// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use metadata::encoder; use middle::ty::{ReSkolemized, ReVar}; use middle::ty::{bound_region, br_anon, br_named, br_self, br_cap_avoid}; use middle::ty::{br_fresh, ctxt, field}; use middle::ty::{mt, t, param_ty}; use middle::ty::{re_bound, re_free, re_scope, re_infer, re_static, Region, re_empty}; use middle::ty::{ty_bool, ty_char, ty_bot, ty_box, ty_struct, ty_enum}; use middle::ty::{ty_err, ty_estr, ty_evec, ty_float, ty_bare_fn, ty_closure}; use middle::ty::{ty_nil, ty_opaque_box, ty_opaque_closure_ptr, ty_param}; use middle::ty::{ty_ptr, ty_rptr, ty_self, ty_tup, ty_type, ty_uniq}; use middle::ty::{ty_trait, ty_int}; use middle::ty::{ty_uint, ty_unboxed_vec, ty_infer}; use middle::ty; use middle::typeck; use syntax::abi::AbiSet; use syntax::ast_map; use syntax::codemap::{Span, Pos}; use syntax::parse::token; use syntax::print::pprust; use syntax::{ast, ast_util}; use syntax::opt_vec; use syntax::opt_vec::OptVec; /// Produces a string suitable for debugging output. pub trait Repr { fn repr(&self, tcx: ctxt) -> ~str; } /// Produces a string suitable for showing to the user. pub trait UserString { fn user_string(&self, tcx: ctxt) -> ~str; } pub fn note_and_explain_region(cx: ctxt, prefix: &str, region: ty::Region, suffix: &str) { match explain_region_and_span(cx, region) { (ref str, Some(span)) => { cx.sess.span_note( span, format!("{}{}{}", prefix, (*str), suffix)); } (ref str, None) => { cx.sess.note( format!("{}{}{}", prefix, (*str), suffix)); } } } /// Returns a string like "the block at 27:31" that attempts to explain a /// lifetime in a way it might plausibly be understood. pub fn explain_region(cx: ctxt, region: ty::Region) -> ~str { let (res, _) = explain_region_and_span(cx, region); return res; } pub fn explain_region_and_span(cx: ctxt, region: ty::Region) -> (~str, Option) { return match region { re_scope(node_id) => { match cx.items.find(&node_id) { Some(&ast_map::node_block(ref blk)) => { explain_span(cx, "block", blk.span) } Some(&ast_map::node_callee_scope(expr)) => { explain_span(cx, "callee", expr.span) } Some(&ast_map::node_expr(expr)) => { match expr.node { ast::ExprCall(*) => explain_span(cx, "call", expr.span), ast::ExprMethodCall(*) => { explain_span(cx, "method call", expr.span) }, ast::ExprMatch(*) => explain_span(cx, "match", expr.span), _ => explain_span(cx, "expression", expr.span) } } Some(&ast_map::node_stmt(stmt)) => { explain_span(cx, "statement", stmt.span) } Some(&ast_map::node_item(it, _)) if (match it.node { ast::item_fn(*) => true, _ => false}) => { explain_span(cx, "function body", it.span) } Some(_) | None => { // this really should not happen (format!("unknown scope: {}. Please report a bug.", node_id), None) } } } re_free(ref fr) => { let prefix = match fr.bound_region { br_anon(idx) => format!("the anonymous lifetime \\#{} defined on", idx + 1), br_fresh(_) => format!("an anonymous lifetime defined on"), _ => format!("the lifetime {} as defined on", bound_region_ptr_to_str(cx, fr.bound_region)) }; match cx.items.find(&fr.scope_id) { Some(&ast_map::node_block(ref blk)) => { let (msg, opt_span) = explain_span(cx, "block", blk.span); (format!("{} {}", prefix, msg), opt_span) } Some(_) | None => { // this really should not happen (format!("{} node {}", prefix, fr.scope_id), None) } } } re_static => { (~"the static lifetime", None) } re_empty => { (~"the empty lifetime", None) } // I believe these cases should not occur (except when debugging, // perhaps) re_infer(_) | re_bound(_) => { (format!