// Copyright 2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Formatting of chained expressions, i.e. expressions which are chained by //! dots: struct and enum field access, method calls, and try shorthand (?). //! //! Instead of walking these subexpressions one-by-one, as is our usual strategy //! for expression formatting, we collect maximal sequences of these expressions //! and handle them simultaneously. //! //! Whenever possible, the entire chain is put on a single line. If that fails, //! we put each subexpression on a separate, much like the (default) function //! argument function argument strategy. //! //! Depends on config options: `chain_indent` is the indent to use for //! blocks in the parent/root/base of the chain (and the rest of the chain's //! alignment). //! E.g., `let foo = { aaaa; bbb; ccc }.bar.baz();`, we would layout for the //! following values of `chain_indent`: //! Block: //! //! ```ignore //! let foo = { //! aaaa; //! bbb; //! ccc //! }.bar //! .baz(); //! ``` //! //! Visual: //! //! ```ignore //! let foo = { //! aaaa; //! bbb; //! ccc //! } //! .bar //! .baz(); //! ``` //! //! If the first item in the chain is a block expression, we align the dots with //! the braces. //! Block: //! //! ```ignore //! let a = foo.bar //! .baz() //! .qux //! ``` //! //! Visual: //! //! ```ignore //! let a = foo.bar //! .baz() //! .qux //! ``` use comment::rewrite_comment; use config::IndentStyle; use expr::rewrite_call; use lists::{extract_post_comment, extract_pre_comment, get_comment_end}; use macros::convert_try_mac; use rewrite::{Rewrite, RewriteContext}; use shape::Shape; use source_map::SpanUtils; use utils::{ first_line_width, last_line_extendable, last_line_width, mk_sp, trimmed_last_line_width, wrap_str, }; use std::borrow::Cow; use std::cmp::min; use std::iter; use syntax::source_map::{BytePos, Span}; use syntax::{ast, ptr}; pub fn rewrite_chain(expr: &ast::Expr, context: &RewriteContext, shape: Shape) -> Option { let chain = Chain::from_ast(expr, context); debug!("rewrite_chain {:?} {:?}", chain, shape); // If this is just an expression with some `?`s, then format it trivially and // return early. if chain.children.is_empty() { return chain.parent.rewrite(context, shape); } chain.rewrite(context, shape) } #[derive(Debug)] enum CommentPosition { Back, Top, } // An expression plus trailing `?`s to be formatted together. #[derive(Debug)] struct ChainItem { kind: ChainItemKind, tries: usize, span: Span, } // FIXME: we can't use a reference here because to convert `try!` to `?` we // synthesise the AST node. However, I think we could use `Cow` and that // would remove a lot of cloning. #[derive(Debug)] enum ChainItemKind { Parent(ast::Expr), MethodCall( ast::PathSegment, Vec, Vec>, ), StructField(ast::Ident), TupleField(ast::Ident, bool), Comment(String, CommentPosition), } impl ChainItemKind { fn is_block_like(&self, context: &RewriteContext, reps: &str) -> bool { match self { ChainItemKind::Parent(ref expr) => is_block_expr(context, expr, reps), ChainItemKind::MethodCall(..) => reps.contains('\n'), ChainItemKind::StructField(..) | ChainItemKind::TupleField(..) | ChainItemKind::Comment(..) => false, } } fn is_tup_field_access(expr: &ast::Expr) -> bool { match expr.node { ast::ExprKind::Field(_, ref field) => { field.name.to_string().chars().all(|c| c.is_digit(10)) } _ => false, } } fn from_ast(context: &RewriteContext, expr: &ast::Expr) -> (ChainItemKind, Span) { let (kind, span) = match expr.node { ast::ExprKind::MethodCall(ref segment, ref expressions) => { let types = if let Some(ref generic_args) = segment.args { if let ast::GenericArgs::AngleBracketed(ref data) = **generic_args { data.args.clone() } else { vec![] } } else { vec![] }; let span = mk_sp(expressions[0].span.hi(), expr.span.hi()); let kind = ChainItemKind::MethodCall(segment.clone(), types, expressions.clone()); (kind, span) } ast::ExprKind::Field(ref