// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Reduced graph building //! //! Here we build the "reduced graph": the graph of the module tree without //! any imports resolved. use macros::{InvocationData, LegacyScope}; use resolve_imports::ImportDirectiveSubclass::{self, GlobImport}; use {Module, ModuleS, ModuleKind}; use Namespace::{self, TypeNS, ValueNS}; use {NameBinding, NameBindingKind, ToNameBinding}; use Resolver; use {resolve_error, resolve_struct_error, ResolutionError}; use rustc::middle::cstore::LoadedMacroKind; use rustc::hir::def::*; use rustc::hir::def_id::{CRATE_DEF_INDEX, DefId}; use rustc::ty; use std::cell::Cell; use std::rc::Rc; use syntax::ast::Name; use syntax::attr; use syntax::parse::token; use syntax::ast::{self, Block, ForeignItem, ForeignItemKind, Item, ItemKind}; use syntax::ast::{Mutability, StmtKind, TraitItem, TraitItemKind}; use syntax::ast::{Variant, ViewPathGlob, ViewPathList, ViewPathSimple}; use syntax::ext::base::{SyntaxExtension, Resolver as SyntaxResolver}; use syntax::ext::hygiene::Mark; use syntax::feature_gate::{self, emit_feature_err}; use syntax::ext::tt::macro_rules; use syntax::parse::token::keywords; use syntax::visit::{self, Visitor}; use syntax_pos::{Span, DUMMY_SP}; impl<'a> ToNameBinding<'a> for (Module<'a>, Span, ty::Visibility) { fn to_name_binding(self) -> NameBinding<'a> { NameBinding { kind: NameBindingKind::Module(self.0), span: self.1, vis: self.2 } } } impl<'a> ToNameBinding<'a> for (Def, Span, ty::Visibility) { fn to_name_binding(self) -> NameBinding<'a> { NameBinding { kind: NameBindingKind::Def(self.0), span: self.1, vis: self.2 } } } impl<'b> Resolver<'b> { /// Defines `name` in namespace `ns` of module `parent` to be `def` if it is not yet defined; /// otherwise, reports an error. fn define(&mut self, parent: Module<'b>, name: Name, ns: Namespace, def: T) where T: ToNameBinding<'b>, { let binding = def.to_name_binding(); if let Err(old_binding) = self.try_define(parent, name, ns, binding.clone()) { self.report_conflict(parent, name, ns, old_binding, &binding); } } fn block_needs_anonymous_module(&mut self, block: &Block) -> bool { // If any statements are items, we need to create an anonymous module block.stmts.iter().any(|statement| match statement.node { StmtKind::Item(_) | StmtKind::Mac(_) => true, _ => false, }) } fn insert_field_names(&mut self, def_id: DefId, field_names: Vec) { if !field_names.is_empty() { self.field_names.insert(def_id, field_names); } } /// Constructs the reduced graph for one item. fn build_reduced_graph_for_item(&mut self, item: &Item, expansion: Mark) { let parent = self.current_module; let name = item.ident.name; let sp = item.span; let vis = self.resolve_visibility(&item.vis); match item.node { ItemKind::Use(ref view_path) => { // Extract and intern the module part of the path. For // globs and lists, the path is found directly in the AST; // for simple paths we have to munge the path a little. let module_path: Vec = match view_path.node { ViewPathSimple(_, ref full_path) => { full_path.segments .split_last() .unwrap() .1 .iter() .map(|seg| seg.identifier.name) .collect() } ViewPathGlob(ref module_ident_path) | ViewPathList(ref module_ident_path, _) => { module_ident_path.segments .iter() .map(|seg| seg.identifier.name) .collect() } }; // Build up the import directives. let is_prelude = attr::contains_name(&item.attrs, "prelude_import"); match view_path.node { ViewPathSimple(binding, ref full_path) => { let source_name = full_path.segments.last().unwrap().identifier.name; if source_name.as_str() == "mod" || source_name.as_str() == "self" { resolve_error(self, view_path.span, ResolutionError::SelfImportsOnlyAllowedWithin); } let subclass = ImportDirectiveSubclass::single(binding.name, source_name); let span = view_path.span; self.add_import_directive(module_path, subclass, span, item.id, vis); } ViewPathList(_, ref source_items) => { // Make