use crate::leb128::{self, read_signed_leb128, write_signed_leb128}; use crate::serialize; use std::borrow::Cow; use std::mem::MaybeUninit; use std::ptr; // ----------------------------------------------------------------------------- // Encoder // ----------------------------------------------------------------------------- pub type EncodeResult = Result<(), !>; pub struct Encoder { pub data: Vec, } impl Encoder { pub fn new(data: Vec) -> Encoder { Encoder { data } } pub fn into_inner(self) -> Vec { self.data } #[inline] pub fn emit_raw_bytes(&mut self, s: &[u8]) { self.data.extend_from_slice(s); } } macro_rules! write_uleb128 { ($enc:expr, $value:expr, $fun:ident) => {{ leb128::$fun(&mut $enc.data, $value); Ok(()) }}; } macro_rules! write_sleb128 { ($enc:expr, $value:expr) => {{ write_signed_leb128(&mut $enc.data, $value as i128); Ok(()) }}; } impl serialize::Encoder for Encoder { type Error = !; #[inline] fn emit_unit(&mut self) -> EncodeResult { Ok(()) } #[inline] fn emit_usize(&mut self, v: usize) -> EncodeResult { write_uleb128!(self, v, write_usize_leb128) } #[inline] fn emit_u128(&mut self, v: u128) -> EncodeResult { write_uleb128!(self, v, write_u128_leb128) } #[inline] fn emit_u64(&mut self, v: u64) -> EncodeResult { write_uleb128!(self, v, write_u64_leb128) } #[inline] fn emit_u32(&mut self, v: u32) -> EncodeResult { write_uleb128!(self, v, write_u32_leb128) } #[inline] fn emit_u16(&mut self, v: u16) -> EncodeResult { write_uleb128!(self, v, write_u16_leb128) } #[inline] fn emit_u8(&mut self, v: u8) -> EncodeResult { self.data.push(v); Ok(()) } #[inline] fn emit_isize(&mut self, v: isize) -> EncodeResult { write_sleb128!(self, v) } #[inline] fn emit_i128(&mut self, v: i128) -> EncodeResult { write_sleb128!(self, v) } #[inline] fn emit_i64(&mut self, v: i64) -> EncodeResult { write_sleb128!(self, v) } #[inline] fn emit_i32(&mut self, v: i32) -> EncodeResult { write_sleb128!(self, v) } #[inline] fn emit_i16(&mut self, v: i16) -> EncodeResult { write_sleb128!(self, v) } #[inline] fn emit_i8(&mut self, v: i8) -> EncodeResult { let as_u8: u8 = unsafe { std::mem::transmute(v) }; self.emit_u8(as_u8) } #[inline] fn emit_bool(&mut self, v: bool) -> EncodeResult { self.emit_u8(if v { 1 } else { 0 }) } #[inline] fn emit_f64(&mut self, v: f64) -> EncodeResult { let as_u64: u64 = v.to_bits(); self.emit_u64(as_u64) } #[inline] fn emit_f32(&mut self, v: f32) -> EncodeResult { let as_u32: u32 = v.to_bits(); self.emit_u32(as_u32) } #[inline] fn emit_char(&mut self, v: char) -> EncodeResult { self.emit_u32(v as u32) } #[inline] fn emit_str(&mut self, v: &str) -> EncodeResult { self.emit_usize(v.len())?; self.emit_raw_bytes(v.as_bytes()); Ok(()) } } impl Encoder { #[inline] pub fn position(&self) -> usize { self.data.len() } } // ----------------------------------------------------------------------------- // Decoder // ----------------------------------------------------------------------------- pub struct Decoder<'a> { pub data: &'a [u8], position: usize, } impl<'a> Decoder<'a> { #[inline] pub fn new(data: &'a [u8], position: usize) -> Decoder<'a> { Decoder { data, position } } #[inline] pub fn position(&self) -> usize { self.position } #[inline] pub fn set_position(&mut self, pos: usize) { self.position = pos } #[inline] pub fn advance(&mut self, bytes: usize) { self.position += bytes; } #[inline] pub fn read_raw_bytes(&mut self, s: &mut [MaybeUninit]) -> Result<(), String> { let start = self.position; let end = start + s.len(); assert!