#[doc(hidden)]; /* Syntax Extension: fmt Format a string The 'fmt' extension is modeled on the posix printf system. A posix conversion ostensibly looks like this > %~[parameter]~[flags]~[width]~[.precision]~[length]type Given the different numeric type bestiary we have, we omit the 'length' parameter and support slightly different conversions for 'type' > %~[parameter]~[flags]~[width]~[.precision]type we also only support translating-to-rust a tiny subset of the possible combinations at the moment. Example: #debug("hello, %s!", "world"); */ import option::{some, none}; /* * We have a 'ct' (compile-time) module that parses format strings into a * sequence of conversions. From those conversions AST fragments are built * that call into properly-typed functions in the 'rt' (run-time) module. * Each of those run-time conversion functions accepts another conversion * description that specifies how to format its output. * * The building of the AST is currently done in a module inside the compiler, * but should migrate over here as the plugin interface is defined. */ // Functions used by the fmt extension at compile time mod ct { enum signedness { signed, unsigned, } enum caseness { case_upper, case_lower, } enum ty { ty_bool, ty_str, ty_char, ty_int(signedness), ty_bits, ty_hex(caseness), ty_octal, ty_float, ty_poly, } enum flag { flag_left_justify, flag_left_zero_pad, flag_space_for_sign, flag_sign_always, flag_alternate, } enum count { count_is(int), count_is_param(int), count_is_next_param, count_implied, } // A formatted conversion from an expression to a string type conv = {param: option, flags: ~[flag], width: count, precision: count, ty: ty}; // A fragment of the output sequence enum piece { piece_string(~str), piece_conv(conv), } type error_fn = fn@(~str) -> ! ; fn parse_fmt_string(s: ~str, error: error_fn) -> ~[piece] { let mut pieces: ~[piece] = ~[]; let lim = str::len(s); let mut buf = ~""; fn flush_buf(buf: ~str, &pieces: ~[piece]) -> ~str { if str::len(buf) > 0u { let piece = piece_string(buf); vec::push(pieces, piece); } ret ~""; } let mut i = 0u; while i < lim { let size = str::utf8_char_width(s[i]); let curr = str::slice(s, i, i+size); if str::eq(curr, ~"%") { i += 1u; if i >= lim { error(~"unterminated conversion at end of string"); } let curr2 = str::slice(s, i, i+1u); if str::eq(curr2, ~"%") { buf += curr2; i += 1u; } else { buf = flush_buf(buf, pieces); let rs = parse_conversion(s, i, lim, error); vec::push(pieces, rs.piece); i = rs.next; } } else { buf += curr; i += size; } } flush_buf(buf, pieces); ret pieces; } fn peek_num(s: ~str, i: uint, lim: uint) -> option<{num: uint, next: uint}> { if i >= lim { ret none; } let c = s[i]; if !('0' as u8 <= c && c <= '9' as u8) { ret option::none; } let n = (c - ('0' as u8)) as uint; ret alt peek_num(s, i + 1u, lim) { none { some({num: n, next: i + 1u}) } some(next) { let m = next.num; let j = next.next; some({num: n * 10u + m, next: j}) } }; } fn parse_conversion(s: ~str, i: uint, lim: uint, error: error_fn) -> {piece: piece, next: uint} { let parm = parse_parameter(s, i, lim); let flags = parse_flags(s, parm.next, lim); let width = parse_count(s, flags.next, lim); let prec = parse_precision(s, width.next, lim); let ty = parse_type(s, prec.next, lim, error); ret {piece: piece_conv({param: parm.param, flags: flags.flags, width: width.count, precision: prec.count, ty: ty.ty}), next: ty.next}; } fn parse_parameter(s: ~str, i: uint, lim: uint) -> {param: option, next: uint} { if i >= lim { ret {param: none, next: i}; } let num = peek_num(s, i, lim); ret alt num { none { {param: none, next: i} } some(t) { let n = t.num; let j = t.next; if j < lim && s[j] == '$' as u8 { {param: some(n as int), next: j + 1u} } else { {param: none, next: i} } } }; } fn parse_flags(s: ~str, i: uint, lim: uint) -> {flags: ~[flag], next: uint} { let noflags: ~[flag] = ~[]; if i >= lim { ret {flags: noflags, next: i}; } fn more_(f: flag, s: ~str, i: uint, lim: uint) -> {flags: ~[flag], next: uint} { let next = parse_flags(s, i + 1u, lim); let rest = next.flags; let j = next.next; let curr: ~[flag] = ~[f]; ret {flags: vec::append(curr, rest), next: j}; } let more = |x| more_(x, s, i, lim); let f = s[i]; ret if f == '-' as u8 { more(flag_left_justify) } else if f == '0' as u8 { more(flag_left_zero_pad) } else if f == ' ' as u8 { more(flag_space_for_sign) } else if f == '+' as u8 { more(flag_sign_always) } else if f == '#' as u8 { more(flag_alternate) } else { {flags: noflags, next: i} }; } fn parse_count(s: ~str, i: uint, lim: uint) -> {count: count, next: uint} { ret if i >= lim { {count: count_implied, next: i} } else if s[i] == '*' as u8 { let param = parse_parameter(s, i + 1u, lim); let j = param.next; alt