sure there's at most one `mod` import in the list. let mod_spans = source_items.iter().filter_map(|item| { if item.node.name.name == keywords::SelfValue.name() { Some(item.span) } else { None } }).collect::>(); if mod_spans.len() > 1 { let mut e = resolve_struct_error(self, mod_spans[0], ResolutionError::SelfImportCanOnlyAppearOnceInTheList); for other_span in mod_spans.iter().skip(1) { e.span_note(*other_span, "another `self` import appears here"); } e.emit(); } for source_item in source_items { let node = source_item.node; let (module_path, name, rename) = { if node.name.name != keywords::SelfValue.name() { let rename = node.rename.unwrap_or(node.name).name; (module_path.clone(), node.name.name, rename) } else { let name = match module_path.last() { Some(name) => *name, None => { resolve_error( self, source_item.span, ResolutionError:: SelfImportOnlyInImportListWithNonEmptyPrefix ); continue; } }; let module_path = module_path.split_last().unwrap().1; let rename = node.rename.map(|i| i.name).unwrap_or(name); (module_path.to_vec(), name, rename) } }; let subclass = ImportDirectiveSubclass::single(rename, name); let (span, id) = (source_item.span, source_item.node.id); self.add_import_directive(module_path, subclass, span, id, vis); } } ViewPathGlob(_) => { let subclass = GlobImport { is_prelude: is_prelude, max_vis: Cell::new(ty::Visibility::PrivateExternal), }; let span = view_path.span; self.add_import_directive(module_path, subclass, span, item.id, vis); } } } ItemKind::ExternCrate(_) => { // We need to error on `#[macro_use] extern crate` when it isn't at the // crate root, because `$crate` won't work properly. let is_crate_root = self.current_module.parent.is_none(); let import_macro = |this: &mut Self, name, ext, span| { let shadowing = this.builtin_macros.insert(name, Rc::new(ext)).is_some(); if shadowing && expansion != Mark::root() { let msg = format!("`{}` is already in scope", name); this.session.struct_span_err(span, &msg) .note("macro-expanded `#[macro_use]`s may not shadow \ existing macros (see RFC 1560)") .emit(); } }; let mut custom_derive_crate = false; for loaded_macro in self.crate_loader.load_macros(item, is_crate_root) { match loaded_macro.kind { LoadedMacroKind::Def(mut def) => { if def.use_locally { self.macro_names.insert(def.ident.name); let ext = macro_rules::compile(&self.session.parse_sess, &def); import_macro(self, def.ident.name, ext, loaded_macro.import_site); } if def.export { def.id = self.next_node_id(); self.exported_macros.push(def); } } LoadedMacroKind::CustomDerive(name, ext) => { custom_derive_crate = true; let ext = SyntaxExtension::CustomDerive(ext); import_macro(self, token::intern(&name), ext, loaded_macro.import_site); } } } if custom_derive_crate && !self.session.features.borrow().proc_macro { let issue = feature_gate::GateIssue::Language; let msg = "loading custom derive macro crates is experimentally supported"; emit_feature_err(&self.session.parse_sess, "proc_macro", item.span, issue, msg); } self.crate_loader.process_item(item, &self.definitions); // n.b. we don't need to look at the path option here, because cstore already did if let Some(crate_id) = self.session.cstore.extern_mod_stmt_cnum(item.id) { let def_id = DefId { krate: crate_id, index: CRATE_DEF_INDEX, }; let module = self.arenas.alloc_module(ModuleS { extern_crate_id: Some(item.id), populated: Cell::new(false), ..ModuleS::new(Some(parent), ModuleKind::Def(Def::Mod(def_id), name)) }); self.define(parent, name, TypeNS, (module, sp, vis)); self.populate_module_if_necessary(module); } else if custom_derive_crate { // Define an empty module let def = Def::Mod(self.definitions.local_def_id(item.id)); let module = ModuleS::new(Some(parent), ModuleKind::Def(def, name)); let module = self.arenas.alloc_module(module); self.define(parent, name, TypeNS, (module, sp, vis)); } } ItemKind::Mod(..) if item.ident == keywords::Invalid.ident() => {} // Crate