nested, field) => { let kind = if Self::is_tup_field_access(expr) { ChainItemKind::TupleField(field, Self::is_tup_field_access(nested)) } else { ChainItemKind::StructField(field) }; let span = mk_sp(nested.span.hi(), field.span.hi()); (kind, span) } _ => return (ChainItemKind::Parent(expr.clone()), expr.span), }; // Remove comments from the span. let lo = context.snippet_provider.span_before(span, "."); (kind, mk_sp(lo, span.hi())) } } impl Rewrite for ChainItem { fn rewrite(&self, context: &RewriteContext, shape: Shape) -> Option { let shape = shape.sub_width(self.tries)?; let rewrite = match self.kind { ChainItemKind::Parent(ref expr) => expr.rewrite(context, shape)?, ChainItemKind::MethodCall(ref segment, ref types, ref exprs) => { Self::rewrite_method_call(segment.ident, types, exprs, self.span, context, shape)? } ChainItemKind::StructField(ident) => format!(".{}", ident.name), ChainItemKind::TupleField(ident, nested) => { format!("{}.{}", if nested { " " } else { "" }, ident.name) } ChainItemKind::Comment(ref comment, _) => { rewrite_comment(comment, false, shape, context.config)? } }; Some(format!("{}{}", rewrite, "?".repeat(self.tries))) } } impl ChainItem { fn new(context: &RewriteContext, expr: &ast::Expr, tries: usize) -> ChainItem { let (kind, span) = ChainItemKind::from_ast(context, expr); ChainItem { kind, tries, span } } fn comment(span: Span, comment: String, pos: CommentPosition) -> ChainItem { ChainItem { kind: ChainItemKind::Comment(comment, pos), tries: 0, span, } } fn is_comment(&self) -> bool { match self.kind { ChainItemKind::Comment(..) => true, _ => false, } } fn rewrite_method_call( method_name: ast::Ident, types: &[ast::GenericArg], args: &[ptr::P], span: Span, context: &RewriteContext, shape: Shape, ) -> Option { let type_str = if types.is_empty() { String::new() } else { let type_list = types .iter() .map(|ty| ty.rewrite(context, shape)) .collect::>>()?; format!("::<{}>", type_list.join(", ")) }; let callee_str = format!(".{}{}", method_name, type_str); rewrite_call(context, &callee_str, &args[1..], span, shape) } } #[derive(Debug)] struct Chain { parent: ChainItem, children: Vec, } impl Chain { fn from_ast(expr: &ast::Expr, context: &RewriteContext) -> Chain { let subexpr_list = Self::make_subexpr_list(expr, context); // Un-parse the expression tree into ChainItems let mut rev_children = vec![]; let mut sub_tries = 0; for subexpr in &subexpr_list { match subexpr.node { ast::ExprKind::Try(_) => sub_tries += 1, _ => { rev_children.push(ChainItem::new(context, subexpr, sub_tries)); sub_tries = 0; } } } fn is_tries(s: &str) -> bool { s.chars().all(|c| c == '?') } fn handle_post_comment( post_comment_span: Span, post_comment_snippet: &str, prev_span_end: &mut BytePos, children: &mut Vec, ) { let white_spaces: &[_] = &[' ', '\t']; if post_comment_snippet .trim_matches(white_spaces) .starts_with('\n') { // No post comment. return; } // HACK: Treat `?`s as separators. let trimmed_snippet = post_comment_snippet.trim_matches('?'); let comment_end = get_comment_end(trimmed_snippet, "?", "", false); let maybe_post_comment = extract_post_comment(trimmed_snippet, comment_end, "?") .and_then(|comment| { if comment.is_empty() { None } else { Some((comment, comment_end)) } }); if let Some((post_comment, comment_end)) = maybe_post_comment { children.push(ChainItem::comment( post_comment_span, post_comment, CommentPosition::Back, )); *prev_span_end = *prev_span_end + BytePos(comment_end as u32); } } let parent = rev_children.pop().unwrap(); let mut children = vec![]; let mut prev_span_end = parent.span.hi(); let mut iter = rev_children.into_iter().rev().peekable(); if let Some(first_chain_item) = iter.peek() { let comment_span = mk_sp(prev_span_end, first_chain_item.span.lo()); let comment_snippet = context.snippet(comment_span); if !is_tries(comment_snippet.trim()) { handle_post_comment( comment_span, comment_snippet, &mut prev_span_end, &mut children, ); } } while let Some(chain_item) = iter.next() { let comment_snippet = context.snippet(chain_item.span); // FIXME: Figure out the way to get a correct span when converting `try!