//! Finds crate binaries and loads their metadata //! //! Might I be the first to welcome you to a world of platform differences, //! version requirements, dependency graphs, conflicting desires, and fun! This //! is the major guts (along with metadata::creader) of the compiler for loading //! crates and resolving dependencies. Let's take a tour! //! //! # The problem //! //! Each invocation of the compiler is immediately concerned with one primary //! problem, to connect a set of crates to resolved crates on the filesystem. //! Concretely speaking, the compiler follows roughly these steps to get here: //! //! 1. Discover a set of `extern crate` statements. //! 2. Transform these directives into crate names. If the directive does not //! have an explicit name, then the identifier is the name. //! 3. For each of these crate names, find a corresponding crate on the //! filesystem. //! //! Sounds easy, right? Let's walk into some of the nuances. //! //! ## Transitive Dependencies //! //! Let's say we've got three crates: A, B, and C. A depends on B, and B depends //! on C. When we're compiling A, we primarily need to find and locate B, but we //! also end up needing to find and locate C as well. //! //! The reason for this is that any of B's types could be composed of C's types, //! any function in B could return a type from C, etc. To be able to guarantee //! that we can always type-check/translate any function, we have to have //! complete knowledge of the whole ecosystem, not just our immediate //! dependencies. //! //! So now as part of the "find a corresponding crate on the filesystem" step //! above, this involves also finding all crates for *all upstream //! dependencies*. This includes all dependencies transitively. //! //! ## Rlibs and Dylibs //! //! The compiler has two forms of intermediate dependencies. These are dubbed //! rlibs and dylibs for the static and dynamic variants, respectively. An rlib //! is a rustc-defined file format (currently just an ar archive) while a dylib //! is a platform-defined dynamic library. Each library has a metadata somewhere //! inside of it. //! //! A third kind of dependency is an rmeta file. These are metadata files and do //! not contain any code, etc. To a first approximation, these are treated in the //! same way as rlibs. Where there is both an rlib and an rmeta file, the rlib //! gets priority (even if the rmeta file is newer). An rmeta file is only //! useful for checking a downstream crate, attempting to link one will cause an //! error. //! //! When translating a crate name to a crate on the filesystem, we all of a //! sudden need to take into account both rlibs and dylibs! Linkage later on may //! use either one of these files, as each has their pros/cons. The job of crate //! loading is to discover what's possible by finding all candidates. //! //! Most parts of this loading systems keep the dylib/rlib as just separate //! variables. //! //! ## Where to look? //! //! We can't exactly scan your whole hard drive when looking for dependencies, //! so we need to places to look. Currently the compiler will implicitly add the //! target lib search path ($prefix/lib/rustlib/$target/lib) to any compilation, //! and otherwise all -L flags are added to the search paths. //! //! ## What criterion to select on? //! //! This a pretty tricky area of loading crates. Given a file, how do we know //! whether it's the right crate? Currently, the rules look along these lines: //! //! 1. Does the filename match an rlib/dylib pattern? That is to say, does the //! filename have the right prefix/suffix? //! 2. Does the filename have the right prefix for the crate name being queried? //! This is filtering for files like `libfoo*.rlib` and such. If the crate //! we're looking for was originally compiled with -C extra-filename, the //! extra filename will be included in this prefix to reduce reading //! metadata from crates that would otherwise share our prefix. //! 3. Is the file an actual rust library? This is done by loading the metadata //! from the library and making sure it's actually there. //! 4. Does the name in the metadata agree with the name of the library? //! 5. Does the target in the metadata agree with the current target? //! 