// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. // // ignore-lexer-test FIXME #15883 //! Buffering wrappers for I/O traits use cmp; use fmt; use old_io::{Reader, Writer, Stream, Buffer, DEFAULT_BUF_SIZE, IoResult}; use iter::{IteratorExt, ExactSizeIterator, repeat}; use ops::Drop; use option::Option; use option::Option::{Some, None}; use result::Result::Ok; use slice::{SliceExt}; use slice; use vec::Vec; /// Wraps a Reader and buffers input from it /// /// It can be excessively inefficient to work directly with a `Reader`. For /// example, every call to `read` on `TcpStream` results in a system call. A /// `BufferedReader` performs large, infrequent reads on the underlying /// `Reader` and maintains an in-memory buffer of the results. /// /// # Example /// /// ```rust /// use std::old_io::{BufferedReader, File}; /// /// let file = File::open(&Path::new("message.txt")); /// let mut reader = BufferedReader::new(file); /// /// let mut buf = [0; 100]; /// match reader.read(&mut buf) { /// Ok(nread) => println!("Read {} bytes", nread), /// Err(e) => println!("error reading: {}", e) /// } /// ``` pub struct BufferedReader { inner: R, buf: Vec, pos: uint, cap: uint, } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Debug for BufferedReader where R: fmt::Debug { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { write!(fmt, "BufferedReader {{ reader: {:?}, buffer: {}/{} }}", self.inner, self.cap - self.pos, self.buf.len()) } } impl BufferedReader { /// Creates a new `BufferedReader` with the specified buffer capacity pub fn with_capacity(cap: uint, inner: R) -> BufferedReader { BufferedReader { inner: inner, // We can't use the same trick here as we do for BufferedWriter, // since this memory is visible to the inner Reader. buf: repeat(0).take(cap).collect(), pos: 0, cap: 0, } } /// Creates a new `BufferedReader` with a default buffer capacity pub fn new(inner: R) -> BufferedReader { BufferedReader::with_capacity(DEFAULT_BUF_SIZE, inner) } /// Gets a reference to the underlying reader. pub fn get_ref<'a>(&self) -> &R { &self.inner } /// Gets a mutable reference to the underlying reader. /// /// # Warning /// /// It is inadvisable to directly read from the underlying reader. pub fn get_mut(&mut self) -> &mut R { &mut self.inner } /// Unwraps this `BufferedReader`, returning the underlying reader. /// /// Note that any leftover data in the internal buffer is lost. pub fn into_inner(self) -> R { self.inner } } impl Buffer for BufferedReader { fn fill_buf<'a>(&'a mut self) -> IoResult<&'a [u8]> { if self.pos == self.cap { self.cap = try!(self.inner.read(&mut self.buf)); self.pos = 0; } Ok(&self.buf[self.pos..self.cap]) } fn consume(&mut self, amt: uint) { self.pos += amt; assert!(self.pos <= self.cap); } } impl Reader for BufferedReader { fn read(&mut self, buf: &mut [u8]) -> IoResult { if self.pos == self.cap && buf.len() >= self.buf.len() { return self.inner.read(buf); } let nread = { let available = try!(self.fill_buf()); let nread = cmp::min(available.len(), buf.len()); slice::bytes::copy_memory(buf, &available[..nread]); nread }; self.pos += nread; Ok(nread) } } /// Wraps a Writer and buffers output to it /// /// It can be excessively inefficient to work directly with a `Writer`. For /// example, every call to `write` on `TcpStream` results in a system call. A /// `BufferedWriter` keeps an in memory buffer of data and writes it to the /// underlying `Writer` in large, infrequent batches. /// /// This writer will be flushed when it is dropped. /// /// # Example /// /// ```rust /// use std::old_io::{BufferedWriter, File}; /// /// let file = File::create(&Path::new("message.txt")).unwrap(); /// let mut writer = BufferedWriter::new(file); /// /// writer.write_str("hello, world").unwrap(); /// writer.flush().unwrap(); /// ``` pub struct BufferedWriter { inner: Option, buf: Vec, pos: uint } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Debug for BufferedWriter where W: fmt::Debug { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { write!