` to `?`. let handle_comment = !(context.config.use_try_shorthand() || is_tries(comment_snippet.trim())); // Pre-comment if handle_comment { let pre_comment_span = mk_sp(prev_span_end, chain_item.span.lo()); let pre_comment_snippet = context.snippet(pre_comment_span); let pre_comment_snippet = pre_comment_snippet.trim().trim_matches('?'); let (pre_comment, _) = extract_pre_comment(pre_comment_snippet); match pre_comment { Some(ref comment) if !comment.is_empty() => { children.push(ChainItem::comment( pre_comment_span, comment.to_owned(), CommentPosition::Top, )); } _ => (), } } prev_span_end = chain_item.span.hi(); children.push(chain_item); // Post-comment if !handle_comment || iter.peek().is_none() { continue; } let next_lo = iter.peek().unwrap().span.lo(); let post_comment_span = mk_sp(prev_span_end, next_lo); let post_comment_snippet = context.snippet(post_comment_span); handle_post_comment( post_comment_span, post_comment_snippet, &mut prev_span_end, &mut children, ); } Chain { parent, children } } // Returns a Vec of the prefixes of the chain. // E.g., for input `a.b.c` we return [`a.b.c`, `a.b`, 'a'] fn make_subexpr_list(expr: &ast::Expr, context: &RewriteContext) -> Vec { let mut subexpr_list = vec![expr.clone()]; while let Some(subexpr) = Self::pop_expr_chain(subexpr_list.last().unwrap(), context) { subexpr_list.push(subexpr.clone()); } subexpr_list } // Returns the expression's subexpression, if it exists. When the subexpr // is a try! macro, we'll convert it to shorthand when the option is set. fn pop_expr_chain(expr: &ast::Expr, context: &RewriteContext) -> Option { match expr.node { ast::ExprKind::MethodCall(_, ref expressions) => { Some(Self::convert_try(&expressions[0], context)) } ast::ExprKind::Field(ref subexpr, _) | ast::ExprKind::Try(ref subexpr) => { Some(Self::convert_try(subexpr, context)) } _ => None, } } fn convert_try(expr: &ast::Expr, context: &RewriteContext) -> ast::Expr { match expr.node { ast::ExprKind::Mac(ref mac) if context.config.use_try_shorthand() => { if let Some(subexpr) = convert_try_mac(mac, context) { subexpr } else { expr.clone() } } _ => expr.clone(), } } } impl Rewrite for Chain { fn rewrite(&self, context: &RewriteContext, shape: Shape) -> Option { debug!("rewrite chain {:?} {:?}", self, shape); let mut formatter = match context.config.indent_style() { IndentStyle::Block => Box::new(ChainFormatterBlock::new(self)) as Box, IndentStyle::Visual => Box::new(ChainFormatterVisual::new(self)) as Box, }; formatter.format_root(&self.parent, context, shape)?; if let Some(result) = formatter.pure_root() { return wrap_str(result, context.config.max_width(), shape); } // Decide how to layout the rest of the chain. let child_shape = formatter.child_shape(context, shape)?; formatter.format_children(context, child_shape)?; formatter.format_last_child(context, shape, child_shape)?; let result = formatter.join_rewrites(context, child_shape)?; wrap_str(result, context.config.max_width(), shape) } } // There are a few types for formatting chains. This is because there is a lot // in common between formatting with block vs visual indent, but they are // different enough that branching on the indent all over the place gets ugly. // Anything that can format a chain is a ChainFormatter. trait ChainFormatter { // Parent is the first item in the chain, e.g., `foo` in `foo.bar.baz()`. // Root is the parent plus any other chain items placed on the first line to // avoid an orphan. E.g., // ``` // foo.bar // .baz() // ``` // If `bar` were not part of the root, then foo would be orphaned and 'float'. fn format_root( &mut