use rustc_errors::ErrorGuaranteed; use rustc_hir::def::DefKind; use rustc_hir::def_id::LocalDefId; use rustc_middle::mir::interpret::{LitToConstError, LitToConstInput}; use rustc_middle::thir::visit; use rustc_middle::thir::visit::Visitor; use rustc_middle::ty::abstract_const::CastKind; use rustc_middle::ty::{self, Expr, TyCtxt, TypeVisitable}; use rustc_middle::{mir, thir}; use rustc_span::Span; use rustc_target::abi::VariantIdx; use std::iter; use crate::errors::{GenericConstantTooComplex, GenericConstantTooComplexSub}; /// Destructures array, ADT or tuple constants into the constants /// of their fields. pub(crate) fn destructure_const<'tcx>( tcx: TyCtxt<'tcx>, const_: ty::Const<'tcx>, ) -> ty::DestructuredConst<'tcx> { let ty::ConstKind::Value(valtree) = const_.kind() else { bug!("cannot destructure constant {:?}", const_) }; let branches = match valtree { ty::ValTree::Branch(b) => b, _ => bug!("cannot destructure constant {:?}", const_), }; let (fields, variant) = match const_.ty().kind() { ty::Array(inner_ty, _) | ty::Slice(inner_ty) => { // construct the consts for the elements of the array/slice let field_consts = branches.iter().map(|b| tcx.mk_const(*b, *inner_ty)).collect::>(); debug!(?field_consts); (field_consts, None) } ty::Adt(def, _) if def.variants().is_empty() => bug!("unreachable"), ty::Adt(def, substs) => { let (variant_idx, branches) = if def.is_enum() { let (head, rest) = branches.split_first().unwrap(); (VariantIdx::from_u32(head.unwrap_leaf().try_to_u32().unwrap()), rest) } else { (VariantIdx::from_u32(0), branches) }; let fields = &def.variant(variant_idx).fields; let mut field_consts = Vec::with_capacity(fields.len()); for (field, field_valtree) in iter::zip(fields, branches) { let field_ty = field.ty(tcx, substs); let field_const = tcx.mk_const(*field_valtree, field_ty); field_consts.push(field_const); } debug!(?field_consts); (field_consts, Some(variant_idx)) } ty::Tuple(elem_tys) => { let fields = iter::zip(*elem_tys, branches) .map(|(elem_ty, elem_valtree)| tcx.mk_const(*elem_valtree, elem_ty)) .collect::>(); (fields, None) } _ => bug!("cannot destructure constant {:?}", const_), }; let fields = tcx.arena.alloc_from_iter(fields.into_iter()); ty::DestructuredConst { variant, fields } } /// We do not allow all binary operations in abstract consts, so filter disallowed ones. fn check_binop(op: mir::BinOp) -> bool { use mir::BinOp::*; match op { Add | Sub | Mul | Div | Rem | BitXor | BitAnd | BitOr | Shl | Shr | Eq | Lt | Le | Ne | Ge | Gt => true, Offset => false, } } /// While we currently allow all unary operations, we still want to explicitly guard against /// future changes here. fn check_unop(op: mir::UnOp) -> bool { use mir::UnOp::*; match op { Not | Neg => true, } } fn recurse_build<'tcx>( tcx: TyCtxt<'tcx>, body: &thir::Thir<'tcx>, node: thir::ExprId, root_span: Span, ) -> Result, ErrorGuaranteed> { use thir::ExprKind; let node = &body.exprs[node]; let maybe_supported_error = |a| maybe_supported_error(tcx, a, root_span); let error = |a| error(tcx, a, root_span); Ok(match &node.kind { // I dont know if handling of these 3 is correct &ExprKind::Scope { value, .. } => recurse_build(tcx, body, value, root_span)?, &ExprKind::PlaceTypeAscription { source, .. } | &ExprKind::ValueTypeAscription { source, .. } => { recurse_build(tcx, body, source, root_span)? } &ExprKind::Literal { lit, neg } => { let sp = node.span; match tcx.at(sp).lit_to_const(LitToConstInput { lit: &lit.node, ty: node.ty, neg }) { Ok(c) => c, Err(LitToConstError::Reported(guar)) => { tcx.const_error_with_guaranteed(node.ty, guar) } Err(LitToConstError::TypeError) => { bug!