// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Error handling with the `Result` type //! //! `Result` is the type used for returning and propagating //! errors. It is an enum with the variants, `Ok(T)`, representing //! success and containing a value, and `Err(E)`, representing error //! and containing an error value. //! //! ``` //! enum Result { //! Ok(T), //! Err(E) //! } //! ``` //! //! Functions return `Result` whenever errors are expected and //! recoverable. In the `std` crate `Result` is most prominently used //! for [I/O](../../std/io/index.html). //! //! A simple function returning `Result` might be //! defined and used like so: //! //! ``` //! #[derive(Show)] //! enum Version { Version1, Version2 } //! //! fn parse_version(header: &[u8]) -> Result { //! if header.len() < 1 { //! return Err("invalid header length"); //! } //! match header[0] { //! 1 => Ok(Version::Version1), //! 2 => Ok(Version::Version2), //! _ => Err("invalid version") //! } //! } //! //! let version = parse_version(&[1, 2, 3, 4]); //! match version { //! Ok(v) => { //! println!("working with version: {:?}", v); //! } //! Err(e) => { //! println!("error parsing header: {:?}", e); //! } //! } //! ``` //! //! Pattern matching on `Result`s is clear and straightforward for //! simple cases, but `Result` comes with some convenience methods //! that make working with it more succinct. //! //! ``` //! let good_result: Result = Ok(10); //! let bad_result: Result = Err(10); //! //! // The `is_ok` and `is_err` methods do what they say. //! assert!(good_result.is_ok() && !good_result.is_err()); //! assert!(bad_result.is_err() && !bad_result.is_ok()); //! //! // `map` consumes the `Result` and produces another. //! let good_result: Result = good_result.map(|i| i + 1); //! let bad_result: Result = bad_result.map(|i| i - 1); //! //! // Use `and_then` to continue the computation. //! let good_result: Result = good_result.and_then(|i| Ok(i == 11)); //! //! // Use `or_else` to handle the error. //! let bad_result: Result = bad_result.or_else(|i| Ok(11)); //! //! // Consume the result and return the contents with `unwrap`. //! let final_awesome_result = good_result.ok().unwrap(); //! ``` //! //! # Results must be used //! //! A common problem with using return values to indicate errors is //! that it is easy to ignore the return value, thus failing to handle //! the error. Result is annotated with the #[must_use] attribute, //! which will cause the compiler to issue a warning when a Result //! value is ignored. This makes `Result` especially useful with //! functions that may encounter errors but don't otherwise return a //! useful value. //! //! Consider the `write_line` method defined for I/O types //! by the [`Writer`](../io/trait.Writer.html) trait: //! //! ``` //! use std::io::IoError; //! //! trait Writer { //! fn write_line(&mut self, s: &str) -> Result<(), IoError>; //! } //! ``` //! //! *Note: The actual definition of `Writer` uses `IoResult`, which //! is just a synonym for `Result`.* //! //! This method doesn't produce a value, but the write may //! fail. It's crucial to handle the error case, and *not* write //! something like this: //! //! ```{.ignore} //! use std::io::{File, Open, Write}; //! //! let mut file = File::open_mode(&Path::new("valuable_data.txt"), Open, Write); //! // If `write_line` errors, then we'll never know, because the return //! // value is ignored. //! file.write_line("important message"); //! drop(file); //! ``` //! //! If you *do* write that in Rust, the compiler will give you a //! warning (by default, controlled by the `unused_must_use` lint). //! //! You might instead, if you don't want to handle the error, simply //! panic, by converting to an `Option` with `ok`, then asserting //! success with `expect`. This will panic if the write fails, proving //! a marginally useful message indicating why: //! //! ```{.no_run} //! use std::io::{File, Open, Write}; //! //! let mut file = File::open_mode(&Path::new("valuable_data.txt"), Open, Write); //! file.write_line("important message").ok().expect("failed to write message"); //! drop(file); //! ``` //! //! You might also simply assert success: //! //! ```{.no_run} //! # use std::io::{File, Open, Write}; //! //! # let mut file = File::open_mode(&Path::new("valuable_data.txt"), Open, Write); //! assert!