root ItemKind::Mod(..) => { let def = Def::Mod(self.definitions.local_def_id(item.id)); let module = self.arenas.alloc_module(ModuleS { no_implicit_prelude: parent.no_implicit_prelude || { attr::contains_name(&item.attrs, "no_implicit_prelude") }, normal_ancestor_id: Some(item.id), ..ModuleS::new(Some(parent), ModuleKind::Def(def, name)) }); self.define(parent, name, TypeNS, (module, sp, vis)); self.module_map.insert(item.id, module); // Descend into the module. self.current_module = module; } ItemKind::ForeignMod(..) => self.crate_loader.process_item(item, &self.definitions), // These items live in the value namespace. ItemKind::Static(_, m, _) => { let mutbl = m == Mutability::Mutable; let def = Def::Static(self.definitions.local_def_id(item.id), mutbl); self.define(parent, name, ValueNS, (def, sp, vis)); } ItemKind::Const(..) => { let def = Def::Const(self.definitions.local_def_id(item.id)); self.define(parent, name, ValueNS, (def, sp, vis)); } ItemKind::Fn(..) => { let def = Def::Fn(self.definitions.local_def_id(item.id)); self.define(parent, name, ValueNS, (def, sp, vis)); } // These items live in the type namespace. ItemKind::Ty(..) => { let def = Def::TyAlias(self.definitions.local_def_id(item.id)); self.define(parent, name, TypeNS, (def, sp, vis)); } ItemKind::Enum(ref enum_definition, _) => { let def = Def::Enum(self.definitions.local_def_id(item.id)); let module = self.new_module(parent, ModuleKind::Def(def, name), true); self.define(parent, name, TypeNS, (module, sp, vis)); for variant in &(*enum_definition).variants { self.build_reduced_graph_for_variant(variant, module, vis); } } // These items live in both the type and value namespaces. ItemKind::Struct(ref struct_def, _) => { // Define a name in the type namespace. let def = Def::Struct(self.definitions.local_def_id(item.id)); self.define(parent, name, TypeNS, (def, sp, vis)); // If this is a tuple or unit struct, define a name // in the value namespace as well. if !struct_def.is_struct() { let ctor_def = Def::StructCtor(self.definitions.local_def_id(struct_def.id()), CtorKind::from_ast(struct_def)); self.define(parent, name, ValueNS, (ctor_def, sp, vis)); } // Record field names for error reporting. let field_names = struct_def.fields().iter().filter_map(|field| { self.resolve_visibility(&field.vis); field.ident.map(|ident| ident.name) }).collect(); let item_def_id = self.definitions.local_def_id(item.id); self.insert_field_names(item_def_id, field_names); } ItemKind::Union(ref vdata, _) => { let def = Def::Union(self.definitions.local_def_id(item.id)); self.define(parent, name, TypeNS, (def, sp, vis)); // Record field names for error reporting. let field_names = vdata.fields().iter().filter_map(|field| { self.resolve_visibility(&field.vis); field.ident.map(|ident| ident.name) }).collect(); let item_def_id = self.definitions.local_def_id(item.id); self.insert_field_names(item_def_id, field_names); } ItemKind::DefaultImpl(..) | ItemKind::Impl(..) => {} ItemKind::Trait(..) => { let def_id = self.definitions.local_def_id(item.id); // Add all the items within to a new module. let module = self.new_module(parent, ModuleKind::Def(Def::Trait(def_id), name), true); self.define(parent, name, TypeNS, (module, sp, vis)); self.current_module = module; } ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"), } } // Constructs the reduced graph for one variant. Variants exist in the // type and value namespaces. fn build_reduced_graph_for_variant(&mut self, variant: &Variant, parent: Module<'b>, vis: ty::Visibility) { let name = variant.node.name.name; let def_id = self.definitions.local_def_id(variant.node.data.id()); // Define a name in the type namespace. let def = Def::Variant(def_id); self.define(parent, name, TypeNS, (def, variant.span, vis)); // Define a constructor name in the value namespace. // Braced variants, unlike structs, generate unusable names in // value namespace, they are reserved for possible future use. let ctor_kind = CtorKind::from_ast(&variant.node.data); let ctor_def = Def::VariantCtor(def_id, ctor_kind); self.define(parent, name, ValueNS, (ctor_def, variant.span, vis)); } /// Constructs the reduced graph for one foreign item. fn build_reduced_graph_for_foreign_item(&mut self, foreign_item: &ForeignItem) { let parent = self.current_module; let name = foreign_item.ident.name; let def = match foreign_item.node { ForeignItemKind::Fn(..) => { Def::Fn(self.definitions.local_def_id(foreign_item.id)) } ForeignItemKind::Static(_, m) => { Def::Static(self.definitions.local_def_id(foreign_item.id), m) } }; let vis = self.resolve_visibility(&foreign_item.vis); self.define(parent, name, ValueNS, (def, foreign_item.span, vis)); } fn build_reduced_graph_for_block(&mut self, block: &Block) { let parent = self.current_module; if self.block_needs_anonymous_module(block) { let block_id = block.id; debug!("(building reduced graph for block) creating a new anonymous module for block \ {}", block_id); let new_module = self.new_module(parent, ModuleKind::Block(block_id), true); self.module_map.insert(block_id, new_module); self.current_module = new_module; // Descend into the block. } } /// Builds the reduced graph for a single item in an external crate. fn build_reduced_graph_for_external_crate_def(&mut self, parent: Module<'b>, child: Export) { let name = child.name; let def = child.def; let def_id = def.def_id(); let vis = if parent.is_trait() { ty::Visibility::Public } else { self.session.cstore.visibility(def_id) }; match def { Def::Mod(..) | Def::Enum(..) => { let module = self.new_module(parent, ModuleKind::Def(def, name), false); self.define(parent, name, TypeNS, (module, DUMMY_SP, vis)); } Def::Variant(..) => { self.define(parent, name, TypeNS, (def, DUMMY_SP, vis)); } Def::VariantCtor(..) => { self.define(parent, name, ValueNS, (def, DUMMY_SP, vis)); } Def::Fn(..) | Def::Static(..) | Def::Const(..) | Def::AssociatedConst(..) | Def::Method(..) => { self.define(parent, name, ValueNS, (def, DUMMY_SP, vis)); } Def::Trait(..) => { let module = self.new_module(parent, ModuleKind::Def(def, name), false); self.define(parent, name, TypeNS, (module, DUMMY_SP, vis)); // If this is a trait, add all the trait item names to the trait info. let trait_item_def_ids = self.session.cstore.impl_or_trait_items(def_id); for trait_item_def_id in trait_item_def_ids { let trait_item_name = self.session.cstore.def_key(trait_item_def_id) .disambiguated_data.data.get_opt_name() .expect("opt_item_name returned None for trait"); self.trait_item_map.insert((trait_item_name, def_id), false); } } Def::TyAlias(..) | Def::AssociatedTy(..) => { self.define(parent, name, TypeNS, (def, DUMMY_SP, vis)); } Def::Struct(..) => { self.define(parent, name, TypeNS, (def, DUMMY_SP, vis)); // Record field names for error reporting. let field_names = self.session.cstore.struct_field_names(def_id); self.insert_field_names(def_id, field_names); } Def::StructCtor(..) => { self.define(parent, name, ValueNS, (def, DUMMY_SP, vis)); } Def::Union(..) => { self.define(parent, name, TypeNS, (def, DUMMY_SP, vis)); // Record field names for error reporting. let field_names = self.session.cstore.struct_field_names(def_id); self.insert_field_names(def_id, field_names); } Def::Local(..) | Def::PrimTy(..) | Def::TyParam(..) | Def::Upvar(..) | Def::Label(..) | Def::SelfTy(..) | Def::Err => { bug!("unexpected definition: {:?