(fmt, "BufferedWriter {{ writer: {:?}, buffer: {}/{} }}", self.inner.as_ref().unwrap(), self.pos, self.buf.len()) } } impl BufferedWriter { /// Creates a new `BufferedWriter` with the specified buffer capacity pub fn with_capacity(cap: uint, inner: W) -> BufferedWriter { // It's *much* faster to create an uninitialized buffer than it is to // fill everything in with 0. This buffer is entirely an implementation // detail and is never exposed, so we're safe to not initialize // everything up-front. This allows creation of BufferedWriter instances // to be very cheap (large mallocs are not nearly as expensive as large // callocs). let mut buf = Vec::with_capacity(cap); unsafe { buf.set_len(cap); } BufferedWriter { inner: Some(inner), buf: buf, pos: 0 } } /// Creates a new `BufferedWriter` with a default buffer capacity pub fn new(inner: W) -> BufferedWriter { BufferedWriter::with_capacity(DEFAULT_BUF_SIZE, inner) } fn flush_buf(&mut self) -> IoResult<()> { if self.pos != 0 { let ret = self.inner.as_mut().unwrap().write_all(&self.buf[..self.pos]); self.pos = 0; ret } else { Ok(()) } } /// Gets a reference to the underlying writer. pub fn get_ref(&self) -> &W { self.inner.as_ref().unwrap() } /// Gets a mutable reference to the underlying write. /// /// # Warning /// /// It is inadvisable to directly read from the underlying writer. pub fn get_mut(&mut self) -> &mut W { self.inner.as_mut().unwrap() } /// Unwraps this `BufferedWriter`, returning the underlying writer. /// /// The buffer is flushed before returning the writer. pub fn into_inner(mut self) -> W { // FIXME(#12628): is panicking the right thing to do if flushing panicks? self.flush_buf().unwrap(); self.inner.take().unwrap() } } impl Writer for BufferedWriter { fn write_all(&mut self, buf: &[u8]) -> IoResult<()> { if self.pos + buf.len() > self.buf.len() { try!(self.flush_buf()); } if buf.len() > self.buf.len() { self.inner.as_mut().unwrap().write_all(buf) } else { let dst = &mut self.buf[self.pos..]; slice::bytes::copy_memory(dst, buf); self.pos += buf.len(); Ok(()) } } fn flush(&mut self) -> IoResult<()> { self.flush_buf().and_then(|()| self.inner.as_mut().unwrap().flush()) } } #[unsafe_destructor] impl Drop for BufferedWriter { fn drop(&mut self) { if self.inner.is_some() { // dtors should not panic, so we ignore a panicked flush let _ = self.flush_buf(); } } } /// Wraps a Writer and buffers output to it, flushing whenever a newline (`0x0a`, /// `'\n'`) is detected. /// /// This writer will be flushed when it is dropped. pub struct LineBufferedWriter { inner: BufferedWriter, } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Debug for LineBufferedWriter where W: fmt::Debug { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { write!(fmt, "LineBufferedWriter {{ writer: {:?}, buffer: {}/{} }}", self.inner.inner, self.inner.pos, self.inner.buf.len()) } } impl LineBufferedWriter { /// Creates a new `LineBufferedWriter` pub fn new(inner: W) -> LineBufferedWriter { // Lines typically aren't that long, don't use a giant buffer LineBufferedWriter { inner: BufferedWriter::with_capacity(1024, inner) } } /// Gets a reference to the underlying writer. /// /// This type does not expose the ability to get a mutable reference to the /// underlying reader because that could possibly corrupt the buffer. pub fn get_ref<'a>(&'a self) -> &'a W { self.inner.get_ref() } /// Unwraps this `LineBufferedWriter`, returning the underlying writer. /// /// The internal buffer is flushed before returning the writer. pub fn into_inner(self) -> W { self.inner.into_inner() } } impl Writer for LineBufferedWriter { fn write_all(&mut self, buf: &[u8]) -> IoResult<()> { match buf.iter().rposition(|&b| b == b'\n') { Some(i) => { try!