//! # Rust Compiler Self-Profiling //! //! This module implements the basic framework for the compiler's self- //! profiling support. It provides the `SelfProfiler` type which enables //! recording "events". An event is something that starts and ends at a given //! point in time and has an ID and a kind attached to it. This allows for //! tracing the compiler's activity. //! //! Internally this module uses the custom tailored [measureme][mm] crate for //! efficiently recording events to disk in a compact format that can be //! post-processed and analyzed by the suite of tools in the `measureme` //! project. The highest priority for the tracing framework is on incurring as //! little overhead as possible. //! //! //! ## Event Overview //! //! Events have a few properties: //! //! - The `event_kind` designates the broad category of an event (e.g. does it //! correspond to the execution of a query provider or to loading something //! from the incr. comp. on-disk cache, etc). //! - The `event_id` designates the query invocation or function call it //! corresponds to, possibly including the query key or function arguments. //! - Each event stores the ID of the thread it was recorded on. //! - The timestamp stores beginning and end of the event, or the single point //! in time it occurred at for "instant" events. //! //! //! ## Event Filtering //! //! Event generation can be filtered by event kind. Recording all possible //! events generates a lot of data, much of which is not needed for most kinds //! of analysis. So, in order to keep overhead as low as possible for a given //! use case, the `SelfProfiler` will only record the kinds of events that //! pass the filter specified as a command line argument to the compiler. //! //! //! ## `event_id` Assignment //! //! As far as `measureme` is concerned, `event_id`s are just strings. However, //! it would incur too much overhead to generate and persist each `event_id` //! string at the point where the event is recorded. In order to make this more //! efficient `measureme` has two features: //! //! - Strings can share their content, so that re-occurring parts don't have to //! be copied over and over again. One allocates a string in `measureme` and //! gets back a `StringId`. This `StringId` is then used to refer to that //! string. `measureme` strings are actually DAGs of string components so that //! arbitrary sharing of substrings can be done efficiently. This is useful //! because `event_id`s contain lots of redundant text like query names or //! def-path components. //! //! - `StringId`s can be "virtual" which means that the client picks a numeric //! ID according to some application-specific scheme and can later make that //! ID be mapped to an actual string. This is used to cheaply generate //! `event_id`s while the events actually occur, causing little timing //! distortion, and then later map those `StringId`s, in bulk, to actual //! `event_id` strings. This way the largest part of the tracing overhead is //! localized to one contiguous chunk of time. //! //! How are these `event_id`s generated in the compiler? For things that occur //! infrequently (e.g. "generic activities"), we just allocate the string the //! first time it is used and then keep the `StringId` in a hash table. This //! is implemented in `SelfProfiler::get_or_alloc_cached_string()`. //! //! For queries it gets more interesting: First we need a unique numeric ID for //! each query invocation (the `QueryInvocationId`). This ID is used as the //! virtual `StringId` we use as `event_id` for a given event. This ID has to //! be available both when the query is executed and later, together with the //! query key, when we allocate the actual `event_id` strings in bulk. //! //! We could make the compiler generate and keep track of such an ID for each //! query invocation but luckily we already have something that fits all the //! the requirements: the query's `DepNodeIndex`. So we use the numeric value //! of the `DepNodeIndex` as `event_id` when recording the event and then, //! just before the query context is dropped, we walk the entire query cache //! (which stores the `DepNodeIndex` along with the query key for each //! invocation) and allocate the corresponding strings together with a mapping //! for `DepNodeIndex as StringId`. //! //! [mm]: https://github.com/rust-lang/measureme/ use crate::fx::FxHashMap; use std::error::Error; use std::fs; use std::path::Path; use std::process; use std::sync::Arc; use std::thread::ThreadId; use std::time::{Duration, Instant}; use std::u32; use measureme::{EventId, EventIdBuilder, SerializableString, StringId}; use parking_lot::RwLock; /// MmapSerializatioSink is faster on macOS and Linux /// but FileSerializationSink is faster on Windows #[cfg(not(windows))] type SerializationSink = measureme::MmapSerializationSink; #[cfg(windows)] type SerializationSink = measureme::FileSerializationSink; type Profiler = measureme::Profiler; #[derive(Clone, Copy, Debug, PartialEq, Eq, Ord, PartialOrd)] pub enum ProfileCategory { Parsing, Expansion, TypeChecking, BorrowChecking, Codegen, Linking, Other, } bitflags::bitflags! { struct EventFilter: u32 { const GENERIC_ACTIVITIES = 1 << 0; const QUERY_PROVIDERS = 1 << 1; const QUERY_CACHE_HITS = 1 << 2; const QUERY_BLOCKED = 1 << 3; const INCR_CACHE_LOADS = 1 << 4; const QUERY_KEYS = 1 << 5; const DEFAULT = Self::GENERIC_ACTIVITIES.bits | Self::QUERY_PROVIDERS.bits | Self::QUERY_BLOCKED.bits | Self::INCR_CACHE_LOADS.bits; // empty() and none() aren't const-fns unfortunately const NONE = 0; const ALL = !Self::NONE.bits; } } const EVENT_FILTERS_BY_NAME: &[(&str, EventFilter)] = &[ ("none", EventFilter::NONE), ("all", EventFilter::ALL), ("generic-activity", EventFilter::GENERIC_ACTIVITIES), ("query-provider", EventFilter::QUERY_PROVIDERS), ("query-cache-hit", EventFilter::QUERY_CACHE_HITS), ("query-blocked", EventFilter::QUERY_BLOCKED), ("incr-cache-load", EventFilter::INCR_CACHE_LOADS), ("query-keys", EventFilter::QUERY_KEYS), ]; fn thread_id_to_u32(tid: ThreadId) -> u32 { unsafe { std::mem::transmute::(tid) as u32 } } /// Something that uniquely identifies a query invocation. pub struct QueryInvocationId(pub u32); /// A reference to the SelfProfiler. It can be cloned and sent across thread /// boundaries at will. #[derive(Clone)] pub struct SelfProfilerRef { // This field is `None` if self-profiling is disabled for the current // compilation session. profiler: Option>, // We store the filter mask directly in the reference because that doesn't // cost anything and allows for filtering with checking if the profiler is // actually enabled. event_filter_mask: EventFilter, // Print verbose generic activities to stdout print_verbose_generic_activities: bool, // Print extra verbose generic activities to stdout print_extra_verbose_generic_activities: bool, } impl SelfProfilerRef { pub fn new( profiler: Option>, print_verbose_generic_activities: bool, print_extra_verbose_generic_activities: bool, ) -> SelfProfilerRef { // If there is no SelfProfiler then the filter mask is set to NONE, // ensuring that nothing ever tries to actually access it. let event_filter_mask = profiler.as_ref().map(|p| p.event_filter_mask).unwrap_or(EventFilter::NONE); SelfProfilerRef { profiler, event_filter_mask, print_verbose_generic_activities, print_extra_verbose_generic_activities, } } // This shim makes sure that calls only get executed if the filter mask // lets