.changed = false; } else { break } } visitor.update(hir::CRATE_HIR_ID, Some(AccessLevel::Public)); tcx.arena.alloc(visitor.access_levels) } fn check_private_in_public(tcx: TyCtxt<'_>, krate: CrateNum) { assert_eq!(krate, LOCAL_CRATE); let access_levels = tcx.privacy_access_levels(LOCAL_CRATE); let krate = tcx.hir().krate(); let mut visitor = ObsoleteVisiblePrivateTypesVisitor { tcx, access_levels: &access_levels, in_variant: false, old_error_set: Default::default(), }; intravisit::walk_crate(&mut visitor, krate); let has_pub_restricted = { let mut pub_restricted_visitor = PubRestrictedVisitor { tcx, has_pub_restricted: false }; intravisit::walk_crate(&mut pub_restricted_visitor, krate); pub_restricted_visitor.has_pub_restricted }; // Check for private types and traits in public interfaces. let mut visitor = PrivateItemsInPublicInterfacesVisitor { tcx, has_pub_restricted, old_error_set: &visitor.old_error_set, }; krate.visit_all_item_likes(&mut DeepVisitor::new(&mut visitor)); }