}", def); } } } /// Ensures that the reduced graph rooted at the given external module /// is built, building it if it is not. pub fn populate_module_if_necessary(&mut self, module: Module<'b>) { if module.populated.get() { return } for child in self.session.cstore.item_children(module.def_id().unwrap()) { self.build_reduced_graph_for_external_crate_def(module, child); } module.populated.set(true) } // does this attribute list contain "macro_use"? fn contains_macro_use(&mut self, attrs: &[ast::Attribute]) -> bool { for attr in attrs { if attr.check_name("macro_escape") { let msg = "macro_escape is a deprecated synonym for macro_use"; let mut err = self.session.struct_span_warn(attr.span, msg); if let ast::AttrStyle::Inner = attr.node.style { err.help("consider an outer attribute, #[macro_use] mod ...").emit(); } else { err.emit(); } } else if !attr.check_name("macro_use") { continue; } if !attr.is_word() { self.session.span_err(attr.span, "arguments to macro_use are not allowed here"); } return true; } false } } pub struct BuildReducedGraphVisitor<'a, 'b: 'a> { pub resolver: &'a mut Resolver<'b>, pub legacy_scope: LegacyScope<'b>, pub expansion: Mark, } impl<'a, 'b> BuildReducedGraphVisitor<'a, 'b> { fn visit_invoc(&mut self, id: ast::NodeId) -> &'b InvocationData<'b> { let invocation = self.resolver.invocations[&Mark::from_placeholder_id(id)]; invocation.module.set(self.resolver.current_module); invocation.legacy_scope.set(self.legacy_scope); invocation } } macro_rules! method { ($visit:ident: $ty:ty, $invoc:path, $walk:ident) => { fn $visit(&mut self, node: &$ty) { if let $invoc(..) = node.node { self.visit_invoc(node.id); } else { visit::$walk(self, node); } } } } impl<'a, 'b> Visitor for BuildReducedGraphVisitor<'a, 'b> { method!(visit_impl_item: ast::ImplItem, ast::ImplItemKind::Macro, walk_impl_item); method!(visit_expr: ast::Expr, ast::ExprKind::Mac, walk_expr); method!(visit_pat: ast::Pat, ast::PatKind::Mac, walk_pat); method!(visit_ty: ast::Ty, ast::TyKind::Mac, walk_ty); fn visit_item(&mut self, item: &Item) { let macro_use = match item.node { ItemKind::Mac(..) if item.id == ast::DUMMY_NODE_ID => return, // Scope placeholder ItemKind::Mac(..) => { return self.legacy_scope = LegacyScope::Expansion(self.visit_invoc(item.id)); } ItemKind::Mod(..) => self.resolver.contains_macro_use(&item.attrs), _ => false, }; let (parent, legacy_scope) = (self.resolver.current_module, self.legacy_scope); self.resolver.build_reduced_graph_for_item(item, self.expansion); visit::walk_item(self, item); self.resolver.current_module = parent; if !macro_use { self.legacy_scope = legacy_scope; } } fn visit_stmt(&mut self, stmt: &ast::Stmt) { if let ast::StmtKind::Mac(..) = stmt.node { self.legacy_scope = LegacyScope::Expansion(self.visit_invoc(stmt.id)); } else { visit::walk_stmt(self, stmt); } } fn visit_foreign_item(&mut self, foreign_item: &ForeignItem) { self.resolver.build_reduced_graph_for_foreign_item(foreign_item); visit::walk_foreign_item(self, foreign_item); } fn visit_block(&mut self, block: &Block) { let (parent, legacy_scope) = (self.resolver.current_module, self.legacy_scope); self.resolver.build_reduced_graph_for_block(block); visit::walk_block(self, block); self.resolver.current_module = parent; self.legacy_scope = legacy_scope; } fn visit_trait_item(&mut self, item: &TraitItem) { let parent = self.resolver.current_module; let def_id = parent.def_id().unwrap(); if let TraitItemKind::Macro(_) = item.node { self.visit_invoc(item.id); return } // Add the item to the trait info. let item_def_id = self.resolver.definitions.local_def_id(item.id); let mut is_static_method = false; let (def, ns) = match item.node { TraitItemKind::Const(..) => (Def::AssociatedConst(item_def_id), ValueNS), TraitItemKind::Method(ref sig, _) => { is_static_method = !sig.decl.has_self(); (Def::Method(item_def_id), ValueNS) } TraitItemKind::Type(..) => (Def::AssociatedTy(item_def_id), TypeNS), TraitItemKind::Macro(_) => bug!(), // handled above }; self.resolver.trait_item_map.insert((item.ident.name, def_id), is_static_method); let vis = ty::Visibility::Public; self.resolver.define(parent, item.ident.name, ns, (def, item.span, vis)); self.resolver.current_module = parent.parent.unwrap(); // nearest normal ancestor visit::walk_trait_item(self, item); self.resolver.current_module = parent; } }