(self.inner.write_all(&buf[..i + 1])); try!(self.inner.flush()); try!(self.inner.write_all(&buf[i + 1..])); Ok(()) } None => self.inner.write_all(buf), } } fn flush(&mut self) -> IoResult<()> { self.inner.flush() } } struct InternalBufferedWriter(BufferedWriter); impl InternalBufferedWriter { fn get_mut<'a>(&'a mut self) -> &'a mut BufferedWriter { let InternalBufferedWriter(ref mut w) = *self; return w; } } impl Reader for InternalBufferedWriter { fn read(&mut self, buf: &mut [u8]) -> IoResult { self.get_mut().inner.as_mut().unwrap().read(buf) } } /// Wraps a Stream and buffers input and output to and from it. /// /// It can be excessively inefficient to work directly with a `Stream`. For /// example, every call to `read` or `write` on `TcpStream` results in a system /// call. A `BufferedStream` keeps in memory buffers of data, making large, /// infrequent calls to `read` and `write` on the underlying `Stream`. /// /// The output half will be flushed when this stream is dropped. /// /// # Example /// /// ```rust /// # #![allow(unused_must_use)] /// use std::old_io::{BufferedStream, File}; /// /// let file = File::open(&Path::new("message.txt")); /// let mut stream = BufferedStream::new(file); /// /// stream.write_all("hello, world".as_bytes()); /// stream.flush(); /// /// let mut buf = [0; 100]; /// match stream.read(&mut buf) { /// Ok(nread) => println!("Read {} bytes", nread), /// Err(e) => println!("error reading: {}", e) /// } /// ``` pub struct BufferedStream { inner: BufferedReader> } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Debug for BufferedStream where S: fmt::Debug { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { let reader = &self.inner; let writer = &self.inner.inner.0; write!(fmt, "BufferedStream {{ stream: {:?}, write_buffer: {}/{}, read_buffer: {}/{} }}", writer.inner, writer.pos, writer.buf.len(), reader.cap - reader.pos, reader.buf.len()) } } impl BufferedStream { /// Creates a new buffered stream with explicitly listed capacities for the /// reader/writer buffer. pub fn with_capacities(reader_cap: uint, writer_cap: uint, inner: S) -> BufferedStream { let writer = BufferedWriter::with_capacity(writer_cap, inner); let internal_writer = InternalBufferedWriter(writer); let reader = BufferedReader::with_capacity(reader_cap, internal_writer); BufferedStream { inner: reader } } /// Creates a new buffered stream with the default reader/writer buffer /// capacities. pub fn new(inner: S) -> BufferedStream { BufferedStream::with_capacities(DEFAULT_BUF_SIZE, DEFAULT_BUF_SIZE, inner) } /// Gets a reference to the underlying stream. pub fn get_ref(&self) -> &S { let InternalBufferedWriter(ref w) = self.inner.inner; w.get_ref() } /// Gets a mutable reference to the underlying stream. /// /// # Warning /// /// It is inadvisable to read directly from or write directly to the /// underlying stream. pub fn get_mut(&mut self) -> &mut S { let InternalBufferedWriter(ref mut w) = self.inner.inner; w.get_mut() } /// Unwraps this `BufferedStream`, returning the underlying stream. /// /// The internal buffer is flushed before returning the stream. Any leftover /// data in the read buffer is lost. pub fn into_inner(self) -> S { let InternalBufferedWriter(w) = self.inner.inner; w.into_inner() } } impl Buffer for BufferedStream { fn fill_buf<'a>(&'a mut self) -> IoResult<&'a [u8]> { self.inner.fill_buf() } fn consume(&mut self, amt: uint) { self.inner.consume(amt) } } impl Reader for BufferedStream { fn read(&mut self, buf: &mut [u8]) -> IoResult { self.inner.read(buf) } } impl Writer for BufferedStream { fn write_all(&mut self, buf: &[u8]) -> IoResult<()> { self.inner.inner.get_mut().write_all(buf) } fn flush(&mut self) -> IoResult<()> { self.inner.inner.get_mut().flush() } } #[cfg(test)] mod test { extern crate test; use old_io; use prelude::v1::*; use super::*; use super::super::{IoResult, EndOfFile}; use super::super::mem::MemReader; use self::test::Bencher; /// A type, free to create, primarily intended for benchmarking creation of /// wrappers that, just for construction, don't need a Reader/Writer that /// does anything useful. Is equivalent to `/dev/null` in semantics. #[derive(Clone,PartialEq,PartialOrd)] pub struct NullStream; impl Reader for NullStream { fn read(&mut self, _: &mut [u8]) -> old_io::IoResult { Err(old_io::standard_error(old_io::EndOfFile)) } } impl Writer for NullStream { fn write_all(&mut self, _: &[u8]) -> old_io::IoResult<()> { Ok(()) } } /// A dummy reader intended at testing short-reads propagation. pub struct ShortReader { lengths: Vec, } impl Reader for ShortReader { fn read(&mut self, _: &mut [u8]) -> old_io::IoResult { if self.lengths.is_empty() { Err(old_io::standard_error(old_io::EndOfFile)) } else { Ok(self.lengths.remove(0)) } } } #[test] fn test_buffered_reader() { let inner = MemReader::new(vec!(5, 6, 7, 0, 1, 2, 3, 4)); let mut reader = BufferedReader::with_capacity(2, inner); let mut buf = [0, 0, 0]; let nread = reader.read(&mut buf); assert_eq!(Ok(3), nread); let b: &[_] = &[5, 6, 7]; assert_eq!(buf, b); let mut buf = [0, 0]; let nread = reader.read(&mut buf); assert_eq!(Ok(2), nread); let b: &[_] = &[0, 1]; assert_eq!(buf, b); let mut buf = [0]; let nread = reader.read(&mut buf); assert_eq!(Ok(1), nread); let b: &[_] = &[2]; assert_eq!(buf, b); let mut buf = [0, 0, 0]; let nread = reader.read(&mut buf); assert_eq!(Ok(1), nread); let b: &[_] = &[3, 0, 0]; assert_eq!(buf, b); let nread = reader.read(&mut buf); assert_eq!(Ok(1), nread); let b: &[_] = &[4, 0, 0]; assert_eq!(buf, b); assert!(reader.read(&mut buf).is_err()); } #[test] fn test_buffered_writer() { let inner = Vec::new(); let mut writer = BufferedWriter::with_capacity(2, inner); writer.write_all(&[0, 1]).unwrap(); let b: &[_] = &[]; assert_eq!(&writer.get_ref()[], b); writer.write_all(&[2]).unwrap(); let b: &[_] = &[0, 1]; assert_eq!(&writer.get_ref()[], b); writer.write_all(&[3]).unwrap(); assert_eq!(&writer.get_ref()[], b); writer.flush().unwrap(); let a: &[_] = &[0, 1, 2, 3]; assert_eq!(a, &writer.get_ref()[]); writer.write_all(&[4]).unwrap(); writer.write_all(&[5]).unwrap(); assert_eq!(a, &writer.get_ref()[]); writer.write_all(&[6]).unwrap(); let a: &[_] = &[0, 1, 2, 3, 4, 5]; assert_eq!(a, &writer.get_ref()[]); writer.write_all(&[7, 8]).unwrap(); let a: &[_] = &[0, 1, 2, 3, 4, 5, 6]; assert_eq!(a, &writer.get_ref()[]); writer.write_all(&[9, 10, 11]).unwrap(); let a: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]; assert_eq!(a, &writer.get_ref()[]); writer.flush().unwrap(); assert_eq!(a, &writer.get_ref()[]); } #[test] fn test_buffered_writer_inner_flushes() { let mut w = BufferedWriter::with_capacity(3, Vec::new()); w.write_all(&[0, 1]).unwrap(); let a: &[_] = &[]; assert_eq!(a, &w.get_ref()[]); let w = w.into_inner(); let a: &[_] = &[0, 1]; assert_eq!(a, &w[..]); } // This is just here to make sure that we don't infinite loop in the // newtype struct autoderef weirdness #[test] fn test_buffered_stream() { struct S; impl old_io::Writer for S { fn write_all(&mut self, _: &[u8]) -> old_io::IoResult<()> { Ok(()) } } impl old_io::Reader for S { fn read(&mut self, _: &mut [u8]) -> old_io::IoResult { Err(old_io::standard_error(old_io::EndOfFile)) } } let mut stream = BufferedStream::new(S); let mut buf = []; assert!