self, parent: &ChainItem, context: &RewriteContext, shape: Shape, ) -> Option<()>; fn child_shape(&self, context: &RewriteContext, shape: Shape) -> Option; fn format_children(&mut self, context: &RewriteContext, child_shape: Shape) -> Option<()>; fn format_last_child( &mut self, context: &RewriteContext, shape: Shape, child_shape: Shape, ) -> Option<()>; fn join_rewrites(&self, context: &RewriteContext, child_shape: Shape) -> Option; // Returns `Some` if the chain is only a root, None otherwise. fn pure_root(&mut self) -> Option; } // Data and behaviour that is shared by both chain formatters. The concrete // formatters can delegate much behaviour to `ChainFormatterShared`. struct ChainFormatterShared<'a> { // The current working set of child items. children: &'a [ChainItem], // The current rewrites of items (includes trailing `?`s, but not any way to // connect the rewrites together). rewrites: Vec, // Whether the chain can fit on one line. fits_single_line: bool, // The number of children in the chain. This is not equal to `self.children.len()` // because `self.children` will change size as we process the chain. child_count: usize, } impl<'a> ChainFormatterShared<'a> { fn new(chain: &'a Chain) -> ChainFormatterShared<'a> { ChainFormatterShared { children: &chain.children, rewrites: Vec::with_capacity(chain.children.len() + 1), fits_single_line: false, child_count: chain.children.len(), } } fn pure_root(&mut self) -> Option { if self.children.is_empty() { assert_eq!(self.rewrites.len(), 1); Some(self.rewrites.pop().unwrap()) } else { None } } // Rewrite the last child. The last child of a chain requires special treatment. We need to // know whether 'overflowing' the last child make a better formatting: // // A chain with overflowing the last child: // ``` // parent.child1.child2.last_child( // a, // b, // c, // ) // ``` // // A chain without overflowing the last child (in vertical layout): // ``` // parent // .child1 // .child2 // .last_child(a, b, c) // ``` // // In particular, overflowing is effective when the last child is a method with a multi-lined // block-like argument (e.g. closure): // ``` // parent.child1.child2.last_child(|a, b, c| { // let x = foo(a, b, c); // let y = bar(a, b, c); // // // ... // // result // }) // ``` fn format_last_child( &mut self, may_extend: bool, context: &RewriteContext, shape: Shape, child_shape: Shape, ) -> Option<()> { let last = self.children.last()?; let extendable = may_extend && last_line_extendable(&self.rewrites[0]); let prev_last_line_width = last_line_width(&self.rewrites[0]); // Total of all items excluding the last. let almost_total = if extendable { prev_last_line_width } else { self.rewrites.iter().fold(0, |a, b| a + b.len()) } + last.tries; let one_line_budget = if self.child_count == 1 { shape.width } else { min(shape.width, context.config.width_heuristics().chain_width) }.saturating_sub(almost_total); let all_in_one_line = !self.children.iter().any(ChainItem::is_comment) && self.rewrites.iter().all(|s| !s.contains('\n')) && one_line_budget > 0; let last_shape = if all_in_one_line { shape.sub_width(last.tries)? } else if extendable { child_shape.sub_width(last.tries)? } else { child_shape.sub_width(shape.rhs_overhead(context.config) + last.tries)? }; let mut last_subexpr_str = None; if all_in_one_line || extendable { // First we try to 'overflow' the last child and see if it looks better than using // vertical layout. if let Some(one_line_shape) = last_shape.offset_left(almost_total) { if let Some(rw) = last.rewrite(context, one_line_shape) { // We allow overflowing here only if both of the following conditions match: // 1. The entire chain fits in a single line except the last child. // 2. `last_child_str.lines().count() >= 5`. let line_count = rw.lines().count(); let could_fit_single_line = first_line_width(&rw) <= one_line_budget; if