(file.write_line("important message").is_ok()); //! # drop(file); //! ``` //! //! Or propagate the error up the call stack with `try!`: //! //! ``` //! # use std::io::{File, Open, Write, IoError}; //! fn write_message() -> Result<(), IoError> { //! let mut file = File::open_mode(&Path::new("valuable_data.txt"), Open, Write); //! try!(file.write_line("important message")); //! drop(file); //! return Ok(()); //! } //! ``` //! //! # The `try!` macro //! //! When writing code that calls many functions that return the //! `Result` type, the error handling can be tedious. The `try!` //! macro hides some of the boilerplate of propagating errors up the //! call stack. //! //! It replaces this: //! //! ``` //! use std::io::{File, Open, Write, IoError}; //! //! struct Info { //! name: String, //! age: int, //! rating: int //! } //! //! fn write_info(info: &Info) -> Result<(), IoError> { //! let mut file = File::open_mode(&Path::new("my_best_friends.txt"), Open, Write); //! // Early return on error //! if let Err(e) = file.write_line(format!("name: {}", info.name).as_slice()) { //! return Err(e) //! } //! if let Err(e) = file.write_line(format!("age: {}", info.age).as_slice()) { //! return Err(e) //! } //! return file.write_line(format!("rating: {}", info.rating).as_slice()); //! } //! ``` //! //! With this: //! //! ``` //! use std::io::{File, Open, Write, IoError}; //! //! struct Info { //! name: String, //! age: int, //! rating: int //! } //! //! fn write_info(info: &Info) -> Result<(), IoError> { //! let mut file = File::open_mode(&Path::new("my_best_friends.txt"), Open, Write); //! // Early return on error //! try!(file.write_line(format!("name: {}", info.name).as_slice())); //! try!(file.write_line(format!("age: {}", info.age).as_slice())); //! try!(file.write_line(format!("rating: {}", info.rating).as_slice())); //! return Ok(()); //! } //! ``` //! //! *It's much nicer!* //! //! Wrapping an expression in `try!` will result in the unwrapped //! success (`Ok`) value, unless the result is `Err`, in which case //! `Err` is returned early from the enclosing function. Its simple definition //! makes it clear: //! //! ``` //! macro_rules! try { //! ($e:expr) => (match $e { Ok(e) => e, Err(e) => return Err(e) }) //! } //! ``` //! //! `try!` is imported by the prelude, and is available everywhere. #![stable] use self::Result::{Ok, Err}; use clone::Clone; use fmt::Debug; use iter::{Iterator, IteratorExt, DoubleEndedIterator, FromIterator, ExactSizeIterator}; use ops::{FnMut, FnOnce}; use option::Option::{self, None, Some}; use slice::AsSlice; use slice; /// `Result` is a type that represents either success (`Ok`) or failure (`Err`). /// /// See the [`std::result`](index.html) module documentation for details. #[derive(Clone, Copy, PartialEq, PartialOrd, Eq, Ord, Show, Hash)] #[must_use] #[stable] pub enum Result { /// Contains the success value #[stable] Ok(T), /// Contains the error value #[stable] Err(E) } ///////////////////////////////////////////////////////////////////////////// // Type implementation ///////////////////////////////////////////////////////////////////////////// #[stable] impl Result { ///////////////////////////////////////////////////////////////////////// // Querying the contained values ///////////////////////////////////////////////////////////////////////// /// Returns true if the result is `Ok` /// /// # Example /// /// ``` /// let x: Result = Ok(-3); /// assert_eq!