(end <= self.data.len()); // SAFETY: Both `src` and `dst` point to at least `s.len()` elements: // `src` points to at least `s.len()` elements by above assert, and // `dst` points to `s.len()` elements by derivation from `s`. unsafe { let src = self.data.as_ptr().add(start); let dst = s.as_mut_ptr() as *mut u8; ptr::copy_nonoverlapping(src, dst, s.len()); } self.position = end; Ok(()) } } macro_rules! read_uleb128 { ($dec:expr, $fun:ident) => {{ let (value, bytes_read) = leb128::$fun(&$dec.data[$dec.position..]); $dec.position += bytes_read; Ok(value) }}; } macro_rules! read_sleb128 { ($dec:expr, $t:ty) => {{ let (value, bytes_read) = read_signed_leb128($dec.data, $dec.position); $dec.position += bytes_read; Ok(value as $t) }}; } impl<'a> serialize::Decoder for Decoder<'a> { type Error = String; #[inline] fn read_nil(&mut self) -> Result<(), Self::Error> { Ok(()) } #[inline] fn read_u128(&mut self) -> Result { read_uleb128!(self, read_u128_leb128) } #[inline] fn read_u64(&mut self) -> Result { read_uleb128!(self, read_u64_leb128) } #[inline] fn read_u32(&mut self) -> Result { read_uleb128!(self, read_u32_leb128) } #[inline] fn read_u16(&mut self) -> Result { read_uleb128!(self, read_u16_leb128) } #[inline] fn read_u8(&mut self) -> Result { let value = self.data[self.position]; self.position += 1; Ok(value) } #[inline] fn read_usize(&mut self) -> Result { read_uleb128!(self, read_usize_leb128) } #[inline] fn read_i128(&mut self) -> Result { read_sleb128!(self, i128) } #[inline] fn read_i64(&mut self) -> Result { read_sleb128!(self, i64) } #[inline] fn read_i32(&mut self) -> Result { read_sleb128!(self, i32) } #[inline] fn read_i16(&mut self) -> Result { read_sleb128!(self, i16) } #[inline] fn read_i8(&mut self) -> Result { let as_u8 = self.data[self.position]; self.position += 1; unsafe { Ok(::std::mem::transmute(as_u8)) } } #[inline] fn read_isize(&mut self) -> Result { read_sleb128!(self, isize) } #[inline] fn read_bool(&mut self) -> Result { let value = self.read_u8()?; Ok(value != 0) } #[inline] fn read_f64(&mut self) -> Result { let bits = self.read_u64()?; Ok(f64::from_bits(bits)) } #[inline] fn read_f32(&mut self) -> Result { let bits = self.read_u32()?; Ok(f32::from_bits(bits)) } #[inline] fn read_char(&mut self) -> Result { let bits = self.read_u32()?; Ok(std::char::from_u32(bits).unwrap()) } #[inline] fn read_str(&mut self) -> Result, Self::Error> { let len = self.read_usize()?; let s = std::str::from_utf8(&self.data[self.position..self.position + len]).unwrap(); self.position += len; Ok(Cow::Borrowed(s)) } #[inline] fn error(&mut self, err: &str) -> Self::Error { err.to_string() } } // Specializations for contiguous byte sequences follow. The default implementations for slices // encode and decode each element individually. This isn't necessary for `u8` slices when using // opaque encoders and decoders, because each `u8` is unchanged by encoding and decoding. // Therefore, we can use more efficient implementations that process the entire sequence at once. // Specialize encoding byte slices. This specialization also applies to encoding `Vec`s, etc., // since the default implementations call `encode` on their slices internally. impl serialize::Encodable for [u8] { fn encode(&self, e: &mut Encoder) -> EncodeResult { serialize::Encoder::emit_usize(e, self.len())?; e.emit_raw_bytes(self); Ok(()) } } // Specialize decoding `Vec`. This specialization also applies to decoding `Box<[u8]>`s, etc., // since the default implementations call `decode` to produce a `Vec` internally. impl<'a> serialize::Decodable> for Vec { fn decode(d: &mut Decoder<'a>) -> Result { let len = serialize::Decoder::read_usize(d)?; let mut v = Vec::with_capacity(len); let buf = &mut v.spare_capacity_mut()[..len]; d.read_raw_bytes(buf)?; unsafe { v.set_len(len); } Ok(v) } }