("lifetime {:?}", region), None) } }; fn explain_span(cx: ctxt, heading: &str, span: Span) -> (~str, Option) { let lo = cx.sess.codemap.lookup_char_pos_adj(span.lo); (format!("the {} at {}:{}", heading, lo.line, lo.col.to_uint()), Some(span)) } } pub fn bound_region_ptr_to_str(cx: ctxt, br: bound_region) -> ~str { bound_region_to_str(cx, "&", true, br) } pub fn bound_region_to_str(cx: ctxt, prefix: &str, space: bool, br: bound_region) -> ~str { let space_str = if space { " " } else { "" }; if cx.sess.verbose() { return format!("{}{:?}{}", prefix, br, space_str); } match br { br_named(id) => format!("{}'{}{}", prefix, cx.sess.str_of(id), space_str), br_self => format!("{}'self{}", prefix, space_str), br_anon(_) => prefix.to_str(), br_fresh(_) => prefix.to_str(), br_cap_avoid(_, br) => bound_region_to_str(cx, prefix, space, *br) } } pub fn re_scope_id_to_str(cx: ctxt, node_id: ast::NodeId) -> ~str { match cx.items.find(&node_id) { Some(&ast_map::node_block(ref blk)) => { format!("", cx.sess.codemap.span_to_str(blk.span)) } Some(&ast_map::node_expr(expr)) => { match expr.node { ast::ExprCall(*) => { format!("", cx.sess.codemap.span_to_str(expr.span)) } ast::ExprMatch(*) => { format!("", cx.sess.codemap.span_to_str(expr.span)) } ast::ExprAssignOp(*) | ast::ExprUnary(*) | ast::ExprBinary(*) | ast::ExprIndex(*) => { format!("", cx.sess.codemap.span_to_str(expr.span)) } _ => { format!("", cx.sess.codemap.span_to_str(expr.span)) } } } None => { format!("", node_id) } _ => { cx.sess.bug( format!("re_scope refers to {}", ast_map::node_id_to_str(cx.items, node_id, token::get_ident_interner()))) } } } // In general, if you are giving a region error message, // you should use `explain_region()` or, better yet, // `note_and_explain_region()` pub fn region_ptr_to_str(cx: ctxt, region: Region) -> ~str { region_to_str(cx, "&", true, region) } pub fn region_to_str(cx: ctxt, prefix: &str, space: bool, region: Region) -> ~str { let space_str = if space { " " } else { "" }; if cx.sess.verbose() { return format!("{}{:?}{}", prefix, region, space_str); } // These printouts are concise. They do not contain all the information // the user might want to diagnose an error, but there is basically no way // to fit that into a short string. Hence the recommendation to use // `explain_region()` or `note_and_explain_region()`. match region { re_scope(_) => prefix.to_str(), re_bound(br) => bound_region_to_str(cx, prefix, space, br), re_free(ref fr) => bound_region_to_str(cx, prefix, space, fr.bound_region), re_infer(ReSkolemized(_, br)) => { bound_region_to_str(cx, prefix, space, br) } re_infer(ReVar(_)) => prefix.to_str(), re_static => format!("{}'static{}", prefix, space_str), re_empty => format!("{}'{}", prefix, space_str) } } pub fn mutability_to_str(m: ast::Mutability) -> ~str { match m { ast::MutMutable => ~"mut ", ast::MutImmutable => ~"", } } pub fn mt_to_str(cx: ctxt, m: &mt) -> ~str { mt_to_str_wrapped(cx, "", m, "") } pub fn mt_to_str_wrapped(cx: ctxt, before: &str, m: &mt, after: &str) -> ~str { let mstr = mutability_to_str(m.mutbl); return format!("{}{}{}{}", mstr, before, ty_to_str(cx, m.ty), after); } pub fn vstore_to_str(cx: ctxt, vs: ty::vstore) -> ~str { match vs { ty::vstore_fixed(n) => format!