them pass. It also contains some trickery to make sure that // code is optimized for non-profiling compilation sessions, i.e. anything // past the filter check is never inlined so it doesn't clutter the fast // path. #[inline(always)] fn exec(&self, event_filter: EventFilter, f: F) -> TimingGuard<'_> where F: for<'a> FnOnce(&'a SelfProfiler) -> TimingGuard<'a>, { #[inline(never)] fn cold_call(profiler_ref: &SelfProfilerRef, f: F) -> TimingGuard<'_> where F: for<'a> FnOnce(&'a SelfProfiler) -> TimingGuard<'a>, { let profiler = profiler_ref.profiler.as_ref().unwrap(); f(&**profiler) } if unlikely!(self.event_filter_mask.contains(event_filter)) { cold_call(self, f) } else { TimingGuard::none() } } /// Start profiling a verbose generic activity. Profiling continues until the /// VerboseTimingGuard returned from this call is dropped. In addition to recording /// a measureme event, "verbose" generic activities also print a timing entry to /// stdout if the compiler is invoked with -Ztime or -Ztime-passes. #[inline(always)] pub fn verbose_generic_activity<'a>(&'a self, event_id: &'a str) -> VerboseTimingGuard<'a> { VerboseTimingGuard::start( event_id, self.print_verbose_generic_activities, self.generic_activity(event_id), ) } /// Start profiling a extra verbose generic activity. Profiling continues until the /// VerboseTimingGuard returned from this call is dropped. In addition to recording /// a measureme event, "extra verbose" generic activities also print a timing entry to /// stdout if the compiler is invoked with -Ztime-passes. #[inline(always)] pub fn extra_verbose_generic_activity<'a>( &'a self, event_id: &'a str, ) -> VerboseTimingGuard<'a> { // FIXME: This does not yet emit a measureme event // because callers encode arguments into `event_id`. VerboseTimingGuard::start( event_id, self.print_extra_verbose_generic_activities, TimingGuard::none(), ) } /// Start profiling a generic activity. Profiling continues until the /// TimingGuard returned from this call is dropped. #[inline(always)] pub fn generic_activity(&self, event_id: &'static str) -> TimingGuard<'_> { self.exec(EventFilter::GENERIC_ACTIVITIES, |profiler| { let event_id = profiler.get_or_alloc_cached_string(event_id); let event_id = EventId::from_label(event_id); TimingGuard::start( profiler, profiler.generic_activity_event_kind, event_id ) }) } /// Start profiling a query provider. Profiling continues until the /// TimingGuard returned from this call is dropped. #[inline(always)] pub fn query_provider(&self) -> TimingGuard<'_> { self.exec(EventFilter::QUERY_PROVIDERS, |profiler| { TimingGuard::start(profiler, profiler.query_event_kind, EventId::INVALID) }) } /// Record a query in-memory cache hit. #[inline(always)] pub fn query_cache_hit(&self, query_invocation_id: QueryInvocationId) { self.instant_query_event( |profiler| profiler.query_cache_hit_event_kind, query_invocation_id, EventFilter::QUERY_CACHE_HITS, ); } /// Start profiling a query being blocked on a concurrent execution. /// Profiling continues until the TimingGuard returned from this call is /// dropped. #[inline(always)] pub fn query_blocked(&self) -> TimingGuard<'_> { self.exec(EventFilter::QUERY_BLOCKED, |profiler| { TimingGuard::start( profiler, profiler.query_blocked_event_kind, EventId::INVALID, ) }) } /// Start profiling how long it takes to load a query result from the /// incremental compilation on-disk cache. Profiling continues until the /// TimingGuard returned from this call is dropped. #[inline(always)] pub fn incr_cache_loading(&self) -> TimingGuard<'_> { self.exec(EventFilter::INCR_CACHE_LOADS, |profiler| { TimingGuard::start( profiler, profiler.incremental_load_result_event_kind, EventId::INVALID, ) }) } #[inline(always)] fn