("encountered type error in lit_to_const") } } } &ExprKind::NonHirLiteral { lit, user_ty: _ } => { let val = ty::ValTree::from_scalar_int(lit); tcx.mk_const(val, node.ty) } &ExprKind::ZstLiteral { user_ty: _ } => { let val = ty::ValTree::zst(); tcx.mk_const(val, node.ty) } &ExprKind::NamedConst { def_id, substs, user_ty: _ } => { let uneval = ty::UnevaluatedConst::new(ty::WithOptConstParam::unknown(def_id), substs); tcx.mk_const(uneval, node.ty) } ExprKind::ConstParam { param, .. } => tcx.mk_const(*param, node.ty), ExprKind::Call { fun, args, .. } => { let fun = recurse_build(tcx, body, *fun, root_span)?; let mut new_args = Vec::>::with_capacity(args.len()); for &id in args.iter() { new_args.push(recurse_build(tcx, body, id, root_span)?); } let new_args = tcx.mk_const_list(new_args.iter()); tcx.mk_const(Expr::FunctionCall(fun, new_args), node.ty) } &ExprKind::Binary { op, lhs, rhs } if check_binop(op) => { let lhs = recurse_build(tcx, body, lhs, root_span)?; let rhs = recurse_build(tcx, body, rhs, root_span)?; tcx.mk_const(Expr::Binop(op, lhs, rhs), node.ty) } &ExprKind::Unary { op, arg } if check_unop(op) => { let arg = recurse_build(tcx, body, arg, root_span)?; tcx.mk_const(Expr::UnOp(op, arg), node.ty) } // This is necessary so that the following compiles: // // ``` // fn foo(a: [(); N + 1]) { // bar::<{ N + 1 }>(); // } // ``` ExprKind::Block { block } => { if let thir::Block { stmts: box [], expr: Some(e), .. } = &body.blocks[*block] { recurse_build(tcx, body, *e, root_span)? } else { maybe_supported_error(GenericConstantTooComplexSub::BlockNotSupported(node.span))? } } // `ExprKind::Use` happens when a `hir::ExprKind::Cast` is a // "coercion cast" i.e. using a coercion or is a no-op. // This is important so that `N as usize as usize` doesnt unify with `N as usize`. (untested) &ExprKind::Use { source } => { let arg = recurse_build(tcx, body, source, root_span)?; tcx.mk_const(Expr::Cast(CastKind::Use, arg, node.ty), node.ty) } &ExprKind::Cast { source } => { let arg = recurse_build(tcx, body, source, root_span)?; tcx.mk_const(Expr::Cast(CastKind::As, arg, node.ty), node.ty) } ExprKind::Borrow { arg, .. } => { let arg_node = &body.exprs[*arg]; // Skip reborrows for now until we allow Deref/Borrow/AddressOf // expressions. // FIXME(generic_const_exprs): Verify/explain why this is sound if let ExprKind::Deref { arg } = arg_node.kind { recurse_build(tcx, body, arg, root_span)? } else { maybe_supported_error(GenericConstantTooComplexSub::BorrowNotSupported(node.span))? } } // FIXME(generic_const_exprs): We may want to support these. ExprKind::AddressOf { .. } | ExprKind::Deref { .. } => maybe_supported_error( GenericConstantTooComplexSub::AddressAndDerefNotSupported(node.span), )?, ExprKind::Repeat { .. } | ExprKind::Array { .. } => { maybe_supported_error(GenericConstantTooComplexSub::ArrayNotSupported(node.span))? } ExprKind::NeverToAny { .. } => { maybe_supported_error(GenericConstantTooComplexSub::NeverToAnyNotSupported(node.span))? } ExprKind::Tuple { .. } => { maybe_supported_error(GenericConstantTooComplexSub::TupleNotSupported(node.span))? } ExprKind::Index { .. } => { maybe_supported_error(GenericConstantTooComplexSub::IndexNotSupported(node.span))? } ExprKind::Field { .. } => { maybe_supported_error(GenericConstantTooComplexSub::FieldNotSupported(node.span))? } ExprKind::ConstBlock { .. } => { maybe_supported_error(GenericConstantTooComplexSub::ConstBlockNotSupported(node.span))? } ExprKind::Adt(_) => { maybe_supported_error(GenericConstantTooComplexSub::AdtNotSupported(node.span))? } // dont know if this is correct ExprKind::Pointer { .. } => { error(GenericConstantTooComplexSub::PointerNotSupported(node.span))? } ExprKind::Yield { .. } => { error(GenericConstantTooComplexSub::YieldNotSupported(node.span))? } ExprKind::Continue { .. } | ExprKind::Break { .. } | ExprKind::Loop { .. } => { error(GenericConstantTooComplexSub::LoopNotSupported(node.span))? } ExprKind::Box { .. } => error(GenericConstantTooComplexSub::BoxNotSupported(node.span))?, ExprKind::Unary { .. } => unreachable!