("{}", n), ty::vstore_uniq => ~"~", ty::vstore_box => ~"@", ty::vstore_slice(r) => region_ptr_to_str(cx, r) } } pub fn trait_store_to_str(cx: ctxt, s: ty::TraitStore) -> ~str { match s { ty::UniqTraitStore => ~"~", ty::BoxTraitStore => ~"@", ty::RegionTraitStore(r) => region_ptr_to_str(cx, r) } } pub fn vstore_ty_to_str(cx: ctxt, mt: &mt, vs: ty::vstore) -> ~str { match vs { ty::vstore_fixed(_) => { format!("[{}, .. {}]", mt_to_str(cx, mt), vstore_to_str(cx, vs)) } _ => { format!("{}{}", vstore_to_str(cx, vs), mt_to_str_wrapped(cx, "[", mt, "]")) } } } pub fn vec_map_to_str(ts: &[T], f: &fn(t: &T) -> ~str) -> ~str { let tstrs = ts.map(f); format!("[{}]", tstrs.connect(", ")) } pub fn tys_to_str(cx: ctxt, ts: &[t]) -> ~str { vec_map_to_str(ts, |t| ty_to_str(cx, *t)) } pub fn fn_sig_to_str(cx: ctxt, typ: &ty::FnSig) -> ~str { format!("fn{} -> {}", tys_to_str(cx, typ.inputs.map(|a| *a)), ty_to_str(cx, typ.output)) } pub fn trait_ref_to_str(cx: ctxt, trait_ref: &ty::TraitRef) -> ~str { trait_ref.user_string(cx) } pub fn ty_to_str(cx: ctxt, typ: t) -> ~str { fn fn_input_to_str(cx: ctxt, input: ty::t) -> ~str { ty_to_str(cx, input) } fn bare_fn_to_str(cx: ctxt, purity: ast::purity, abis: AbiSet, ident: Option, sig: &ty::FnSig) -> ~str { let mut s = if abis.is_rust() { ~"" } else { format!("extern {} ", abis.to_str()) }; match purity { ast::impure_fn => {} _ => { s.push_str(purity.to_str()); s.push_char(' '); } }; s.push_str("fn"); match ident { Some(i) => { s.push_char(' '); s.push_str(cx.sess.str_of(i)); } _ => { } } push_sig_to_str(cx, &mut s, '(', ')', sig); return s; } fn closure_to_str(cx: ctxt, cty: &ty::ClosureTy) -> ~str { let is_proc = (cty.sigil, cty.onceness) == (ast::OwnedSigil, ast::Once); let is_borrowed_closure = cty.sigil == ast::BorrowedSigil; let mut s = if is_proc || is_borrowed_closure { ~"" } else { cty.sigil.to_str() }; match (cty.sigil, cty.region) { (ast::ManagedSigil, ty::re_static) | (ast::OwnedSigil, ty::re_static) => {} (_, region) => { s.push_str(region_to_str(cx, "", true, region)); } } match cty.purity { ast::impure_fn => {} _ => { s.push_str(cty.purity.to_str()); s.push_char(' '); } }; if is_proc { s.push_str("proc"); } else { match cty.onceness { ast::Many => {} ast::Once => { s.push_str(cty.onceness.to_str()); s.push_char(' '); } }; if !is_borrowed_closure { s.push_str("fn"); } } if !is_borrowed_closure { // Print bounds before `fn` if this is not a borrowed closure. if !cty.bounds.is_empty() { s.push_str(":"); s.push_str(cty.bounds.repr(cx)); } push_sig_to_str(cx, &mut s, '(', ')', &cty.sig); } else { // Print bounds after the signature if this is a borrowed closure. push_sig_to_str(cx, &mut s, '|', '|', &cty.sig); if is_borrowed_closure { if !cty.bounds.is_empty() { s.push_str(":"); s.push_str(cty.bounds.repr(cx)); } } } return s; } fn push_sig_to_str(cx: ctxt, s: &mut ~str, bra: char, ket: char, sig: &ty::FnSig) { s.push_char(bra); let strs = sig.inputs.map(|a| fn_input_to_str(cx, *a)); s.push_str(strs.connect(", ")); s.push_char(ket); if ty::get(sig.output).sty != ty_nil { s.push_str(" -> "); if ty::type_is_bot(sig.output) { s.push_char('!'); } else { s.push_str(ty_to_str(cx, sig.output)); } } } fn method_to_str(cx: ctxt, m: ty::Method) -> ~str { bare_fn_to_str(cx, m.fty.purity, m.fty.abis, Some(m.ident), &m.fty.sig) + ";" } fn field_to_str(cx: ctxt, f: field) -> ~str { return format!