use crate::ImplTraitPosition; use super::{AnonymousLifetimeMode, ImplTraitContext, LoweringContext, ParamMode}; use super::{GenericArgsCtor, ParenthesizedGenericArgs}; use rustc_ast::{self as ast, *}; use rustc_errors::{struct_span_err, Applicability}; use rustc_hir as hir; use rustc_hir::def::{DefKind, PartialRes, Res}; use rustc_hir::def_id::DefId; use rustc_hir::GenericArg; use rustc_span::symbol::Ident; use rustc_span::{BytePos, Span, DUMMY_SP}; use smallvec::smallvec; use tracing::debug; impl<'a, 'hir> LoweringContext<'a, 'hir> { crate fn lower_qpath( &mut self, id: NodeId, qself: &Option, p: &Path, param_mode: ParamMode, mut itctx: ImplTraitContext<'_, 'hir>, ) -> hir::QPath<'hir> { debug!("lower_qpath(id: {:?}, qself: {:?}, p: {:?})", id, qself, p); let qself_position = qself.as_ref().map(|q| q.position); let qself = qself.as_ref().map(|q| self.lower_ty(&q.ty, itctx.reborrow())); let partial_res = self.resolver.get_partial_res(id).unwrap_or_else(|| PartialRes::new(Res::Err)); let path_span_lo = p.span.shrink_to_lo(); let proj_start = p.segments.len() - partial_res.unresolved_segments(); let path = self.arena.alloc(hir::Path { res: self.lower_res(partial_res.base_res()), segments: self.arena.alloc_from_iter(p.segments[..proj_start].iter().enumerate().map( |(i, segment)| { let param_mode = match (qself_position, param_mode) { (Some(j), ParamMode::Optional) if i < j => { // This segment is part of the trait path in a // qualified path - one of `a`, `b` or `Trait` // in `::T::U::method`. ParamMode::Explicit } _ => param_mode, }; // Figure out if this is a type/trait segment, // which may need lifetime elision performed. let parent_def_id = |this: &mut Self, def_id: DefId| DefId { krate: def_id.krate, index: this.resolver.def_key(def_id).parent.expect("missing parent"), }; let type_def_id = match partial_res.base_res() { Res::Def(DefKind::AssocTy, def_id) if i + 2 == proj_start => { Some(parent_def_id(self, def_id)) } Res::Def(DefKind::Variant, def_id) if i + 1 == proj_start => { Some(parent_def_id(self, def_id)) } Res::Def(DefKind::Struct, def_id) | Res::Def(DefKind::Union, def_id) | Res::Def(DefKind::Enum, def_id) | Res::Def(DefKind::TyAlias, def_id) | Res::Def(DefKind::Trait, def_id) if i + 1 == proj_start => { Some(def_id) } _ => None, }; let parenthesized_generic_args = match partial_res.base_res() { // `a::b::Trait(Args)` Res::Def(DefKind::Trait, _) if i + 1 == proj_start => { ParenthesizedGenericArgs::Ok } // `a::b::Trait(Args)::TraitItem` Res::Def(DefKind::AssocFn, _) | Res::Def(DefKind::AssocConst, _) | Res::Def(DefKind::AssocTy, _) if i + 2 == proj_start => { ParenthesizedGenericArgs::Ok } // Avoid duplicated errors. Res::Err => ParenthesizedGenericArgs::Ok, // An error _ => ParenthesizedGenericArgs::Err, }; let num_lifetimes = type_def_id .map_or(0, |def_id| self.resolver.item_generics_num_lifetimes(def_id)); self.lower_path_segment( p.span, segment, param_mode, num_lifetimes, parenthesized_generic_args, itctx.reborrow(), ) }, )), span: self.lower_span( p.segments[..proj_start] .last() .map_or(path_span_lo, |segment| path_span_lo.to(segment.span())), ), }); // Simple case, either no projections, or only fully-qualified. // E.g., `std::mem::size_of` or `::Item`. if partial_res.unresolved_segments() == 0 { return hir::QPath::Resolved(qself, path); } // Create the innermost type that we're projecting from. let mut ty = if path.segments.is_empty() { // If the base path is empty that means there exists a // syntactical `Self`, e.g., `&i32` in `<&i32>::clone`. qself.expect("missing QSelf for ::...") } else { // Otherwise, the base path is an implicit `Self` type path, // e.g., `Vec` in `Vec::new` or `::Item` in // `::Item::default`. let new_id = self.next_id(); self.arena.alloc(self.ty_path(new_id, path.span, hir::QPath::Resolved(qself, path))) }; // Anything after the base path are associated "extensions", // out of which all but the last one are associated types, // e.g., for `std::vec::Vec::::IntoIter::Item::clone`: // * base path is `std::vec::Vec` // * "extensions" are `IntoIter`, `Item` and `clone` // * type nodes are: // 1. `std::vec::Vec` (created above) // 2. `>::IntoIter` // 3. `<>::IntoIter>::Item` // * final path is `<<>::IntoIter>::Item>::clone` for (i, segment) in p.segments.iter().enumerate().skip(proj_start) { let hir_segment = self.arena.alloc(self.lower_path_segment( p.span, segment, param_mode, 0, ParenthesizedGenericArgs::Err, itctx.reborrow(), )); let qpath = hir::QPath::TypeRelative(ty, hir_segment); // It's finished, return the extension of the right node type. if i == p.segments.len() - 1 { return qpath; } // Wrap the associated extension in another type node. let new_id = self.next_id(); ty = self.arena.alloc(self.ty_path(new_id, path_span_lo.to(segment.span()), qpath)); } // We should've returned in the for loop above. self.sess.diagnostic().span_bug( p.span, &format!( "lower_qpath: no final extension segment in {}..{}", proj_start, p.segments.len() ), ); } crate fn lower_path_extra( &mut self, res: Res, p: &Path, param_mode: ParamMode, ) -> &'hir hir::Path<'hir> { self.arena.alloc(hir::Path { res, segments: self.arena.alloc_from_iter(p.segments.iter().map(|segment| { self.lower_path_segment( p.span, segment, param_mode, 0, ParenthesizedGenericArgs::Err, ImplTraitContext::Disallowed(ImplTraitPosition::Path), ) })), span: self.lower_span(p.span), }) } crate fn lower_path( &mut self, id: NodeId, p: &Path, param_mode: ParamMode, ) -> &'hir hir::Path<'hir> { let res = self.expect_full_res(id); let res = self.lower_res(res); self.lower_path_extra(res, p, param_mode) } crate fn lower_path_segment( &mut self, path_span: Span, segment: &PathSegment, param_mode: ParamMode, expected_lifetimes: usize, parenthesized_generic_args: ParenthesizedGenericArgs, itctx: ImplTraitContext<'_, 'hir>, ) -> hir::PathSegment<'hir> { debug!( "path_span: {:?}, lower_path_segment(segment: {:?}, expected_lifetimes: {:?})", path_span, segment, expected_lifetimes ); let (mut generic_args, infer_args) = if let Some(ref generic_args) = segment.args { let msg = "parenthesized type parameters may only be used with a `Fn` trait"; match **generic_args { GenericArgs::AngleBracketed(ref data) => { self.lower_angle_bracketed_parameter_data(data, param_mode, itctx) } GenericArgs::Parenthesized(ref data) => match parenthesized_generic_args { ParenthesizedGenericArgs::Ok => self.lower_parenthesized_parameter_data(data), ParenthesizedGenericArgs::Err => { let mut err = struct_span_err!(self.sess, data.span, E0214, "{}", msg); err.span_label(data.span, "only `Fn` traits may use parentheses"); if let Ok(snippet) = self.sess.source_map().span_to_snippet(data.span) { // Do not suggest going from `Trait()` to `Trait<>` if !data.inputs.is_empty() { // Suggest replacing `(` and `)` with `<` and `>` // The snippet may be missing the closing `)`, skip that case if snippet.ends_with(')') { if let Some(split) = snippet.find('(') { let trait_name = &snippet[0..split]; let args = &snippet[split + 1..snippet.len() - 1]; err.span_suggestion( data.span, "use angle brackets instead", format!("{}<{}>", trait_name, args), Applicability::MaybeIncorrect, ); } } } }; err.emit(); ( self.lower_angle_bracketed_parameter_data( &data.as_angle_bracketed_args(), param_mode, itctx, ) .0, false, ) } }, } } else { ( GenericArgsCtor { args: Default::default(), bindings: &[], parenthesized: false, span: path_span.shrink_to_hi(), }, param_mode == ParamMode::Optional, ) }; let has_lifetimes = generic_args.args.iter().any(|arg| matches!