could_fit_single_line && line_count >= 5 { last_subexpr_str = Some(rw); self.fits_single_line = all_in_one_line; } else { // We could not know whether overflowing is better than using vertical // layout, just by looking at the overflowed rewrite. Now we rewrite the // last child on its own line, and compare two rewrites to choose which is // better. let last_shape = child_shape .sub_width(shape.rhs_overhead(context.config) + last.tries)?; match last.rewrite(context, last_shape) { Some(ref new_rw) if !could_fit_single_line => { last_subexpr_str = Some(new_rw.clone()); } Some(ref new_rw) if new_rw.lines().count() >= line_count => { last_subexpr_str = Some(rw); self.fits_single_line = could_fit_single_line && all_in_one_line; } new_rw @ Some(..) => { last_subexpr_str = new_rw; } _ => { last_subexpr_str = Some(rw); self.fits_single_line = could_fit_single_line && all_in_one_line; } } } } } } last_subexpr_str = last_subexpr_str.or_else(|| last.rewrite(context, last_shape)); self.rewrites.push(last_subexpr_str?); Some(()) } fn join_rewrites( &self, context: &RewriteContext, child_shape: Shape, block_like_iter: impl Iterator, ) -> Option { let connector = if self.fits_single_line { // Yay, we can put everything on one line. Cow::from("") } else { // Use new lines. if *context.force_one_line_chain.borrow() { return None; } child_shape.to_string_with_newline(context.config) }; let mut rewrite_iter = self.rewrites.iter(); let mut result = rewrite_iter.next().unwrap().clone(); let children_iter = self.children.iter(); let iter = rewrite_iter.zip(block_like_iter).zip(children_iter); for ((rewrite, prev_is_block_like), chain_item) in iter { match chain_item.kind { ChainItemKind::Comment(_, CommentPosition::Back) => result.push(' '), ChainItemKind::Comment(_, CommentPosition::Top) => result.push_str(&connector), _ => { if !prev_is_block_like { result.push_str(&connector); } } } result.push_str(&rewrite); } Some(result) } } // Formats a chain using block indent. struct ChainFormatterBlock<'a> { shared: ChainFormatterShared<'a>, // For each rewrite, whether the corresponding item is block-like. is_block_like: Vec, } impl<'a> ChainFormatterBlock<'a> { fn new(chain: &'a Chain) -> ChainFormatterBlock<'a> { ChainFormatterBlock { shared: ChainFormatterShared::new(chain), is_block_like: Vec::with_capacity(chain.children.len() + 1), } } } impl<'a> ChainFormatter for ChainFormatterBlock<'a> { fn format_root( &mut self, parent: &ChainItem, context: &RewriteContext, shape: Shape, ) -> Option<()> { let mut root_rewrite: String = parent.rewrite(context, shape)?; let mut root_ends_with_block = parent.kind.is_block_like(context, &root_rewrite); let tab_width = context.config.tab_spaces().saturating_sub(shape.offset); while root_rewrite.len() <= tab_width && !root_rewrite.contains('\n') { let item = &self.shared.children[0]; if let ChainItemKind::Comment(..) = item.kind { break; } let shape = shape.offset_left(root_rewrite.len())?; match &item.rewrite(context, shape) { Some(rewrite) => root_rewrite.push_str(rewrite), None => break, } root_ends_with_block = item.kind.is_block_like(context, &root_rewrite); self.shared.children = &self.shared.children[1..]; if self.shared.children.is_empty() { break; } } self.is_block_like.push(root_ends_with_block); self.shared.rewrites.push(root_rewrite); Some(()) } fn child_shape(&self, context: &RewriteContext, shape: Shape) -> Option { Some( if self.is_block_like[0] { shape.block_indent(0) } else { shape.block_indent(context.config.tab_spaces()) }.with_max_width(context.config), ) } fn format_children(&mut self, context: &RewriteContext, child_shape: Shape) -> Option<()> { for item in &self.shared.children[..self.shared.children.len() - 1] { let rewrite = item.rewrite(context, child_shape)?; self.is_block_like .push(item.kind.is_block_like(context, &rewrite)); self.shared.rewrites.push(rewrite); } Some(()) } fn