("{}: {}", cx.sess.str_of(f.ident), mt_to_str(cx, &f.mt)); } // if there is an id, print that instead of the structural type: /*for def_id in ty::type_def_id(typ).iter() { // note that this typedef cannot have type parameters return ast_map::path_to_str(ty::item_path(cx, *def_id), cx.sess.intr()); }*/ // pretty print the structural type representation: return match ty::get(typ).sty { ty_nil => ~"()", ty_bot => ~"!", ty_bool => ~"bool", ty_char => ~"char", ty_int(ast::ty_i) => ~"int", ty_int(t) => ast_util::int_ty_to_str(t), ty_uint(ast::ty_u) => ~"uint", ty_uint(t) => ast_util::uint_ty_to_str(t), ty_float(t) => ast_util::float_ty_to_str(t), ty_box(ref tm) => ~"@" + mt_to_str(cx, tm), ty_uniq(ref tm) => ~"~" + mt_to_str(cx, tm), ty_ptr(ref tm) => ~"*" + mt_to_str(cx, tm), ty_rptr(r, ref tm) => { region_ptr_to_str(cx, r) + mt_to_str(cx, tm) } ty_unboxed_vec(ref tm) => { format!("unboxed_vec<{}>", mt_to_str(cx, tm)) } ty_type => ~"type", ty_tup(ref elems) => { let strs = elems.map(|elem| ty_to_str(cx, *elem)); ~"(" + strs.connect(",") + ")" } ty_closure(ref f) => { closure_to_str(cx, f) } ty_bare_fn(ref f) => { bare_fn_to_str(cx, f.purity, f.abis, None, &f.sig) } ty_infer(infer_ty) => infer_ty.to_str(), ty_err => ~"[type error]", ty_param(param_ty {idx: id, def_id: did}) => { let param_def = cx.ty_param_defs.find(&did.node); let ident = match param_def { Some(def) => { cx.sess.str_of(def.ident).to_owned() } None => { // This should not happen... format!("BUG[{:?}]", id) } }; if !cx.sess.verbose() { ident } else { format!("{}:{:?}", ident, did) } } ty_self(*) => ~"Self", ty_enum(did, ref substs) | ty_struct(did, ref substs) => { let path = ty::item_path(cx, did); let base = ast_map::path_to_str(path, cx.sess.intr()); parameterized(cx, base, &substs.regions, substs.tps) } ty_trait(did, ref substs, s, mutbl, ref bounds) => { let path = ty::item_path(cx, did); let base = ast_map::path_to_str(path, cx.sess.intr()); let ty = parameterized(cx, base, &substs.regions, substs.tps); let bound_sep = if bounds.is_empty() { "" } else { ":" }; let bound_str = bounds.repr(cx); format!("{}{}{}{}{}", trait_store_to_str(cx, s), mutability_to_str(mutbl), ty, bound_sep, bound_str) } ty_evec(ref mt, vs) => { vstore_ty_to_str(cx, mt, vs) } ty_estr(vs) => format!("{}{}", vstore_to_str(cx, vs), "str"), ty_opaque_box => ~"@?", ty_opaque_closure_ptr(ast::BorrowedSigil) => ~"&closure", ty_opaque_closure_ptr(ast::ManagedSigil) => ~"@closure", ty_opaque_closure_ptr(ast::OwnedSigil) => ~"~closure", } } pub fn parameterized(cx: ctxt, base: &str, regions: &ty::RegionSubsts, tps: &[ty::t]) -> ~str { let mut strs = ~[]; match *regions { ty::ErasedRegions => { } ty::NonerasedRegions(ref regions) => { for &r in regions.iter() { strs.push(region_to_str(cx, "", false, r)) } } } for t in tps.iter() { strs.push(ty_to_str(cx, *t)) } if strs.len() > 0u { format!("{}<{}>", base, strs.connect(",")) } else { format!("{}", base) } } pub fn ty_to_short_str(cx: ctxt, typ: t) -> ~str { let mut s = encoder::encoded_ty(cx, typ); if s.len() >= 32u { s = s.slice(0u, 32u).to_owned(); } return s; } impl Repr for Option { fn repr(&self, tcx: ctxt) -> ~str { match self { &None => ~"None", &Some(ref t) => format!("Some({})", t.repr(tcx)) } } } impl Repr for @T { fn repr(&self, tcx: ctxt) -> ~str { (&**self).repr(tcx) } } impl Repr for ~T { fn repr(&self, tcx: ctxt) -> ~str { (&**self).repr(tcx) } } fn repr_vec(tcx: ctxt, v: &[T]) -> ~str { vec_map_to_str(v, |t| t.repr(tcx)) } impl<'self, T:Repr> Repr for &'self [T] { fn repr(&self, tcx: ctxt) -> ~str { repr_vec(tcx, *self) } } impl Repr for OptVec { fn repr(&self, tcx: ctxt) -> ~str { match *self { opt_vec::Empty => ~"[]", opt_vec::Vec(ref v) => repr_vec(tcx, *v) } } } // This is necessary to handle types like Option<~[T]>, for which // autoderef cannot convert the &[T] handler impl Repr for ~[T] { fn repr(&self, tcx: ctxt) -> ~str { repr_vec(tcx, *self) } } impl Repr for ty::TypeParameterDef { fn repr(&self, tcx: ctxt) -> ~str { format!