(stream.read(&mut buf).is_err()); stream.write_all(&buf).unwrap(); stream.flush().unwrap(); } #[test] fn test_read_until() { let inner = MemReader::new(vec!(0, 1, 2, 1, 0)); let mut reader = BufferedReader::with_capacity(2, inner); assert_eq!(reader.read_until(0), Ok(vec!(0))); assert_eq!(reader.read_until(2), Ok(vec!(1, 2))); assert_eq!(reader.read_until(1), Ok(vec!(1))); assert_eq!(reader.read_until(8), Ok(vec!(0))); assert!(reader.read_until(9).is_err()); } #[test] fn test_line_buffer() { let mut writer = LineBufferedWriter::new(Vec::new()); writer.write_all(&[0]).unwrap(); let b: &[_] = &[]; assert_eq!(&writer.get_ref()[], b); writer.write_all(&[1]).unwrap(); assert_eq!(&writer.get_ref()[], b); writer.flush().unwrap(); let b: &[_] = &[0, 1]; assert_eq!(&writer.get_ref()[], b); writer.write_all(&[0, b'\n', 1, b'\n', 2]).unwrap(); let b: &[_] = &[0, 1, 0, b'\n', 1, b'\n']; assert_eq!(&writer.get_ref()[], b); writer.flush().unwrap(); let b: &[_] = &[0, 1, 0, b'\n', 1, b'\n', 2]; assert_eq!(&writer.get_ref()[], b); writer.write_all(&[3, b'\n']).unwrap(); let b: &[_] = &[0, 1, 0, b'\n', 1, b'\n', 2, 3, b'\n']; assert_eq!(&writer.get_ref()[], b); } #[test] fn test_read_line() { let in_buf = MemReader::new(b"a\nb\nc".to_vec()); let mut reader = BufferedReader::with_capacity(2, in_buf); assert_eq!(reader.read_line(), Ok("a\n".to_string())); assert_eq!(reader.read_line(), Ok("b\n".to_string())); assert_eq!(reader.read_line(), Ok("c".to_string())); assert!(reader.read_line().is_err()); } #[test] fn test_lines() { let in_buf = MemReader::new(b"a\nb\nc".to_vec()); let mut reader = BufferedReader::with_capacity(2, in_buf); let mut it = reader.lines(); assert_eq!(it.next(), Some(Ok("a\n".to_string()))); assert_eq!(it.next(), Some(Ok("b\n".to_string()))); assert_eq!(it.next(), Some(Ok("c".to_string()))); assert_eq!(it.next(), None); } #[test] fn test_short_reads() { let inner = ShortReader{lengths: vec![0, 1, 2, 0, 1, 0]}; let mut reader = BufferedReader::new(inner); let mut buf = [0, 0]; assert_eq!(reader.read(&mut buf), Ok(0)); assert_eq!(reader.read(&mut buf), Ok(1)); assert_eq!(reader.read(&mut buf), Ok(2)); assert_eq!(reader.read(&mut buf), Ok(0)); assert_eq!(reader.read(&mut buf), Ok(1)); assert_eq!(reader.read(&mut buf), Ok(0)); assert!(reader.read(&mut buf).is_err()); } #[test] fn read_char_buffered() { let buf = [195u8, 159u8]; let mut reader = BufferedReader::with_capacity(1, &buf[..]); assert_eq!(reader.read_char(), Ok('ß')); } #[test] fn test_chars() { let buf = [195u8, 159u8, b'a']; let mut reader = BufferedReader::with_capacity(1, &buf[..]); let mut it = reader.chars(); assert_eq!(it.next(), Some(Ok('ß'))); assert_eq!(it.next(), Some(Ok('a'))); assert_eq!(it.next(), None); } #[test] #[should_fail] fn dont_panic_in_drop_on_panicked_flush() { struct FailFlushWriter; impl Writer for FailFlushWriter { fn write_all(&mut self, _buf: &[u8]) -> IoResult<()> { Ok(()) } fn flush(&mut self) -> IoResult<()> { Err(old_io::standard_error(EndOfFile)) } } let writer = FailFlushWriter; let _writer = BufferedWriter::new(writer); // If writer panics *again* due to the flush error then the process will abort. panic!(); } #[bench] fn bench_buffered_reader(b: &mut Bencher) { b.iter(|| { BufferedReader::new(NullStream) }); } #[bench] fn bench_buffered_writer(b: &mut Bencher) { b.iter(|| { BufferedWriter::new(NullStream) }); } #[bench] fn bench_buffered_stream(b: &mut Bencher) { b.iter(|| { BufferedStream::new(NullStream); }); } }