format_last_child( &mut self, context: &RewriteContext, shape: Shape, child_shape: Shape, ) -> Option<()> { self.shared .format_last_child(true, context, shape, child_shape) } fn join_rewrites(&self, context: &RewriteContext, child_shape: Shape) -> Option { self.shared .join_rewrites(context, child_shape, self.is_block_like.iter().cloned()) } fn pure_root(&mut self) -> Option { self.shared.pure_root() } } // Format a chain using visual indent. struct ChainFormatterVisual<'a> { shared: ChainFormatterShared<'a>, // The extra offset from the chain's shape to the position of the `.` offset: usize, } impl<'a> ChainFormatterVisual<'a> { fn new(chain: &'a Chain) -> ChainFormatterVisual<'a> { ChainFormatterVisual { shared: ChainFormatterShared::new(chain), offset: 0, } } } impl<'a> ChainFormatter for ChainFormatterVisual<'a> { fn format_root( &mut self, parent: &ChainItem, context: &RewriteContext, shape: Shape, ) -> Option<()> { let parent_shape = shape.visual_indent(0); let mut root_rewrite = parent.rewrite(context, parent_shape)?; let multiline = root_rewrite.contains('\n'); self.offset = if multiline { last_line_width(&root_rewrite).saturating_sub(shape.used_width()) } else { trimmed_last_line_width(&root_rewrite) }; if !multiline || parent.kind.is_block_like(context, &root_rewrite) { let item = &self.shared.children[0]; if let ChainItemKind::Comment(..) = item.kind { self.shared.rewrites.push(root_rewrite); return Some(()); } let child_shape = parent_shape .visual_indent(self.offset) .sub_width(self.offset)?; let rewrite = item.rewrite(context, child_shape)?; match wrap_str(rewrite, context.config.max_width(), shape) { Some(rewrite) => root_rewrite.push_str(&rewrite), None => { // We couldn't fit in at the visual indent, try the last // indent. let rewrite = item.rewrite(context, parent_shape)?; root_rewrite.push_str(&rewrite); self.offset = 0; } } self.shared.children = &self.shared.children[1..]; } self.shared.rewrites.push(root_rewrite); Some(()) } fn child_shape(&self, context: &RewriteContext, shape: Shape) -> Option { shape .with_max_width(context.config) .offset_left(self.offset) .map(|s| s.visual_indent(0)) } fn format_children(&mut self, context: &RewriteContext, child_shape: Shape) -> Option<()> { for item in &self.shared.children[..self.shared.children.len() - 1] { let rewrite = item.rewrite(context, child_shape)?; self.shared.rewrites.push(rewrite); } Some(()) } fn format_last_child( &mut self, context: &RewriteContext, shape: Shape, child_shape: Shape, ) -> Option<()> { self.shared .format_last_child(false, context, shape, child_shape) } fn join_rewrites(&self, context: &RewriteContext, child_shape: Shape) -> Option { self.shared .join_rewrites(context, child_shape, iter::repeat(false)) } fn pure_root(&mut self) -> Option { self.shared.pure_root() } } // States whether an expression's last line exclusively consists of closing // parens, braces, and brackets in its idiomatic formatting. fn is_block_expr(context: &RewriteContext, expr: &ast::Expr, repr: &str) -> bool { match expr.node { ast::ExprKind::Mac(..) | ast::ExprKind::Call(..) | ast::ExprKind::MethodCall(..) | ast::ExprKind::Struct(..) | ast::ExprKind::While(..) | ast::ExprKind::WhileLet(..) | ast::ExprKind::If(..) | ast::ExprKind::IfLet(..) | ast::ExprKind::Block(..) | ast::ExprKind::Loop(..) | ast::ExprKind::ForLoop(..) | ast::ExprKind::Match(..) => repr.contains('\n'), ast::ExprKind::Paren(ref expr) | ast::ExprKind::Binary(_, _, ref expr) | ast::ExprKind::Index(_, ref expr) | ast::ExprKind::Unary(_, ref expr) | ast::ExprKind::Closure(_, _, _, _, ref expr, _) | ast::ExprKind::Try(ref expr) | ast::ExprKind::Yield(Some(ref expr)) => is_block_expr(context, expr, repr), // This can only be a string lit ast::ExprKind::Lit(_) => { repr.contains('\n') && trimmed_last_line_width(repr) <= context.config.tab_spaces() } _ => false, } }