("TypeParameterDef \\{{:?}, bounds: {}\\}", self.def_id, self.bounds.repr(tcx)) } } impl Repr for ty::t { fn repr(&self, tcx: ctxt) -> ~str { ty_to_str(tcx, *self) } } impl Repr for ty::substs { fn repr(&self, tcx: ctxt) -> ~str { format!("substs(regions={}, self_ty={}, tps={})", self.regions.repr(tcx), self.self_ty.repr(tcx), self.tps.repr(tcx)) } } impl Repr for ty::RegionSubsts { fn repr(&self, tcx: ctxt) -> ~str { match *self { ty::ErasedRegions => ~"erased", ty::NonerasedRegions(ref regions) => regions.repr(tcx) } } } impl Repr for ty::ParamBounds { fn repr(&self, tcx: ctxt) -> ~str { let mut res = ~[]; for b in self.builtin_bounds.iter() { res.push(match b { ty::BoundStatic => ~"'static", ty::BoundSend => ~"Send", ty::BoundFreeze => ~"Freeze", ty::BoundSized => ~"Sized", }); } for t in self.trait_bounds.iter() { res.push(t.repr(tcx)); } res.connect("+") } } impl Repr for ty::TraitRef { fn repr(&self, tcx: ctxt) -> ~str { trait_ref_to_str(tcx, self) } } impl Repr for ast::Expr { fn repr(&self, tcx: ctxt) -> ~str { format!("expr({}: {})", self.id, pprust::expr_to_str(self, tcx.sess.intr())) } } impl Repr for ast::Pat { fn repr(&self, tcx: ctxt) -> ~str { format!("pat({}: {})", self.id, pprust::pat_to_str(self, tcx.sess.intr())) } } impl Repr for ty::bound_region { fn repr(&self, tcx: ctxt) -> ~str { bound_region_ptr_to_str(tcx, *self) } } impl Repr for ty::Region { fn repr(&self, tcx: ctxt) -> ~str { region_to_str(tcx, "", false, *self) } } impl Repr for ast::DefId { fn repr(&self, tcx: ctxt) -> ~str { // Unfortunately, there seems to be no way to attempt to print // a path for a def-id, so I'll just make a best effort for now // and otherwise fallback to just printing the crate/node pair if self.crate == ast::LOCAL_CRATE { match tcx.items.find(&self.node) { Some(&ast_map::node_item(*)) | Some(&ast_map::node_foreign_item(*)) | Some(&ast_map::node_method(*)) | Some(&ast_map::node_trait_method(*)) | Some(&ast_map::node_variant(*)) | Some(&ast_map::node_struct_ctor(*)) => { return format!("{:?}:{}", *self, ty::item_path_str(tcx, *self)); } _ => {} } } return format!("{:?}", *self); } } impl Repr for ty::ty_param_bounds_and_ty { fn repr(&self, tcx: ctxt) -> ~str { format!("ty_param_bounds_and_ty \\{generics: {}, ty: {}\\}", self.generics.repr(tcx), self.ty.repr(tcx)) } } impl Repr for ty::Generics { fn repr(&self, tcx: ctxt) -> ~str { format!("Generics \\{type_param_defs: {}, region_param: {:?}\\}", self.type_param_defs.repr(tcx), self.region_param) } } impl Repr for ty::Method { fn repr(&self, tcx: ctxt) -> ~str { format!("method \\{ident: {}, generics: {}, transformed_self_ty: {}, \ fty: {}, explicit_self: {}, vis: {}, def_id: {}\\}", self.ident.repr(tcx), self.generics.repr(tcx), self.transformed_self_ty.repr(tcx), self.fty.repr(tcx), self.explicit_self.repr(tcx), self.vis.repr(tcx), self.def_id.repr(tcx)) } } impl Repr for ast::Ident { fn repr(&self, _tcx: ctxt) -> ~str { token::ident_to_str(self).to_owned() } } impl Repr for ast::explicit_self_ { fn repr(&self, _tcx: ctxt) -> ~str { format!("{:?