6. Does the SVH match? (more on this later) //! //! If the file answers `yes` to all these questions, then the file is //! considered as being *candidate* for being accepted. It is illegal to have //! more than two candidates as the compiler has no method by which to resolve //! this conflict. Additionally, rlib/dylib candidates are considered //! separately. //! //! After all this has happened, we have 1 or two files as candidates. These //! represent the rlib/dylib file found for a library, and they're returned as //! being found. //! //! ### What about versions? //! //! A lot of effort has been put forth to remove versioning from the compiler. //! There have been forays in the past to have versioning baked in, but it was //! largely always deemed insufficient to the point that it was recognized that //! it's probably something the compiler shouldn't do anyway due to its //! complicated nature and the state of the half-baked solutions. //! //! With a departure from versioning, the primary criterion for loading crates //! is just the name of a crate. If we stopped here, it would imply that you //! could never link two crates of the same name from different sources //! together, which is clearly a bad state to be in. //! //! To resolve this problem, we come to the next section! //! //! # Expert Mode //! //! A number of flags have been added to the compiler to solve the "version //! problem" in the previous section, as well as generally enabling more //! powerful usage of the crate loading system of the compiler. The goal of //! these flags and options are to enable third-party tools to drive the //! compiler with prior knowledge about how the world should look. //! //! ## The `--extern` flag //! //! The compiler accepts a flag of this form a number of times: //! //! ```text //! --extern crate-name=path/to/the/crate.rlib //! ``` //! //! This flag is basically the following letter to the compiler: //! //! > Dear rustc, //! > //! > When you are attempting to load the immediate dependency `crate-name`, I //! > would like you to assume that the library is located at //! > `path/to/the/crate.rlib`, and look nowhere else. Also, please do not //! > assume that the path I specified has the name `crate-name`. //! //! This flag basically overrides most matching logic except for validating that //! the file is indeed a rust library. The same `crate-name` can be specified //! twice to specify the rlib/dylib pair. //! //! ## Enabling "multiple versions" //! //! This basically boils down to the ability to specify arbitrary packages to //! the compiler. For example, if crate A wanted to use Bv1 and Bv2, then it //! would look something like: //! //! ```compile_fail,E0463 //! extern crate b1; //! extern crate b2; //! //! fn main() {} //! ``` //! //! and the compiler would be invoked as: //! //! ```text //! rustc a.rs --extern b1=path/to/libb1.rlib --extern b2=path/to/libb2.rlib //! ``` //! //! In this scenario there are two crates named `b` and the compiler must be //! manually driven to be informed where each crate is. //! //! ## Frobbing symbols //! //! One of the immediate problems with linking the same library together twice //! in the same problem is dealing with duplicate symbols. The primary way to //! deal with this in rustc is to add hashes to the end of each symbol. //! //! In order to force hashes to change between versions of a library, if //! desired, the compiler exposes an option `-C metadata=foo`, which is used to //! initially seed each symbol hash. The string `foo` is prepended to each //! string-to-hash to ensure that symbols change over time. //! //! ## Loading transitive dependencies //! //! Dealing with same-named-but-distinct crates is not just a local problem, but //! one that also needs to be dealt with for transitive dependencies. Note that //! in the letter above `--extern` flags only apply to the *local* set of //! dependencies, not the upstream transitive dependencies. Consider this //! dependency graph: //! //! ```text //! A.1 A.2 //! | | //! | | //! B C //! \ / //! \ / //! D //! ``` //! //! In this scenario, when we compile `D`, we need to be able to distinctly //! resolve `A.1` and `A.2`, but an `--extern` flag cannot apply to these //! transitive dependencies. //! //! Note that the key idea here is that `B` and `C` are both *already compiled*. //! That is, they have already resolved their dependencies. Due to unrelated //! technical reasons, when a library is compiled, it is only compatible with //! the *exact same* version of the upstream libraries it was compiled against. //! We use the "Strict Version Hash" to identify the exact copy of an upstream //! library. //! //! With