(), // we handle valid unary/binary ops above ExprKind::Binary { .. } => { error(GenericConstantTooComplexSub::BinaryNotSupported(node.span))? } ExprKind::LogicalOp { .. } => { error(GenericConstantTooComplexSub::LogicalOpNotSupported(node.span))? } ExprKind::Assign { .. } | ExprKind::AssignOp { .. } => { error(GenericConstantTooComplexSub::AssignNotSupported(node.span))? } ExprKind::Closure { .. } | ExprKind::Return { .. } => { error(GenericConstantTooComplexSub::ClosureAndReturnNotSupported(node.span))? } // let expressions imply control flow ExprKind::Match { .. } | ExprKind::If { .. } | ExprKind::Let { .. } => { error(GenericConstantTooComplexSub::ControlFlowNotSupported(node.span))? } ExprKind::InlineAsm { .. } => { error(GenericConstantTooComplexSub::InlineAsmNotSupported(node.span))? } // we dont permit let stmts so `VarRef` and `UpvarRef` cant happen ExprKind::VarRef { .. } | ExprKind::UpvarRef { .. } | ExprKind::StaticRef { .. } | ExprKind::ThreadLocalRef(_) => { error(GenericConstantTooComplexSub::OperationNotSupported(node.span))? } }) } struct IsThirPolymorphic<'a, 'tcx> { is_poly: bool, thir: &'a thir::Thir<'tcx>, } fn error<'tcx>( tcx: TyCtxt<'tcx>, sub: GenericConstantTooComplexSub, root_span: Span, ) -> Result { let reported = tcx.sess.emit_err(GenericConstantTooComplex { span: root_span, maybe_supported: None, sub, }); Err(reported) } fn maybe_supported_error<'tcx>( tcx: TyCtxt<'tcx>, sub: GenericConstantTooComplexSub, root_span: Span, ) -> Result { let reported = tcx.sess.emit_err(GenericConstantTooComplex { span: root_span, maybe_supported: Some(()), sub, }); Err(reported) } impl<'a, 'tcx> IsThirPolymorphic<'a, 'tcx> { fn expr_is_poly(&mut self, expr: &thir::Expr<'tcx>) -> bool { if expr.ty.has_non_region_param() { return true; } match expr.kind { thir::ExprKind::NamedConst { substs, .. } => substs.has_non_region_param(), thir::ExprKind::ConstParam { .. } => true, thir::ExprKind::Repeat { value, count } => { self.visit_expr(&self.thir()[value]); count.has_non_region_param() } _ => false, } } fn pat_is_poly(&mut self, pat: &thir::Pat<'tcx>) -> bool { if pat.ty.has_non_region_param() { return true; } match pat.kind { thir::PatKind::Constant { value } => value.has_non_region_param(), thir::PatKind::Range(box thir::PatRange { lo, hi, .. }) => { lo.has_non_region_param() || hi.has_non_region_param() } _ => false, } } } impl<'a, 'tcx> visit::Visitor<'a, 'tcx> for IsThirPolymorphic<'a, 'tcx> { fn thir(&self) -> &'a thir::Thir<'tcx> { &self.thir } #[instrument(skip(self), level = "debug")] fn visit_expr(&mut self, expr: &thir::Expr<'tcx>) { self.is_poly |= self.expr_is_poly(expr); if !self.is_poly { visit::walk_expr(self, expr) } } #[instrument(skip(self), level = "debug")] fn visit_pat(&mut self, pat: &thir::Pat<'tcx>) { self.is_poly |= self.pat_is_poly(pat); if !self.is_poly { visit::walk_pat(self, pat); } } } /// Builds an abstract const, do not use this directly, but use `AbstractConst::new` instead. pub fn thir_abstract_const<'tcx>( tcx: TyCtxt<'tcx>, def: ty::WithOptConstParam, ) -> Result>, ErrorGuaranteed> { if tcx.features().generic_const_exprs { match tcx.def_kind(def.did) { // FIXME(generic_const_exprs): We currently only do this for anonymous constants, // meaning that we do not look into associated constants. I(@lcnr) am not yet sure whether // we want to look into them or treat them as opaque projections. // // Right now we do neither of that and simply always fail to unify them. DefKind::AnonConst | DefKind::InlineConst => (), _ => return Ok(None), } let body = tcx.thir_body(def)?; let (body, body_id) = (&*body.0.borrow(), body.1); let mut is_poly_vis = IsThirPolymorphic { is_poly: false, thir: body }; visit::walk_expr(&mut is_poly_vis, &body[body_id]); if !is_poly_vis.is_poly { return Ok(None); } let root_span = body.exprs[body_id].span; Some(recurse_build(tcx, body, body_id, root_span)).transpose() } else { Ok(None) } } pub fn provide(providers: &mut ty::query::Providers) { *providers = ty::query::Providers { destructure_const, thir_abstract_const: |tcx, def_id| { let def_id = def_id.expect_local(); if let Some(def) = ty::WithOptConstParam::try_lookup(def_id, tcx) { tcx.thir_abstract_const_of_const_arg(def) } else { thir_abstract_const(tcx, ty::WithOptConstParam::unknown(def_id)) } }, thir_abstract_const_of_const_arg: |tcx, (did, param_did)| { thir_abstract_const( tcx, ty::WithOptConstParam { did, const_param_did: Some(param_did) }, ) }, ..*providers }; }