}", *self) } } impl Repr for ast::visibility { fn repr(&self, _tcx: ctxt) -> ~str { format!("{:?}", *self) } } impl Repr for ty::BareFnTy { fn repr(&self, tcx: ctxt) -> ~str { format!("BareFnTy \\{purity: {:?}, abis: {}, sig: {}\\}", self.purity, self.abis.to_str(), self.sig.repr(tcx)) } } impl Repr for ty::FnSig { fn repr(&self, tcx: ctxt) -> ~str { fn_sig_to_str(tcx, self) } } impl Repr for typeck::method_map_entry { fn repr(&self, tcx: ctxt) -> ~str { format!("method_map_entry \\{self_arg: {}, \ explicit_self: {}, \ origin: {}\\}", self.self_ty.repr(tcx), self.explicit_self.repr(tcx), self.origin.repr(tcx)) } } impl Repr for typeck::method_origin { fn repr(&self, tcx: ctxt) -> ~str { match self { &typeck::method_static(def_id) => { format!("method_static({})", def_id.repr(tcx)) } &typeck::method_param(ref p) => { p.repr(tcx) } &typeck::method_object(ref p) => { p.repr(tcx) } } } } impl Repr for typeck::method_param { fn repr(&self, tcx: ctxt) -> ~str { format!("method_param({},{:?},{:?},{:?})", self.trait_id.repr(tcx), self.method_num, self.param_num, self.bound_num) } } impl Repr for typeck::method_object { fn repr(&self, tcx: ctxt) -> ~str { format!("method_object({},{:?},{:?})", self.trait_id.repr(tcx), self.method_num, self.real_index) } } impl Repr for ty::RegionVid { fn repr(&self, _tcx: ctxt) -> ~str { format!("{:?}", *self) } } impl Repr for ty::TraitStore { fn repr(&self, tcx: ctxt) -> ~str { match self { &ty::BoxTraitStore => ~"@Trait", &ty::UniqTraitStore => ~"~Trait", &ty::RegionTraitStore(r) => format!("&{} Trait", r.repr(tcx)) } } } impl Repr for ty::vstore { fn repr(&self, tcx: ctxt) -> ~str { vstore_to_str(tcx, *self) } } impl Repr for ast_map::path_elt { fn repr(&self, tcx: ctxt) -> ~str { match *self { ast_map::path_mod(id) => id.repr(tcx), ast_map::path_name(id) => id.repr(tcx), ast_map::path_pretty_name(id, _) => id.repr(tcx), } } } impl Repr for ty::BuiltinBound { fn repr(&self, _tcx: ctxt) -> ~str { format!("{:?}", *self) } } impl UserString for ty::BuiltinBound { fn user_string(&self, _tcx: ctxt) -> ~str { match *self { ty::BoundStatic => ~"'static", ty::BoundSend => ~"Send", ty::BoundFreeze => ~"Freeze", ty::BoundSized => ~"Sized", } } } impl Repr for ty::BuiltinBounds { fn repr(&self, tcx: ctxt) -> ~str { self.user_string(tcx) } } impl Repr for Span { fn repr(&self, tcx: ctxt) -> ~str { tcx.sess.codemap.span_to_str(*self) } } impl UserString for @A { fn user_string(&self, tcx: ctxt) -> ~str { let this: &A = &**self; this.user_string(tcx) } } impl UserString for ty::BuiltinBounds { fn user_string(&self, tcx: ctxt) -> ~str { if self.is_empty() { ~"" } else { let mut result = ~[]; for bb in self.iter() { result.push(bb.user_string(tcx)); } result.connect("+") } } } impl UserString for ty::TraitRef { fn user_string(&self, tcx: ctxt) -> ~str { let path = ty::item_path(tcx, self.def_id); let base = ast_map::path_to_str(path, tcx.sess.intr()); if tcx.sess.verbose() && self.substs.self_ty.is_some() { let mut all_tps = self.substs.tps.clone(); for &t in self.substs.self_ty.iter() { all_tps.push(t); } parameterized(tcx, base, &self.substs.regions, all_tps) } else { parameterized(tcx, base, &self.substs.regions, self.substs.tps) } } } impl UserString for ty::t { fn user_string(&self, tcx: ctxt) -> ~str { ty_to_str(tcx, *self) } } impl Repr for AbiSet { fn repr(&self, _tcx: ctxt) -> ~str { self.to_str() } } impl UserString for AbiSet { fn user_string(&self, _tcx: ctxt) -> ~str { self.to_str() } }