this knowledge, we know that `B` and `C` will depend on `A` with //! different SVH values, so we crawl the normal `-L` paths looking for //! `liba*.rlib` and filter based on the contained SVH. //! //! In the end, this ends up not needing `--extern` to specify upstream //! transitive dependencies. //! //! # Wrapping up //! //! That's the general overview of loading crates in the compiler, but it's by //! no means all of the necessary details. Take a look at the rest of //! metadata::locator or metadata::creader for all the juicy details! use crate::creader::Library; use crate::rmeta::{rustc_version, MetadataBlob, METADATA_HEADER}; use rustc_data_structures::fx::{FxHashMap, FxHashSet}; use rustc_data_structures::memmap::Mmap; use rustc_data_structures::owning_ref::OwningRef; use rustc_data_structures::svh::Svh; use rustc_data_structures::sync::MetadataRef; use rustc_errors::struct_span_err; use rustc_middle::middle::cstore::{CrateSource, MetadataLoader}; use rustc_session::config::{self, CrateType}; use rustc_session::filesearch::{FileDoesntMatch, FileMatches, FileSearch}; use rustc_session::search_paths::PathKind; use rustc_session::utils::CanonicalizedPath; use rustc_session::{CrateDisambiguator, Session}; use rustc_span::symbol::{sym, Symbol}; use rustc_span::Span; use rustc_target::spec::{Target, TargetTriple}; use snap::read::FrameDecoder; use std::io::{Read, Result as IoResult, Write}; use std::path::{Path, PathBuf}; use std::{cmp, fmt, fs}; use tracing::{debug, info, warn}; #[derive(Clone)] crate struct CrateLocator<'a> { // Immutable per-session configuration. sess: &'a Session, metadata_loader: &'a dyn MetadataLoader, // Immutable per-search configuration. crate_name: Symbol, exact_paths: Vec, pub hash: Option, pub host_hash: Option, extra_filename: Option<&'a str>, pub target: &'a Target, pub triple: TargetTriple, pub filesearch: FileSearch<'a>, root: Option<&'a CratePaths>, pub is_proc_macro: Option, // Mutable in-progress state or output. rejected_via_hash: Vec, rejected_via_triple: Vec, rejected_via_kind: Vec, rejected_via_version: Vec, rejected_via_filename: Vec, } #[derive(Clone)] crate struct CratePaths { name: Symbol, source: CrateSource, } impl CratePaths { crate fn new(name: Symbol, source: CrateSource) -> CratePaths { CratePaths { name, source } } } #[derive(Copy, Clone, PartialEq)] crate enum CrateFlavor { Rlib, Rmeta, Dylib, } impl fmt::Display for CrateFlavor { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.write_str(match *self { CrateFlavor::Rlib => "rlib", CrateFlavor::Rmeta => "rmeta", CrateFlavor::Dylib => "dylib", }) } } impl<'a> CrateLocator<'a> { crate fn new( sess: &'a Session, metadata_loader: &'a dyn MetadataLoader, crate_name: Symbol, hash: Option, host_hash: Option, extra_filename: Option<&'a str>, is_host: bool, path_kind: PathKind, root: Option<&'a CratePaths>, is_proc_macro: Option, ) -> CrateLocator<'a> { CrateLocator { sess, metadata_loader, crate_name, exact_paths: if hash.is_none() { sess.opts .externs .get(&crate_name.as_str()) .into_iter() .filter_map(|entry| entry.files()) .flatten() .cloned() .collect() } else { // SVH being specified means this is a transitive dependency, // so `--extern` options do not apply. Vec::new() }, hash, host_hash, extra_filename, target: if is_host { &sess.host } else { &sess.target }, triple: if is_host { TargetTriple::from_triple(config::host_triple()) } else { sess.opts.target_triple.clone() }, filesearch: if is_host { sess.host_filesearch(path_kind) } else { sess.target_filesearch(path_kind) }, root, is_proc_macro, rejected_via_hash: Vec::new(), rejected_via_triple: Vec::new(), rejected_via_kind: Vec::new(), rejected_via_version: Vec::new(), rejected_via_filename: Vec::new(), } } crate fn reset(&mut self) { self.rejected_via_hash.clear(); self.rejected_via_triple.clear(); self.rejected_via_kind.clear(); self.rejected_via_version.clear(); self.rejected_via_filename.clear(); } crate fn maybe_load_library_crate(&mut self) -> Result, CrateError> { if !self.exact_paths.is_empty() { return self.find_commandline_library(); } let mut seen_paths = FxHashSet::default(); if let Some(extra_filename) = self.extra_filename { if let library @ Some(_) = self.find_library_crate(extra_filename, &mut seen_paths)? { return Ok(library); } } self.find_library_crate("", &mut seen_paths) } fn find_library_crate( &mut self, extra_prefix: &str, seen_paths: &mut FxHashSet, ) -> Result, CrateError> { // want: crate_name.dir_part() + prefix + crate_name.file_part + "-" let dylib_prefix = format!