// Copyright 2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use middle::def_id::DefId; use middle::infer::InferCtxt; use middle::subst::Substs; use middle::ty::{self, Ty, ToPredicate, ToPolyTraitRef}; use syntax::codemap::Span; use util::common::ErrorReported; use util::nodemap::FnvHashSet; use super::{Obligation, ObligationCause, PredicateObligation}; struct PredicateSet<'a,'tcx:'a> { tcx: &'a ty::ctxt<'tcx>, set: FnvHashSet>, } impl<'a,'tcx> PredicateSet<'a,'tcx> { fn new(tcx: &'a ty::ctxt<'tcx>) -> PredicateSet<'a,'tcx> { PredicateSet { tcx: tcx, set: FnvHashSet() } } fn insert(&mut self, pred: &ty::Predicate<'tcx>) -> bool { // We have to be careful here because we want // // for<'a> Foo<&'a int> // // and // // for<'b> Foo<&'b int> // // to be considered equivalent. So normalize all late-bound // regions before we throw things into the underlying set. let normalized_pred = match *pred { ty::Predicate::Trait(ref data) => ty::Predicate::Trait(self.tcx.anonymize_late_bound_regions(data)), ty::Predicate::Equate(ref data) => ty::Predicate::Equate(self.tcx.anonymize_late_bound_regions(data)), ty::Predicate::RegionOutlives(ref data) => ty::Predicate::RegionOutlives(self.tcx.anonymize_late_bound_regions(data)), ty::Predicate::TypeOutlives(ref data) => ty::Predicate::TypeOutlives(self.tcx.anonymize_late_bound_regions(data)), ty::Predicate::Projection(ref data) => ty::Predicate::Projection(self.tcx.anonymize_late_bound_regions(data)), ty::Predicate::WellFormed(data) => ty::Predicate::WellFormed(data), ty::Predicate::ObjectSafe(data) => ty::Predicate::ObjectSafe(data), }; self.set.insert(normalized_pred) } } /////////////////////////////////////////////////////////////////////////// // `Elaboration` iterator /////////////////////////////////////////////////////////////////////////// /// "Elaboration" is the process of identifying all the predicates that /// are implied by a source predicate. Currently this basically means /// walking the "supertraits" and other similar assumptions. For /// example, if we know that `T : Ord`, the elaborator would deduce /// that `T : PartialOrd` holds as well. Similarly, if we have `trait /// Foo : 'static`, and we know that `T : Foo`, then we know that `T : /// 'static`. pub struct Elaborator<'cx, 'tcx:'cx> { tcx: &'cx ty::ctxt<'tcx>, stack: Vec>, visited: PredicateSet<'cx,'tcx>, } pub fn elaborate_trait_ref<'cx, 'tcx>( tcx: &'cx ty::ctxt<'tcx>, trait_ref: ty::PolyTraitRef<'tcx>) -> Elaborator<'cx, 'tcx> { elaborate_predicates(tcx, vec![trait_ref.to_predicate()]) } pub fn elaborate_trait_refs<'cx, 'tcx>( tcx: &'cx ty::ctxt<'tcx>, trait_refs: &[ty::PolyTraitRef<'tcx>]) -> Elaborator<'cx, 'tcx> { let predicates = trait_refs.iter() .map(|trait_ref| trait_ref.to_predicate()) .collect(); elaborate_predicates(tcx, predicates) } pub fn elaborate_predicates<'cx, 'tcx>( tcx: &'cx ty::ctxt<'tcx>, mut predicates: Vec>) -> Elaborator<'cx, 'tcx> { let mut visited = PredicateSet::new(tcx); predicates.retain(|pred| visited.insert(pred)); Elaborator { tcx: tcx, stack: predicates, visited: visited } } impl<'cx, 'tcx> Elaborator<'cx, 'tcx> { pub fn filter_to_traits(self) -> FilterToTraits> { FilterToTraits::new(self) } fn push(&mut self, predicate: &ty::Predicate<'tcx>) { match *predicate { ty::Predicate::Trait(ref data) => { // Predicates declared on the trait. let predicates = self.tcx.lookup_super_predicates(data.def_id()); let mut predicates: Vec<_> = predicates.predicates .iter() .map(|p| p.subst_supertrait(self.tcx, &data.to_poly_trait_ref())) .collect(); debug!("super_predicates: data={:?} predicates={:?