(arg, GenericArg::Lifetime(_))); if !generic_args.parenthesized && !has_lifetimes && expected_lifetimes > 0 { // Note: these spans are used for diagnostics when they can't be inferred. // See rustc_resolve::late::lifetimes::LifetimeContext::add_missing_lifetime_specifiers_label let elided_lifetime_span = if generic_args.span.is_empty() { // If there are no brackets, use the identifier span. // HACK: we use find_ancestor_inside to properly suggest elided spans in paths // originating from macros, since the segment's span might be from a macro arg. segment.ident.span.find_ancestor_inside(path_span).unwrap_or(path_span) } else if generic_args.is_empty() { // If there are brackets, but not generic arguments, then use the opening bracket generic_args.span.with_hi(generic_args.span.lo() + BytePos(1)) } else { // Else use an empty span right after the opening bracket. generic_args.span.with_lo(generic_args.span.lo() + BytePos(1)).shrink_to_lo() }; generic_args.args = self .elided_path_lifetimes(elided_lifetime_span, expected_lifetimes) .map(GenericArg::Lifetime) .chain(generic_args.args.into_iter()) .collect(); if let (ParamMode::Explicit, AnonymousLifetimeMode::CreateParameter) = (param_mode, self.anonymous_lifetime_mode) { // Late resolver should have issued the error. self.sess .delay_span_bug(elided_lifetime_span, "implicit lifetime not allowed here"); } } let res = self.expect_full_res(segment.id); let id = self.lower_node_id(segment.id); debug!( "lower_path_segment: ident={:?} original-id={:?} new-id={:?}", segment.ident, segment.id, id, ); hir::PathSegment { ident: self.lower_ident(segment.ident), hir_id: Some(id), res: Some(self.lower_res(res)), infer_args, args: if generic_args.is_empty() && generic_args.span.is_empty() { None } else { Some(generic_args.into_generic_args(self)) }, } } pub(crate) fn lower_angle_bracketed_parameter_data( &mut self, data: &AngleBracketedArgs, param_mode: ParamMode, mut itctx: ImplTraitContext<'_, 'hir>, ) -> (GenericArgsCtor<'hir>, bool) { let has_non_lt_args = data.args.iter().any(|arg| match arg { AngleBracketedArg::Arg(ast::GenericArg::Lifetime(_)) | AngleBracketedArg::Constraint(_) => false, AngleBracketedArg::Arg(ast::GenericArg::Type(_) | ast::GenericArg::Const(_)) => true, }); let args = data .args .iter() .filter_map(|arg| match arg { AngleBracketedArg::Arg(arg) => Some(self.lower_generic_arg(arg, itctx.reborrow())), AngleBracketedArg::Constraint(_) => None, }) .collect(); let bindings = self.arena.alloc_from_iter(data.args.iter().filter_map(|arg| match arg { AngleBracketedArg::Constraint(c) => { Some(self.lower_assoc_ty_constraint(c, itctx.reborrow())) } AngleBracketedArg::Arg(_) => None, })); let ctor = GenericArgsCtor { args, bindings, parenthesized: false, span: data.span }; (ctor, !has_non_lt_args && param_mode == ParamMode::Optional) } fn lower_parenthesized_parameter_data( &mut self, data: &ParenthesizedArgs, ) -> (GenericArgsCtor<'hir>, bool) { // Switch to `PassThrough` mode for anonymous lifetimes; this // means that we permit things like `&Ref`, where `Ref` has // a hidden lifetime parameter. This is needed for backwards // compatibility, even in contexts like an impl header where // we generally don't permit such things (see #51008). self.with_anonymous_lifetime_mode(AnonymousLifetimeMode::PassThrough, |this| { let ParenthesizedArgs { span, inputs, inputs_span, output } = data; let inputs = this.arena.alloc_from_iter(inputs.iter().map(|ty| { this.lower_ty_direct( ty, ImplTraitContext::Disallowed(ImplTraitPosition::FnTraitParam), ) })); let output_ty = match output { FnRetTy::Ty(ty) => this .lower_ty(&ty, ImplTraitContext::Disallowed(ImplTraitPosition::FnTraitReturn)), FnRetTy::Default(_) => this.arena.alloc(this.ty_tup(*span, &[])), }; let args = smallvec![GenericArg::Type(this.ty_tup(*inputs_span, inputs))]; let binding = this.output_ty_binding(output_ty.span, output_ty); ( GenericArgsCtor { args, bindings: arena_vec![this; binding], parenthesized: true, span: data.inputs_span, }, false, ) }) } /// An associated type binding `Output = $ty`. crate fn output_ty_binding( &mut self, span: Span, ty: &'hir hir::Ty<'hir>, ) -> hir::TypeBinding<'hir> { let ident = Ident::with_dummy_span(hir::FN_OUTPUT_NAME); let kind = hir::TypeBindingKind::Equality { term: ty.into() }; let args = arena_vec![self;]; let bindings = arena_vec![self;]; let gen_args = self.arena.alloc(hir::GenericArgs { args, bindings, parenthesized: false, span_ext: DUMMY_SP, }); hir::TypeBinding { hir_id: self.next_id(), gen_args, span: self.lower_span(span), ident, kind, } } }