("{}{}{}", self.target.dll_prefix, self.crate_name, extra_prefix); let rlib_prefix = format!("lib{}{}", self.crate_name, extra_prefix); let staticlib_prefix = format!("{}{}{}", self.target.staticlib_prefix, self.crate_name, extra_prefix); let mut candidates: FxHashMap<_, (FxHashMap<_, _>, FxHashMap<_, _>, FxHashMap<_, _>)> = Default::default(); let mut staticlibs = vec![]; // First, find all possible candidate rlibs and dylibs purely based on // the name of the files themselves. We're trying to match against an // exact crate name and a possibly an exact hash. // // During this step, we can filter all found libraries based on the // name and id found in the crate id (we ignore the path portion for // filename matching), as well as the exact hash (if specified). If we // end up having many candidates, we must look at the metadata to // perform exact matches against hashes/crate ids. Note that opening up // the metadata is where we do an exact match against the full contents // of the crate id (path/name/id). // // The goal of this step is to look at as little metadata as possible. self.filesearch.search(|spf, kind| { let file = match &spf.file_name_str { None => return FileDoesntMatch, Some(file) => file, }; let (hash, found_kind) = if file.starts_with(&rlib_prefix) && file.ends_with(".rlib") { (&file[(rlib_prefix.len())..(file.len() - ".rlib".len())], CrateFlavor::Rlib) } else if file.starts_with(&rlib_prefix) && file.ends_with(".rmeta") { (&file[(rlib_prefix.len())..(file.len() - ".rmeta".len())], CrateFlavor::Rmeta) } else if file.starts_with(&dylib_prefix) && file.ends_with(&self.target.dll_suffix) { ( &file[(dylib_prefix.len())..(file.len() - self.target.dll_suffix.len())], CrateFlavor::Dylib, ) } else { if file.starts_with(&staticlib_prefix) && file.ends_with(&self.target.staticlib_suffix) { staticlibs .push(CrateMismatch { path: spf.path.clone(), got: "static".to_string() }); } return FileDoesntMatch; }; info!("lib candidate: {}", spf.path.display()); let (rlibs, rmetas, dylibs) = candidates.entry(hash.to_string()).or_default(); let path = fs::canonicalize(&spf.path).unwrap_or_else(|_| spf.path.clone()); if seen_paths.contains(&path) { return FileDoesntMatch; }; seen_paths.insert(path.clone()); match found_kind { CrateFlavor::Rlib => rlibs.insert(path, kind), CrateFlavor::Rmeta => rmetas.insert(path, kind), CrateFlavor::Dylib => dylibs.insert(path, kind), }; FileMatches }); self.rejected_via_kind.extend(staticlibs); // We have now collected all known libraries into a set of candidates // keyed of the filename hash listed. For each filename, we also have a // list of rlibs/dylibs that apply. Here, we map each of these lists // (per hash), to a Library candidate for returning. // // A Library candidate is created if the metadata for the set of // libraries corresponds to the crate id and hash criteria that this // search is being performed for. let mut libraries = FxHashMap::default(); for (_hash, (rlibs, rmetas, dylibs)) in candidates { if let Some((svh, lib)) = self.extract_lib(rlibs, rmetas, dylibs)? { libraries.insert(svh, lib); } } // Having now translated all relevant found hashes into libraries, see // what we've got and figure out if we found multiple candidates for // libraries or not. match libraries.len() { 0 => Ok(None), 1 => Ok(Some(libraries.into_iter().next().unwrap().1)), _ => Err(CrateError::MultipleMatchingCrates(self.crate_name, libraries)), } } fn extract_lib( &mut self, rlibs: FxHashMap, rmetas: FxHashMap, dylibs: FxHashMap, ) -> Result, CrateError> { let mut slot = None; // Order here matters, rmeta should come first. See comment in // `extract_one` below. let source = CrateSource { rmeta: self.extract_one(rmetas, CrateFlavor::Rmeta, &mut slot)?, rlib: self.extract_one(rlibs, CrateFlavor::Rlib, &mut slot)?, dylib: self.extract_one(dylibs, CrateFlavor::Dylib, &mut slot)?, }; Ok(slot.map(|(svh, metadata)| (svh, Library { source, metadata }))) } fn needs_crate_flavor(&self, flavor: CrateFlavor) -> bool { if flavor == CrateFlavor::Dylib && self.is_proc_macro == Some(true) { return true; } // The all loop is because `--crate-type=rlib --crate-type=rlib` is // legal and produces both inside this type. let is_rlib = self.sess.crate_types().iter().all(|c| *c == CrateType::Rlib); let needs_object_code = self.sess.opts.output_types.should_codegen(); // If we're producing an