(x.is_ok(), true); /// /// let x: Result = Err("Some error message"); /// assert_eq!(x.is_ok(), false); /// ``` #[inline] #[stable] pub fn is_ok(&self) -> bool { match *self { Ok(_) => true, Err(_) => false } } /// Returns true if the result is `Err` /// /// # Example /// /// ``` /// let x: Result = Ok(-3); /// assert_eq!(x.is_err(), false); /// /// let x: Result = Err("Some error message"); /// assert_eq!(x.is_err(), true); /// ``` #[inline] #[stable] pub fn is_err(&self) -> bool { !self.is_ok() } ///////////////////////////////////////////////////////////////////////// // Adapter for each variant ///////////////////////////////////////////////////////////////////////// /// Convert from `Result` to `Option` /// /// Converts `self` into an `Option`, consuming `self`, /// and discarding the error, if any. /// /// # Example /// /// ``` /// let x: Result = Ok(2); /// assert_eq!(x.ok(), Some(2)); /// /// let x: Result = Err("Nothing here"); /// assert_eq!(x.ok(), None); /// ``` #[inline] #[stable] pub fn ok(self) -> Option { match self { Ok(x) => Some(x), Err(_) => None, } } /// Convert from `Result` to `Option` /// /// Converts `self` into an `Option`, consuming `self`, /// and discarding the value, if any. /// /// # Example /// /// ``` /// let x: Result = Ok(2); /// assert_eq!(x.err(), None); /// /// let x: Result = Err("Nothing here"); /// assert_eq!(x.err(), Some("Nothing here")); /// ``` #[inline] #[stable] pub fn err(self) -> Option { match self { Ok(_) => None, Err(x) => Some(x), } } ///////////////////////////////////////////////////////////////////////// // Adapter for working with references ///////////////////////////////////////////////////////////////////////// /// Convert from `Result` to `Result<&T, &E>` /// /// Produces a new `Result`, containing a reference /// into the original, leaving the original in place. /// /// ``` /// let x: Result = Ok(2); /// assert_eq!(x.as_ref(), Ok(&2)); /// /// let x: Result = Err("Error"); /// assert_eq!(x.as_ref(), Err(&"Error")); /// ``` #[inline] #[stable] pub fn as_ref(&self) -> Result<&T, &E> { match *self { Ok(ref x) => Ok(x), Err(ref x) => Err(x), } } /// Convert from `Result` to `Result<&mut T, &mut E>` /// /// ``` /// fn mutate(r: &mut Result) { /// match r.as_mut() { /// Ok(&mut ref mut v) => *v = 42, /// Err(&mut ref mut e) => *e = 0, /// } /// } /// /// let mut x: Result = Ok(2); /// mutate(&mut x); /// assert_eq!(x.unwrap(), 42); /// /// let mut x: Result = Err(13); /// mutate(&mut x); /// assert_eq!(x.unwrap_err(), 0); /// ``` #[inline] #[stable] pub fn as_mut(&mut self) -> Result<&mut T, &mut E> { match *self { Ok(ref mut x) => Ok(x), Err(ref mut x) => Err(x), } } /// Convert from `Result` to `&mut [T]` (without copying) /// /// ``` /// let mut x: Result<&str, uint> = Ok("Gold"); /// { /// let v = x.as_mut_slice(); /// assert!(v == ["Gold"]); /// v[0] = "Silver"; /// assert!(v == ["Silver"]); /// } /// assert_eq!(x, Ok("Silver")); /// /// let mut x: Result<&str, uint> = Err(45); /// assert!(x.as_mut_slice().is_empty()); /// ``` #[inline] #[unstable = "waiting for mut conventions"] pub fn as_mut_slice(&mut self) -> &mut [T] { match *self { Ok(ref mut x) => slice::mut_ref_slice(x), Err(_) => { // work around lack of implicit coercion from fixed-size array to slice let emp: &mut [_] = &mut []; emp } } } ///////////////////////////////////////////////////////////////////////// // Transforming contained values ///////////////////////////////////////////////////////////////////////// /// Maps a `Result` to `Result` by applying a function to an /// contained `Ok` value, leaving an `Err` value untouched. /// /// This function can be used to compose the results of two functions. /// /// # Example /// /// Sum the lines of a buffer by mapping strings to numbers, /// ignoring I/O and parse errors: /// /// ``` /// use std::io::IoResult; /// /// let mut buffer = &mut b"1\n2\n3\n4\n"; /// /// let mut sum = 0; /// /// while !buffer.is_empty() { /// let line: IoResult = buffer.read_line(); /// // Convert the string line to a number using `map` and `from_str` /// let val: IoResult = line.map(|line| { /// line.as_slice().trim_right().parse::().unwrap_or(0) /// }); /// // Add the value if there were no errors, otherwise add 0 /// sum += val.ok().unwrap_or(0); /// } /// /// assert!