instant_query_event( &self, event_kind: fn(&SelfProfiler) -> StringId, query_invocation_id: QueryInvocationId, event_filter: EventFilter, ) { drop(self.exec(event_filter, |profiler| { let event_id = StringId::new_virtual(query_invocation_id.0); let thread_id = thread_id_to_u32(std::thread::current().id()); profiler.profiler.record_instant_event( event_kind(profiler), EventId::from_virtual(event_id), thread_id, ); TimingGuard::none() })); } pub fn with_profiler(&self, f: impl FnOnce(&SelfProfiler)) { if let Some(profiler) = &self.profiler { f(&profiler) } } #[inline] pub fn enabled(&self) -> bool { self.profiler.is_some() } } pub struct SelfProfiler { profiler: Profiler, event_filter_mask: EventFilter, string_cache: RwLock>, query_event_kind: StringId, generic_activity_event_kind: StringId, incremental_load_result_event_kind: StringId, query_blocked_event_kind: StringId, query_cache_hit_event_kind: StringId, } impl SelfProfiler { pub fn new( output_directory: &Path, crate_name: Option<&str>, event_filters: &Option>, ) -> Result> { fs::create_dir_all(output_directory)?; let crate_name = crate_name.unwrap_or("unknown-crate"); let filename = format!("{}-{}.rustc_profile", crate_name, process::id()); let path = output_directory.join(&filename); let profiler = Profiler::new(&path)?; let query_event_kind = profiler.alloc_string("Query"); let generic_activity_event_kind = profiler.alloc_string("GenericActivity"); let incremental_load_result_event_kind = profiler.alloc_string("IncrementalLoadResult"); let query_blocked_event_kind = profiler.alloc_string("QueryBlocked"); let query_cache_hit_event_kind = profiler.alloc_string("QueryCacheHit"); let mut event_filter_mask = EventFilter::empty(); if let Some(ref event_filters) = *event_filters { let mut unknown_events = vec![]; for item in event_filters { if let Some(&(_, mask)) = EVENT_FILTERS_BY_NAME.iter().find(|&(name, _)| name == item) { event_filter_mask |= mask; } else { unknown_events.push(item.clone()); } } // Warn about any unknown event names if unknown_events.len() > 0 { unknown_events.sort(); unknown_events.dedup(); warn!( "Unknown self-profiler events specified: {}. Available options are: {}.", unknown_events.join(", "), EVENT_FILTERS_BY_NAME .iter() .map(|&(name, _)| name.to_string()) .collect::>() .join(", ") ); } } else { event_filter_mask = EventFilter::DEFAULT; } Ok(SelfProfiler { profiler, event_filter_mask, string_cache: RwLock::new(FxHashMap::default()), query_event_kind, generic_activity_event_kind, incremental_load_result_event_kind, query_blocked_event_kind, query_cache_hit_event_kind, }) } /// Allocates a new string in the profiling data. Does not do any caching /// or deduplication. pub fn alloc_string(&self, s: &STR) -> StringId { self.profiler.alloc_string(s) } /// Gets a `StringId` for the given string. This method makes sure that /// any strings going through it will only be allocated once in the /// profiling data. pub fn get_or_alloc_cached_string(&self, s: &'static str) -> StringId { // Only acquire a read-lock first since we assume that the string is // already present in the common case. { let string_cache = self.string_cache.read(); if let Some(&id) = string_cache.get(s) { return id } } let mut string_cache = self.string_cache.write(); // Check if the string has already been added in the small time window // between dropping the read lock and acquiring the write lock. *string_cache.entry(s).or_insert_with(|| self.profiler.alloc_string(s)) } pub fn map_query_invocation_id_to_string( &self, from: QueryInvocationId, to: StringId ) { let from = StringId::new_virtual(from.0); self.profiler.map_virtual_to_concrete_string(from, to); } pub fn bulk_map_query_invocation_id_to_single_string( &self, from: I, to: StringId ) where I: Iterator + ExactSizeIterator { let from = from.map(|qid| StringId::new_virtual(qid.0)); self.profiler.bulk_map_virtual_to_single_concrete_string(from, to); } pub fn query_key_recording_enabled(&self) -> bool { self.event_filter_mask.contains(EventFilter::QUERY_KEYS) } pub fn event_id_builder(&self) -> EventIdBuilder<'_, SerializationSink> { EventIdBuilder::new(&self.profiler) } } #[must_use] pub struct TimingGuard<'a>(Option>); impl<'a> TimingGuard<'a> { #[inline] pub fn start( profiler: &'a SelfProfiler, event_kind: StringId, event_id: EventId, ) -> TimingGuard<'a> { let thread_id = thread_id_to_u32(std::thread::current().id()); let raw_profiler = &profiler.profiler; let timing_guard = raw_profiler.start_recording_interval_event(event_kind, event_id, thread_id); TimingGuard(Some(timing_guard)) } #[inline] pub fn finish_with_query_invocation_id(self, query_invocation_id: QueryInvocationId) { if let Some(guard) = self.0 { let event_id = StringId::new_virtual(query_invocation_id.0); let event_id = EventId::from_virtual(event_id); guard.finish_with_override_event_id(event_id); } } #[inline] pub fn none() -> TimingGuard<'a> { TimingGuard(None) } } #[must_use] pub struct VerboseTimingGuard<'a> { event_id: &'a str, start: Option, _guard: TimingGuard<'a>, } impl<'a> VerboseTimingGuard<'a> { pub fn start(event_id: &'a str, verbose: bool, _guard: TimingGuard<'a>) -> Self { VerboseTimingGuard { event_id, _guard, start: if unlikely!(verbose) { Some(Instant::now()) } else { None }, } } #[inline(always)] pub fn run(self, f: impl FnOnce() -> R) -> R { let _timer = self; f() } } impl Drop for VerboseTimingGuard<'_> { fn drop(&mut self) { self.start.map(|start| print_time_passes_entry(true, self.event_id, start.elapsed())); } } pub fn print_time_passes_entry(do_it: bool, what: &str, dur: Duration) { if !do_it { return; } let mem_string = match get_resident() { Some(n) => { let mb = n as f64 / 1_000_000.0; format!("; rss: {}MB", mb.round() as usize) } None => String::new(), }; println!("time: {}{}\t{}", duration_to_secs_str(dur), mem_string, what); } // Hack up our own formatting for the duration to make it easier for scripts // to parse (always use the same number of decimal places and the same unit). pub fn duration_to_secs_str(dur: std::time::Duration) -> String { const NANOS_PER_SEC: f64 = 1_000_000_000.0; let secs = dur.as_secs() as f64 + dur.subsec_nanos() as f64 / NANOS_PER_SEC; format!("{:.3}", secs) } // Memory reporting #[cfg(unix)] fn get_resident() -> Option { let field = 1; let contents = fs::read("/proc/self/statm").ok()?; let contents = String::from_utf8(contents).ok()?; let s = contents.split_whitespace().nth(field)?; let npages = s.parse::().ok()?; Some(npages * 4096) } #[cfg(windows)] fn get_resident() -> Option { type BOOL = i32; type DWORD = u32; type HANDLE = *mut u8; use libc::size_t; #[repr(C)] #[allow(non_snake_case)] struct PROCESS_MEMORY_COUNTERS { cb: DWORD, PageFaultCount: DWORD, PeakWorkingSetSize: size_t, WorkingSetSize: size_t, QuotaPeakPagedPoolUsage: size_t, QuotaPagedPoolUsage: size_t, QuotaPeakNonPagedPoolUsage: size_t, QuotaNonPagedPoolUsage: size_t, PagefileUsage: size_t, PeakPagefileUsage: size_t, } #[allow(non_camel_case_types)] type PPROCESS_MEMORY_COUNTERS = *mut PROCESS_MEMORY_COUNTERS; #[link(name = "psapi")] extern "system" { fn GetCurrentProcess() -> HANDLE; fn GetProcessMemoryInfo( Process: HANDLE, ppsmemCounters: PPROCESS_MEMORY_COUNTERS, cb: DWORD, ) -> BOOL; } let mut pmc: PROCESS_MEMORY_COUNTERS = unsafe { mem::zeroed() }; pmc.cb = mem::size_of_val(&pmc) as DWORD; match unsafe { GetProcessMemoryInfo(GetCurrentProcess(), &mut pmc, pmc.cb) } { 0 => None, _ => Some(pmc.WorkingSetSize as usize), } }