rlib, then we don't need object code. // Or, if we're not producing object code, then we don't need it either // (e.g., if we're a cdylib but emitting just metadata). if is_rlib || !needs_object_code { flavor == CrateFlavor::Rmeta } else { // we need all flavors (perhaps not true, but what we do for now) true } } // Attempts to extract *one* library from the set `m`. If the set has no // elements, `None` is returned. If the set has more than one element, then // the errors and notes are emitted about the set of libraries. // // With only one library in the set, this function will extract it, and then // read the metadata from it if `*slot` is `None`. If the metadata couldn't // be read, it is assumed that the file isn't a valid rust library (no // errors are emitted). fn extract_one( &mut self, m: FxHashMap, flavor: CrateFlavor, slot: &mut Option<(Svh, MetadataBlob)>, ) -> Result, CrateError> { // If we are producing an rlib, and we've already loaded metadata, then // we should not attempt to discover further crate sources (unless we're // locating a proc macro; exact logic is in needs_crate_flavor). This means // that under -Zbinary-dep-depinfo we will not emit a dependency edge on // the *unused* rlib, and by returning `None` here immediately we // guarantee that we do indeed not use it. // // See also #68149 which provides more detail on why emitting the // dependency on the rlib is a bad thing. // // We currently do not verify that these other sources are even in sync, // and this is arguably a bug (see #10786), but because reading metadata // is quite slow (especially from dylibs) we currently do not read it // from the other crate sources. if slot.is_some() { if m.is_empty() || !self.needs_crate_flavor(flavor) { return Ok(None); } else if m.len() == 1 { return Ok(Some(m.into_iter().next().unwrap())); } } let mut ret: Option<(PathBuf, PathKind)> = None; let mut err_data: Option> = None; for (lib, kind) in m { info!("{} reading metadata from: {}", flavor, lib.display()); let (hash, metadata) = match get_metadata_section(self.target, flavor, &lib, self.metadata_loader) { Ok(blob) => { if let Some(h) = self.crate_matches(&blob, &lib) { (h, blob) } else { info!("metadata mismatch"); continue; } } Err(err) => { warn!("no metadata found: {}", err); continue; } }; // If we see multiple hashes, emit an error about duplicate candidates. if slot.as_ref().map_or(false, |s| s.0 != hash) { if let Some(candidates) = err_data { return Err(CrateError::MultipleCandidates( self.crate_name, flavor, candidates, )); } err_data = Some(vec![ret.as_ref().unwrap().0.clone()]); *slot = None; } if let Some(candidates) = &mut err_data { candidates.push(lib); continue; } // Ok so at this point we've determined that `(lib, kind)` above is // a candidate crate to load, and that `slot` is either none (this // is the first crate of its kind) or if some the previous path has // the exact same hash (e.g., it's the exact same crate). // // In principle these two candidate crates are exactly the same so // we can choose either of them to link. As a stupidly gross hack, // however, we favor crate in the sysroot. // // You can find more info in rust-lang/rust#39518 and various linked // issues, but the general gist is that during testing libstd the // compilers has two candidates to choose from: one in the sysroot // and one in the deps folder. These two crates are the exact same // crate but if the compiler chooses the one in the deps folder // it'll cause spurious errors on Windows. // // As a result, we favor the sysroot crate here. Note that the // candidates are all canonicalized, so we canonicalize the sysroot // as well. if let Some((prev, _)) = &ret { let sysroot = &self.sess.sysroot; let sysroot = sysroot.canonicalize().unwrap_or_else(|_| sysroot.to_path_buf()); if prev.starts_with(&sysroot) { continue; } } *slot = Some((hash, metadata)); ret = Some((lib, kind)); } if let Some(candidates) = err_data { Err(CrateError::MultipleCandidates(self.crate_name, flavor, candidates)) } else { Ok(ret) } } fn crate_matches(&mut self, metadata: &MetadataBlob, libpath: &Path) -> Option { let rustc_version = rustc_version(); let found_version = metadata.get_rustc_version(); if found_version != rustc_version { info!("Rejecting via version: expected {} got {}", rustc_version, found_version); self.rejected_via_version .push(CrateMismatch { path: libpath.to_path_buf(), got: found_version }); return None; } let root = metadata.get_root(); if let Some(expected_is_proc_macro) = self.is_proc_macro { let is_proc_macro = root.is_proc_macro_crate(); if is_proc_macro != expected_is_proc_macro { info!