}", data, predicates); // Only keep those bounds that we haven't already // seen. This is necessary to prevent infinite // recursion in some cases. One common case is when // people define `trait Sized: Sized { }` rather than `trait // Sized { }`. predicates.retain(|r| self.visited.insert(r)); self.stack.extend(predicates); } ty::Predicate::WellFormed(..) => { // Currently, we do not elaborate WF predicates, // although we easily could. } ty::Predicate::ObjectSafe(..) => { // Currently, we do not elaborate object-safe // predicates. } ty::Predicate::Equate(..) => { // Currently, we do not "elaborate" predicates like // `X == Y`, though conceivably we might. For example, // `&X == &Y` implies that `X == Y`. } ty::Predicate::Projection(..) => { // Nothing to elaborate in a projection predicate. } ty::Predicate::RegionOutlives(..) | ty::Predicate::TypeOutlives(..) => { // Currently, we do not "elaborate" predicates like // `'a : 'b` or `T : 'a`. We could conceivably do // more here. For example, // // &'a int : 'b // // implies that // // 'a : 'b // // and we could get even more if we took WF // constraints into account. For example, // // &'a &'b int : 'c // // implies that // // 'b : 'a // 'a : 'c } } } } impl<'cx, 'tcx> Iterator for Elaborator<'cx, 'tcx> { type Item = ty::Predicate<'tcx>; fn next(&mut self) -> Option> { // Extract next item from top-most stack frame, if any. let next_predicate = match self.stack.pop() { Some(predicate) => predicate, None => { // No more stack frames. Done. return None; } }; self.push(&next_predicate); return Some(next_predicate); } } /////////////////////////////////////////////////////////////////////////// // Supertrait iterator /////////////////////////////////////////////////////////////////////////// pub type Supertraits<'cx, 'tcx> = FilterToTraits>; pub fn supertraits<'cx, 'tcx>(tcx: &'cx ty::ctxt<'tcx>, trait_ref: ty::PolyTraitRef<'tcx>) -> Supertraits<'cx, 'tcx> { elaborate_trait_ref(tcx, trait_ref).filter_to_traits() } pub fn transitive_bounds<'cx, 'tcx>(tcx: &'cx ty::ctxt<'tcx>, bounds: &[ty::PolyTraitRef<'tcx>]) -> Supertraits<'cx, 'tcx> { elaborate_trait_refs(tcx, bounds).filter_to_traits() } /////////////////////////////////////////////////////////////////////////// // Iterator over def-ids of supertraits pub struct SupertraitDefIds<'cx, 'tcx:'cx> { tcx: &'cx ty::ctxt<'tcx>, stack: Vec, visited: FnvHashSet, } pub fn supertrait_def_ids<'cx, 'tcx>(tcx: &'cx ty::ctxt<'tcx>, trait_def_id: DefId) -> SupertraitDefIds<'cx, 'tcx> { SupertraitDefIds { tcx: tcx, stack: vec![trait_def_id], visited: Some(trait_def_id).into_iter().collect(), } } impl<'cx, 'tcx> Iterator for SupertraitDefIds<'cx, 'tcx> { type Item = DefId; fn next(&mut self) -> Option { let def_id = match self.stack.pop() { Some(def_id) => def_id, None => { return None; } }; let predicates = self.tcx.lookup_super_predicates(def_id); let visited = &mut self.visited; self.stack.extend( predicates.predicates .iter() .filter_map(|p| p.to_opt_poly_trait_ref()) .map(|t| t.def_id()) .filter(|&super_def_id| visited.insert(super_def_id))); Some(def_id) } } /////////////////////////////////////////////////////////////////////////// // Other /////////////////////////////////////////////////////////////////////////// /// A filter around an iterator of predicates that makes it yield up /// just trait references. pub struct FilterToTraits { base_iterator: I } impl FilterToTraits { fn new(base: I) -> FilterToTraits { FilterToTraits { base_iterator: base } } } impl<'tcx,I:Iterator>> Iterator for FilterToTraits { type Item = ty::PolyTraitRef<'tcx>; fn next(&mut self) -> Option> { loop { match self.base_iterator.next() { None => { return None; } Some(ty::Predicate::Trait(data)) => { return Some(data.to_poly_trait_ref()); } Some(_) => { } } } } } /////////////////////////////////////////////////////////////////////////// // Other /////////////////////////////////////////////////////////////////////////// // determine the `self` type, using fresh variables for all variables // declared on the impl declaration e.g., `impl for Box<[(A,B)]>` // would return ($0, $1) where $0 and $1 are freshly instantiated type // variables. pub fn fresh_type_vars_for_impl<'a, 'tcx>(infcx: &InferCtxt<'a, 'tcx>, span: Span, impl_def_id: DefId) -> Substs<'tcx> { let tcx = infcx.tcx; let impl_generics = tcx.lookup_item_type(impl_def_id).generics; infcx.fresh_substs_for_generics(span, &impl_generics) } /// See `super::obligations_for_generics` pub fn predicates_for_generics<'tcx>(cause: ObligationCause<'tcx>, recursion_depth: usize, generic_bounds: &ty::InstantiatedPredicates<'tcx>) -> Vec> { debug!("predicates_for_generics(generic_bounds={:?