(sum == 10); /// ``` #[inline] #[stable] pub fn map U>(self, op: F) -> Result { match self { Ok(t) => Ok(op(t)), Err(e) => Err(e) } } /// Maps a `Result` to `Result` by applying a function to an /// contained `Err` value, leaving an `Ok` value untouched. /// /// This function can be used to pass through a successful result while handling /// an error. /// /// # Example /// /// ``` /// fn stringify(x: uint) -> String { format!("error code: {}", x) } /// /// let x: Result = Ok(2); /// assert_eq!(x.map_err(stringify), Ok(2)); /// /// let x: Result = Err(13); /// assert_eq!(x.map_err(stringify), Err("error code: 13".to_string())); /// ``` #[inline] #[stable] pub fn map_err F>(self, op: O) -> Result { match self { Ok(t) => Ok(t), Err(e) => Err(op(e)) } } ///////////////////////////////////////////////////////////////////////// // Iterator constructors ///////////////////////////////////////////////////////////////////////// /// Returns an iterator over the possibly contained value. /// /// # Example /// /// ``` /// let x: Result = Ok(7); /// assert_eq!(x.iter().next(), Some(&7)); /// /// let x: Result = Err("nothing!"); /// assert_eq!(x.iter().next(), None); /// ``` #[inline] #[stable] pub fn iter(&self) -> Iter { Iter { inner: self.as_ref().ok() } } /// Returns a mutable iterator over the possibly contained value. /// /// # Example /// /// ``` /// let mut x: Result = Ok(7); /// match x.iter_mut().next() { /// Some(&mut ref mut x) => *x = 40, /// None => {}, /// } /// assert_eq!(x, Ok(40)); /// /// let mut x: Result = Err("nothing!"); /// assert_eq!(x.iter_mut().next(), None); /// ``` #[inline] #[stable] pub fn iter_mut(&mut self) -> IterMut { IterMut { inner: self.as_mut().ok() } } /// Returns a consuming iterator over the possibly contained value. /// /// # Example /// /// ``` /// let x: Result = Ok(5); /// let v: Vec = x.into_iter().collect(); /// assert_eq!(v, vec![5]); /// /// let x: Result = Err("nothing!"); /// let v: Vec = x.into_iter().collect(); /// assert_eq!(v, vec![]); /// ``` #[inline] #[stable] pub fn into_iter(self) -> IntoIter { IntoIter { inner: self.ok() } } //////////////////////////////////////////////////////////////////////// // Boolean operations on the values, eager and lazy ///////////////////////////////////////////////////////////////////////// /// Returns `res` if the result is `Ok`, otherwise returns the `Err` value of `self`. /// /// # Example /// /// ``` /// let x: Result = Ok(2); /// let y: Result<&str, &str> = Err("late error"); /// assert_eq!(x.and(y), Err("late error")); /// /// let x: Result = Err("early error"); /// let y: Result<&str, &str> = Ok("foo"); /// assert_eq!(x.and(y), Err("early error")); /// /// let x: Result = Err("not a 2"); /// let y: Result<&str, &str> = Err("late error"); /// assert_eq!(x.and(y), Err("not a 2")); /// /// let x: Result = Ok(2); /// let y: Result<&str, &str> = Ok("different result type"); /// assert_eq!(x.and(y), Ok("different result type")); /// ``` #[inline] #[stable] pub fn and(self, res: Result) -> Result { match self { Ok(_) => res, Err(e) => Err(e), } } /// Calls `op` if the result is `Ok`, otherwise returns the `Err` value of `self`. /// /// This function can be used for control flow based on result values. /// /// # Example /// /// ``` /// fn sq(x: uint) -> Result { Ok(x * x) } /// fn err(x: uint) -> Result { Err(x) } /// /// assert_eq!(Ok(2).and_then(sq).and_then(sq), Ok(16)); /// assert_eq!(Ok(2).and_then(sq).and_then(err), Err(4)); /// assert_eq!(Ok(2).and_then(err).and_then(sq), Err(2)); /// assert_eq!