( "Rejecting via proc macro: expected {} got {}", expected_is_proc_macro, is_proc_macro ); return None; } } if self.exact_paths.is_empty() && self.crate_name != root.name() { info!("Rejecting via crate name"); return None; } if root.triple() != &self.triple { info!("Rejecting via crate triple: expected {} got {}", self.triple, root.triple()); self.rejected_via_triple.push(CrateMismatch { path: libpath.to_path_buf(), got: root.triple().to_string(), }); return None; } let hash = root.hash(); if let Some(expected_hash) = self.hash { if hash != expected_hash { info!("Rejecting via hash: expected {} got {}", expected_hash, hash); self.rejected_via_hash .push(CrateMismatch { path: libpath.to_path_buf(), got: hash.to_string() }); return None; } } Some(hash) } fn find_commandline_library(&mut self) -> Result, CrateError> { // First, filter out all libraries that look suspicious. We only accept // files which actually exist that have the correct naming scheme for // rlibs/dylibs. let mut rlibs = FxHashMap::default(); let mut rmetas = FxHashMap::default(); let mut dylibs = FxHashMap::default(); for loc in &self.exact_paths { if !loc.canonicalized().exists() { return Err(CrateError::ExternLocationNotExist( self.crate_name, loc.original().clone(), )); } let file = match loc.original().file_name().and_then(|s| s.to_str()) { Some(file) => file, None => { return Err(CrateError::ExternLocationNotFile( self.crate_name, loc.original().clone(), )); } }; if file.starts_with("lib") && (file.ends_with(".rlib") || file.ends_with(".rmeta")) || file.starts_with(&self.target.dll_prefix) && file.ends_with(&self.target.dll_suffix) { // Make sure there's at most one rlib and at most one dylib. // Note to take care and match against the non-canonicalized name: // some systems save build artifacts into content-addressed stores // that do not preserve extensions, and then link to them using // e.g. symbolic links. If we canonicalize too early, we resolve // the symlink, the file type is lost and we might treat rlibs and // rmetas as dylibs. let loc_canon = loc.canonicalized().clone(); let loc = loc.original(); if loc.file_name().unwrap().to_str().unwrap().ends_with(".rlib") { rlibs.insert(loc_canon, PathKind::ExternFlag); } else if loc.file_name().unwrap().to_str().unwrap().ends_with(".rmeta") { rmetas.insert(loc_canon, PathKind::ExternFlag); } else { dylibs.insert(loc_canon, PathKind::ExternFlag); } } else { self.rejected_via_filename .push(CrateMismatch { path: loc.original().clone(), got: String::new() }); } } // Extract the dylib/rlib/rmeta triple. Ok(self.extract_lib(rlibs, rmetas, dylibs)?.map(|(_, lib)| lib)) } crate fn into_error(self) -> CrateError { CrateError::LocatorCombined(CombinedLocatorError { crate_name: self.crate_name, root: self.root.cloned(), triple: self.triple, dll_prefix: self.target.dll_prefix.clone(), dll_suffix: self.target.dll_suffix.clone(), rejected_via_hash: self.rejected_via_hash, rejected_via_triple: self.rejected_via_triple, rejected_via_kind: self.rejected_via_kind, rejected_via_version: self.rejected_via_version, rejected_via_filename: self.rejected_via_filename, }) } } fn get_metadata_section( target: &Target, flavor: CrateFlavor, filename: &Path, loader: &dyn MetadataLoader, ) -> Result { if !filename.exists() { return Err(format!("no such file: '{}'", filename.display())); } let raw_bytes: MetadataRef = match flavor { CrateFlavor::Rlib => loader.get_rlib_metadata(target, filename)?, CrateFlavor::Dylib => { let buf = loader.get_dylib_metadata(target, filename)?; // The header is uncompressed let header_len = METADATA_HEADER.len(); debug!("checking {} bytes of metadata-version stamp", header_len); let header = &buf[..cmp::min(header_len, buf.len())]; if header != METADATA_HEADER { return Err(format!( "incompatible metadata version found: '{}'", filename.display() )); } // Header is okay -> inflate the actual metadata let compressed_bytes = &buf[header_len..]; debug!("inflating {} bytes of compressed metadata", compressed_bytes.len()); let mut inflated = Vec::new(); match FrameDecoder::new(compressed_bytes).read_to_end(&mut inflated) { Ok(_) => rustc_erase_owner!(OwningRef::new(inflated).map_owner_box()), Err(_) => { return Err(format!