})", generic_bounds); generic_bounds.predicates.iter().map(|predicate| { Obligation { cause: cause.clone(), recursion_depth: recursion_depth, predicate: predicate.clone() } }).collect() } pub fn trait_ref_for_builtin_bound<'tcx>( tcx: &ty::ctxt<'tcx>, builtin_bound: ty::BuiltinBound, param_ty: Ty<'tcx>) -> Result, ErrorReported> { match tcx.lang_items.from_builtin_kind(builtin_bound) { Ok(def_id) => { Ok(ty::TraitRef { def_id: def_id, substs: tcx.mk_substs(Substs::empty().with_self_ty(param_ty)) }) } Err(e) => { tcx.sess.err(&e); Err(ErrorReported) } } } pub fn predicate_for_trait_ref<'tcx>( cause: ObligationCause<'tcx>, trait_ref: ty::TraitRef<'tcx>, recursion_depth: usize) -> PredicateObligation<'tcx> { Obligation { cause: cause, recursion_depth: recursion_depth, predicate: trait_ref.to_predicate(), } } pub fn predicate_for_trait_def<'tcx>( tcx: &ty::ctxt<'tcx>, cause: ObligationCause<'tcx>, trait_def_id: DefId, recursion_depth: usize, param_ty: Ty<'tcx>, ty_params: Vec>) -> PredicateObligation<'tcx> { let trait_ref = ty::TraitRef { def_id: trait_def_id, substs: tcx.mk_substs(Substs::new_trait(ty_params, vec![], param_ty)) }; predicate_for_trait_ref(cause, trait_ref, recursion_depth) } pub fn predicate_for_builtin_bound<'tcx>( tcx: &ty::ctxt<'tcx>, cause: ObligationCause<'tcx>, builtin_bound: ty::BuiltinBound, recursion_depth: usize, param_ty: Ty<'tcx>) -> Result, ErrorReported> { let trait_ref = try!(trait_ref_for_builtin_bound(tcx, builtin_bound, param_ty)); Ok(predicate_for_trait_ref(cause, trait_ref, recursion_depth)) } /// Cast a trait reference into a reference to one of its super /// traits; returns `None` if `target_trait_def_id` is not a /// supertrait. pub fn upcast<'tcx>(tcx: &ty::ctxt<'tcx>, source_trait_ref: ty::PolyTraitRef<'tcx>, target_trait_def_id: DefId) -> Vec> { if source_trait_ref.def_id() == target_trait_def_id { return vec![source_trait_ref]; // shorcut the most common case } supertraits(tcx, source_trait_ref) .filter(|r| r.def_id() == target_trait_def_id) .collect() } /// Given a trait `trait_ref`, returns the number of vtable entries /// that come from `trait_ref`, excluding its supertraits. Used in /// computing the vtable base for an upcast trait of a trait object. pub fn count_own_vtable_entries<'tcx>(tcx: &ty::ctxt<'tcx>, trait_ref: ty::PolyTraitRef<'tcx>) -> usize { let mut entries = 0; // Count number of methods and add them to the total offset. // Skip over associated types and constants. for trait_item in &tcx.trait_items(trait_ref.def_id())[..] { if let ty::MethodTraitItem(_) = *trait_item { entries += 1; } } entries } /// Given an upcast trait object described by `object`, returns the /// index of the method `method_def_id` (which should be part of /// `object.upcast_trait_ref`) within the vtable for `object`. pub fn get_vtable_index_of_object_method<'tcx>(tcx: &ty::ctxt<'tcx>, object: &super::VtableObjectData<'tcx>, method_def_id: DefId) -> usize { // Count number of methods preceding the one we are selecting and // add them to the total offset. // Skip over associated types and constants. let mut entries = object.vtable_base; for trait_item in &tcx.trait_items(object.upcast_trait_ref.def_id())[..] { if trait_item.def_id() == method_def_id { // The item with the ID we were given really ought to be a method. assert!(match *trait_item { ty::MethodTraitItem(_) => true, _ => false }); return entries; } if let ty::MethodTraitItem(_) = *trait_item { entries += 1; } } tcx.sess.bug(&format!("get_vtable_index_of_object_method: {:?} was not found", method_def_id)); } pub enum TupleArgumentsFlag { Yes, No } pub fn closure_trait_ref_and_return_type<'tcx>( tcx: &ty::ctxt<'tcx>, fn_trait_def_id: DefId, self_ty: Ty<'tcx>, sig: &ty::PolyFnSig<'tcx>, tuple_arguments: TupleArgumentsFlag) -> ty::Binder<(ty::TraitRef<'tcx>, Ty<'tcx>)> { let arguments_tuple = match tuple_arguments { TupleArgumentsFlag::No => sig.0.inputs[0], TupleArgumentsFlag::Yes => tcx.mk_tup(sig.0.inputs.to_vec()), }; let trait_substs = Substs::new_trait(vec![arguments_tuple], vec![], self_ty); let trait_ref = ty::TraitRef { def_id: fn_trait_def_id, substs: tcx.mk_substs(trait_substs), }; ty::Binder((trait_ref, sig.0.output.unwrap_or(tcx.mk_nil()))) }