(Err(3).and_then(sq).and_then(sq), Err(3)); /// ``` #[inline] #[stable] pub fn and_then Result>(self, op: F) -> Result { match self { Ok(t) => op(t), Err(e) => Err(e), } } /// Returns `res` if the result is `Err`, otherwise returns the `Ok` value of `self`. /// /// # Example /// /// ``` /// let x: Result = Ok(2); /// let y: Result = Err("late error"); /// assert_eq!(x.or(y), Ok(2)); /// /// let x: Result = Err("early error"); /// let y: Result = Ok(2); /// assert_eq!(x.or(y), Ok(2)); /// /// let x: Result = Err("not a 2"); /// let y: Result = Err("late error"); /// assert_eq!(x.or(y), Err("late error")); /// /// let x: Result = Ok(2); /// let y: Result = Ok(100); /// assert_eq!(x.or(y), Ok(2)); /// ``` #[inline] #[stable] pub fn or(self, res: Result) -> Result { match self { Ok(_) => self, Err(_) => res, } } /// Calls `op` if the result is `Err`, otherwise returns the `Ok` value of `self`. /// /// This function can be used for control flow based on result values. /// /// # Example /// /// ``` /// fn sq(x: uint) -> Result { Ok(x * x) } /// fn err(x: uint) -> Result { Err(x) } /// /// assert_eq!(Ok(2).or_else(sq).or_else(sq), Ok(2)); /// assert_eq!(Ok(2).or_else(err).or_else(sq), Ok(2)); /// assert_eq!(Err(3).or_else(sq).or_else(err), Ok(9)); /// assert_eq!(Err(3).or_else(err).or_else(err), Err(3)); /// ``` #[inline] #[stable] pub fn or_else Result>(self, op: O) -> Result { match self { Ok(t) => Ok(t), Err(e) => op(e), } } /// Unwraps a result, yielding the content of an `Ok`. /// Else it returns `optb`. /// /// # Example /// /// ``` /// let optb = 2; /// let x: Result = Ok(9); /// assert_eq!(x.unwrap_or(optb), 9); /// /// let x: Result = Err("error"); /// assert_eq!(x.unwrap_or(optb), optb); /// ``` #[inline] #[stable] pub fn unwrap_or(self, optb: T) -> T { match self { Ok(t) => t, Err(_) => optb } } /// Unwraps a result, yielding the content of an `Ok`. /// If the value is an `Err` then it calls `op` with its value. /// /// # Example /// /// ``` /// fn count(x: &str) -> uint { x.len() } /// /// assert_eq!(Ok(2).unwrap_or_else(count), 2); /// assert_eq!(Err("foo").unwrap_or_else(count), 3); /// ``` #[inline] #[stable] pub fn unwrap_or_else T>(self, op: F) -> T { match self { Ok(t) => t, Err(e) => op(e) } } } #[stable] impl Result { /// Unwraps a result, yielding the content of an `Ok`. /// /// # Panics /// /// Panics if the value is an `Err`, with a custom panic message provided /// by the `Err`'s value. /// /// # Example /// /// ``` /// let x: Result = Ok(2); /// assert_eq!(x.unwrap(), 2); /// ``` /// /// ```{.should_fail} /// let x: Result = Err("emergency failure"); /// x.unwrap(); // panics with `emergency failure` /// ``` #[inline] #[stable] pub fn unwrap(self) -> T { match self { Ok(t) => t, Err(e) => panic!("called `Result::unwrap()` on an `Err` value: {:?}", e) } } } #[stable] impl Result { /// Unwraps a result, yielding the content of an `Err`. /// /// # Panics /// /// Panics if the value is an `Ok`, with a custom panic message provided /// by the `Ok`'s value. /// /// # Example /// /// ```{.should_fail} /// let x: Result = Ok(2); /// x.unwrap_err(); // panics with `2` /// ``` /// /// ``` /// let x: Result = Err("emergency failure"); /// assert_eq!(x.unwrap_err(), "emergency failure"); /// ``` #[inline] #[stable] pub fn unwrap_err(self) -> E { match self { Ok(t) => panic!("called `Result::unwrap_err()` on an `Ok` value: {:?