("failed to decompress metadata: {}", filename.display())); } } } CrateFlavor::Rmeta => { // mmap the file, because only a small fraction of it is read. let file = std::fs::File::open(filename) .map_err(|_| format!("failed to open rmeta metadata: '{}'", filename.display()))?; let mmap = unsafe { Mmap::map(file) }; let mmap = mmap .map_err(|_| format!("failed to mmap rmeta metadata: '{}'", filename.display()))?; rustc_erase_owner!(OwningRef::new(mmap).map_owner_box()) } }; let blob = MetadataBlob::new(raw_bytes); if blob.is_compatible() { Ok(blob) } else { Err(format!("incompatible metadata version found: '{}'", filename.display())) } } /// Look for a plugin registrar. Returns its library path and crate disambiguator. pub fn find_plugin_registrar( sess: &Session, metadata_loader: &dyn MetadataLoader, span: Span, name: Symbol, ) -> (PathBuf, CrateDisambiguator) { match find_plugin_registrar_impl(sess, metadata_loader, name) { Ok(res) => res, Err(err) => err.report(sess, span), } } fn find_plugin_registrar_impl<'a>( sess: &'a Session, metadata_loader: &dyn MetadataLoader, name: Symbol, ) -> Result<(PathBuf, CrateDisambiguator), CrateError> { info!("find plugin registrar `{}`", name); let mut locator = CrateLocator::new( sess, metadata_loader, name, None, // hash None, // host_hash None, // extra_filename true, // is_host PathKind::Crate, None, // root None, // is_proc_macro ); match locator.maybe_load_library_crate()? { Some(library) => match library.source.dylib { Some(dylib) => Ok((dylib.0, library.metadata.get_root().disambiguator())), None => Err(CrateError::NonDylibPlugin(name)), }, None => Err(locator.into_error()), } } /// A diagnostic function for dumping crate metadata to an output stream. pub fn list_file_metadata( target: &Target, path: &Path, metadata_loader: &dyn MetadataLoader, out: &mut dyn Write, ) -> IoResult<()> { let filename = path.file_name().unwrap().to_str().unwrap(); let flavor = if filename.ends_with(".rlib") { CrateFlavor::Rlib } else if filename.ends_with(".rmeta") { CrateFlavor::Rmeta } else { CrateFlavor::Dylib }; match get_metadata_section(target, flavor, path, metadata_loader) { Ok(metadata) => metadata.list_crate_metadata(out), Err(msg) => write!(out, "{}\n", msg), } } // ------------------------------------------ Error reporting ------------------------------------- #[derive(Clone)] struct CrateMismatch { path: PathBuf, got: String, } /// Candidate rejection reasons collected during crate search. /// If no candidate is accepted, then these reasons are presented to the user, /// otherwise they are ignored. crate struct CombinedLocatorError { crate_name: Symbol, root: Option, triple: TargetTriple, dll_prefix: String, dll_suffix: String, rejected_via_hash: Vec, rejected_via_triple: Vec, rejected_via_kind: Vec, rejected_via_version: Vec, rejected_via_filename: Vec, } crate enum CrateError { NonAsciiName(Symbol), ExternLocationNotExist(Symbol, PathBuf), ExternLocationNotFile(Symbol, PathBuf), MultipleCandidates(Symbol, CrateFlavor, Vec), MultipleMatchingCrates(Symbol, FxHashMap), SymbolConflictsCurrent(Symbol), SymbolConflictsOthers(Symbol), StableCrateIdCollision(Symbol, Symbol), DlOpen(String), DlSym(String), LocatorCombined(CombinedLocatorError), NonDylibPlugin(Symbol), } impl CrateError { crate fn report(self, sess: &Session, span: Span) -> ! { let mut err = match self { CrateError::NonAsciiName(crate_name) => sess.struct_span_err( span, &format!("cannot load a crate with a non-ascii name `{}`", crate_name), ), CrateError::ExternLocationNotExist(crate_name, loc) => sess.struct_span_err( span, &format!("extern location for {} does not exist: {}", crate_name, loc.display()), ), CrateError::ExternLocationNotFile(crate_name, loc) => sess.struct_span_err( span, &format!("extern location for {} is not a file: {}", crate_name, loc.display()), ), CrateError::MultipleCandidates(crate_name, flavor, candidates) => { let mut err = struct_span_err!( sess, span, E0465, "multiple {} candidates for `{}` found", flavor, crate_name, ); for (i, candidate) in candidates.iter().enumerate() { err.span_note(span, &format!("candidate #{}: {}", i + 1, candidate.display())); } err } CrateError::MultipleMatchingCrates(crate_name, libraries) => { let mut err = struct_span_err!( sess, span, E0464, "multiple matching crates for `{}`", crate_name ); let candidates = libraries .iter() .filter_map(|(_, lib)| { let crate_name = &lib.metadata.get_root().name().as_str(); match (&lib.source.dylib, &lib.source.rlib) { (Some((pd, _)), Some((pr, _))) => Some(format!( "\ncrate `{}`: {}\n{:>padding$}", crate_name, pd.display(), pr.display(), padding = 8 + crate_name.len() )), (Some((p, _)), None) | (None, Some((p, _))) => { Some(format!("\ncrate `{}`: {}", crate_name, p.display())) } (None, None) => None, } }) .collect::(); err.note(&format!("candidates:{}", candidates)); err } CrateError::SymbolConflictsCurrent(root_name) => struct_span_err!( sess, span, E0519, "the current crate is indistinguishable from one of its dependencies: it has the \ same crate-name `{}` and was compiled with the same `-C metadata` arguments. \ This will result in symbol conflicts between the two.", root_name, ), CrateError::SymbolConflictsOthers(root_name) => struct_span_err!( sess, span, E0523, "found two different crates with name `{}` that are not distinguished by differing \ `-C metadata`. This will result in symbol conflicts between the two.", root_name, ), CrateError::StableCrateIdCollision(crate_name0, crate_name1) => { let msg = format!( "found crates (`{}` and `{}`) with colliding StableCrateId values.", crate_name0, crate_name1 ); sess.struct_span_err(span, &msg) } CrateError::DlOpen(s) | CrateError::DlSym(s) => sess.struct_span_err(span, &s), CrateError::LocatorCombined(locator) => { let crate_name = locator.crate_name; let add = match &locator.root { None => String::new(), Some(r) => format!(" which `{}` depends on", r.name), }; let mut msg = "the following crate versions were found:".to_string(); let mut err = if !locator.rejected_via_hash.is_empty() { let mut err = struct_span_err!( sess, span, E0460, "found possibly newer version of crate `{}`{}", crate_name, add, ); err.note("perhaps that crate needs to be recompiled?"); let mismatches = locator.rejected_via_hash.iter(); for CrateMismatch { path, .. } in mismatches { msg.push_str(&format!("\ncrate `{}`: {}", crate_name, path.display())); } if let Some(r) = locator.root { for path in r.source.paths() { msg.push_str(&format!("\ncrate `{}`: {}", r.name, path.display())); } } err.note(&msg); err } else if !locator.rejected_via_triple.is_empty() { let mut err = struct_span_err!( sess, span, E0461, "couldn't find crate `{}` with expected target triple {}{}", crate_name, locator.triple, add, ); let mismatches = locator.rejected_via_triple.iter(); for CrateMismatch { path, got } in mismatches { msg.push_str(&format!( "\ncrate `{}`, target triple {}: {}", crate_name, got, path.display(), )); } err.note(&msg); err } else if !locator.rejected_via_kind.is_empty() { let mut err = struct_span_err!( sess, span, E0462, "found staticlib `{}` instead of rlib or dylib{}", crate_name, add, ); err.help("please recompile that crate using --crate-type lib"); let mismatches = locator.rejected_via_kind.iter(); for CrateMismatch { path, .. } in mismatches { msg.push_str(&format!("\ncrate `{}`: {}", crate_name, path.display())); } err.note(&msg); err } else if !locator.rejected_via_version.is_empty() { let mut err = struct_span_err!( sess, span, E0514, "found crate `{}` compiled by an incompatible version of rustc{}", crate_name, add, ); err.help(&format!( "please recompile that crate using this compiler ({})", rustc_version(), )); let mismatches = locator.rejected_via_version.iter(); for CrateMismatch { path, got } in mismatches { msg.push_str(&format!( "\ncrate `{}` compiled by {}: {}", crate_name, got, path.display(), )); } err.note(&msg); err } else { let mut err = struct_span_err!( sess, span, E0463, "can't find crate for `{}`{}", crate_name, add, ); if (crate_name == sym::std || crate_name == sym::core) && locator.triple != TargetTriple::from_triple(config::host_triple()) { err.note(&format!("the `{}` target may not be installed", locator.triple)); } else if crate_name == sym::profiler_builtins { err.note(&"the compiler may have been built without the profiler runtime"); } err.span_label(span, "can't find crate"); err }; if !locator.rejected_via_filename.is_empty() { let mismatches = locator.rejected_via_filename.iter(); for CrateMismatch { path, .. } in mismatches { err.note(&format!( "extern location for {} is of an unknown type: {}", crate_name, path.display(), )) .help(&format!( "file name should be lib*.rlib or {}*.{}", locator.dll_prefix, locator.dll_suffix )); } } err } CrateError::NonDylibPlugin(crate_name) => struct_span_err!( sess, span, E0457, "plugin `{}` only found in rlib format, but must be available in dylib format", crate_name, ), }; err.emit(); sess.abort_if_errors(); unreachable!(); } }