}", t), Err(e) => e } } } ///////////////////////////////////////////////////////////////////////////// // Trait implementations ///////////////////////////////////////////////////////////////////////////// impl AsSlice for Result { /// Convert from `Result` to `&[T]` (without copying) #[inline] #[stable] fn as_slice<'a>(&'a self) -> &'a [T] { match *self { Ok(ref x) => slice::ref_slice(x), Err(_) => { // work around lack of implicit coercion from fixed-size array to slice let emp: &[_] = &[]; emp } } } } ///////////////////////////////////////////////////////////////////////////// // The Result Iterators ///////////////////////////////////////////////////////////////////////////// /// An iterator over a reference to the `Ok` variant of a `Result`. #[stable] pub struct Iter<'a, T: 'a> { inner: Option<&'a T> } #[stable] impl<'a, T> Iterator for Iter<'a, T> { type Item = &'a T; #[inline] fn next(&mut self) -> Option<&'a T> { self.inner.take() } #[inline] fn size_hint(&self) -> (uint, Option) { let n = if self.inner.is_some() {1} else {0}; (n, Some(n)) } } #[stable] impl<'a, T> DoubleEndedIterator for Iter<'a, T> { #[inline] fn next_back(&mut self) -> Option<&'a T> { self.inner.take() } } #[stable] impl<'a, T> ExactSizeIterator for Iter<'a, T> {} impl<'a, T> Clone for Iter<'a, T> { fn clone(&self) -> Iter<'a, T> { Iter { inner: self.inner } } } /// An iterator over a mutable reference to the `Ok` variant of a `Result`. #[stable] pub struct IterMut<'a, T: 'a> { inner: Option<&'a mut T> } #[stable] impl<'a, T> Iterator for IterMut<'a, T> { type Item = &'a mut T; #[inline] fn next(&mut self) -> Option<&'a mut T> { self.inner.take() } #[inline] fn size_hint(&self) -> (uint, Option) { let n = if self.inner.is_some() {1} else {0}; (n, Some(n)) } } #[stable] impl<'a, T> DoubleEndedIterator for IterMut<'a, T> { #[inline] fn next_back(&mut self) -> Option<&'a mut T> { self.inner.take() } } #[stable] impl<'a, T> ExactSizeIterator for IterMut<'a, T> {} /// An iterator over the value in a `Ok` variant of a `Result`. #[stable] pub struct IntoIter { inner: Option } #[stable] impl Iterator for IntoIter { type Item = T; #[inline] fn next(&mut self) -> Option { self.inner.take() } #[inline] fn size_hint(&self) -> (uint, Option) { let n = if self.inner.is_some() {1} else {0}; (n, Some(n)) } } #[stable] impl DoubleEndedIterator for IntoIter { #[inline] fn next_back(&mut self) -> Option { self.inner.take() } } #[stable] impl ExactSizeIterator for IntoIter {} ///////////////////////////////////////////////////////////////////////////// // FromIterator ///////////////////////////////////////////////////////////////////////////// #[stable] impl> FromIterator> for Result { /// Takes each element in the `Iterator`: if it is an `Err`, no further /// elements are taken, and the `Err` is returned. Should no `Err` occur, a /// container with the values of each `Result` is returned. /// /// Here is an example which increments every integer in a vector, /// checking for overflow: /// /// ```rust /// use std::uint; /// /// let v = vec!(1, 2); /// let res: Result, &'static str> = v.iter().map(|&x: &uint| /// if x == uint::MAX { Err("Overflow!") } /// else { Ok(x + 1) } /// ).collect(); /// assert!(res == Ok(vec!(2, 3))); /// ``` #[inline] fn from_iter>>(iter: I) -> Result { // FIXME(#11084): This could be replaced with Iterator::scan when this // performance bug is closed. struct Adapter { iter: Iter, err: Option, } impl>> Iterator for Adapter { type Item = T; #[inline] fn next(&mut self) -> Option { match self.iter.next() { Some(Ok(value)) => Some(value), Some(Err(err)) => { self.err = Some(err); None } None => None, } } } let mut adapter = Adapter { iter: iter, err: None }; let v: V = FromIterator::from_iter(adapter.by_ref()); match adapter.err { Some(err) => Err(err), None => Ok(v), } } } ///////////////////////////////////////////////////////////////////////////// // FromIterator ///////////////////////////////////////////////////////////////////////////// /// Perform a fold operation over the result values from an iterator. /// /// If an `Err` is encountered, it is immediately returned. /// Otherwise, the folded value is returned. #[inline] #[unstable] pub fn fold V, Iter: Iterator>>( mut iterator: Iter, mut init: V, mut f: F) -> Result { for t in iterator { match t { Ok(v) => init = f(init, v), Err(u) => return Err(u) } } Ok(init) }