param.param { none { {count: count_is_next_param, next: j} } some(n) { {count: count_is_param(n), next: j} } } } else { let num = peek_num(s, i, lim); alt num { none { {count: count_implied, next: i} } some(num) { {count: count_is(num.num as int), next: num.next} } } }; } fn parse_precision(s: ~str, i: uint, lim: uint) -> {count: count, next: uint} { ret if i >= lim { {count: count_implied, next: i} } else if s[i] == '.' as u8 { let count = parse_count(s, i + 1u, lim); // If there were no digits specified, i.e. the precision // was ".", then the precision is 0 alt count.count { count_implied { {count: count_is(0), next: count.next} } _ { count } } } else { {count: count_implied, next: i} }; } fn parse_type(s: ~str, i: uint, lim: uint, error: error_fn) -> {ty: ty, next: uint} { if i >= lim { error(~"missing type in conversion"); } let tstr = str::slice(s, i, i+1u); // FIXME (#2249): Do we really want two signed types here? // How important is it to be printf compatible? let t = if str::eq(tstr, ~"b") { ty_bool } else if str::eq(tstr, ~"s") { ty_str } else if str::eq(tstr, ~"c") { ty_char } else if str::eq(tstr, ~"d") || str::eq(tstr, ~"i") { ty_int(signed) } else if str::eq(tstr, ~"u") { ty_int(unsigned) } else if str::eq(tstr, ~"x") { ty_hex(case_lower) } else if str::eq(tstr, ~"X") { ty_hex(case_upper) } else if str::eq(tstr, ~"t") { ty_bits } else if str::eq(tstr, ~"o") { ty_octal } else if str::eq(tstr, ~"f") { ty_float } else if str::eq(tstr, ~"?") { ty_poly } else { error(~"unknown type in conversion: " + tstr) }; ret {ty: t, next: i + 1u}; } } // Functions used by the fmt extension at runtime. For now there are a lot of // decisions made a runtime. If it proves worthwhile then some of these // conditions can be evaluated at compile-time. For now though it's cleaner to // implement it 0this way, I think. mod rt { const flag_none : u32 = 0u32; const flag_left_justify : u32 = 0b00000000000000000000000000000001u32; const flag_left_zero_pad : u32 = 0b00000000000000000000000000000010u32; const flag_space_for_sign : u32 = 0b00000000000000000000000000000100u32; const flag_sign_always : u32 = 0b00000000000000000000000000001000u32; const flag_alternate : u32 = 0b00000000000000000000000000010000u32; enum count { count_is(int), count_implied, } enum ty { ty_default, ty_bits, ty_hex_upper, ty_hex_lower, ty_octal, } type conv = {flags: u32, width: count, precision: count, ty: ty}; pure fn conv_int(cv: conv, i: int) -> ~str { let radix = 10u; let prec = get_int_precision(cv); let mut s : ~str = int_to_str_prec(i, radix, prec); if 0 <= i { if have_flag(cv.flags, flag_sign_always) { unchecked { str::unshift_char(s, '+') }; } else if have_flag(cv.flags, flag_space_for_sign) { unchecked { str::unshift_char(s, ' ') }; } } ret unchecked { pad(cv, s, pad_signed) }; } pure fn conv_uint(cv: conv, u: uint) -> ~str { let prec = get_int_precision(cv); let mut rs = alt cv.ty { ty_default { uint_to_str_prec(u, 10u, prec) } ty_hex_lower { uint_to_str_prec(u, 16u, prec) } ty_hex_upper { str::to_upper(uint_to_str_prec(u, 16u, prec)) } ty_bits { uint_to_str_prec(u, 2u, prec) } ty_octal { uint_to_str_prec(u, 8u, prec) } }; ret unchecked { pad(cv, rs, pad_unsigned) }; } pure fn conv_bool(cv: conv, b: bool) -> ~str { let s = if b { ~"true" } else { ~"false" }; // run the boolean conversion through the string conversion logic, // giving it the same rules for precision, etc. ret conv_str(cv, s); } pure fn conv_char(cv: conv, c: char) -> ~str { let mut s = str::from_char(c); ret unchecked { pad(cv, s, pad_nozero) }; } pure fn conv_str(cv: conv, s: &str) -> ~str { // For strings, precision is the maximum characters // displayed let mut unpadded = alt cv.precision { count_implied { s.to_unique() } count_is(max) { if max as uint < str::char_len(s) { str::substr(s, 0u, max as uint) } else { s.to_unique() } } }; ret unchecked { pad(cv, unpadded, pad_nozero) }; } pure fn conv_float(cv: conv, f: float) -> ~str { let (to_str, digits) = alt cv.precision { count_is(c) { (float::to_str_exact, c as uint) } count_implied { (float::to_str, 6u) } }; let mut s = unchecked { to_str(f, digits) }; if 0.0 <= f { if have_flag(cv.flags, flag_sign_always) { s = ~"+" + s; } else if have_flag(cv.flags, flag_space_for_sign) { s = ~" " + s; } } ret unchecked { pad(cv, s, pad_float) }; } pure fn conv_poly(cv: conv, v: T) -> ~str { let s = sys::log_str(v); ret conv_str(cv, s); } // Convert an int to string with minimum number of digits. If precision is // 0 and num is 0 then the result is the empty string. pure fn int_to_str_prec(num: int, radix: uint, prec: uint) -> ~str { ret if num < 0 { ~"-" + uint_to_str_prec(-num as uint, radix, prec) } else { uint_to_str_prec(num as uint, radix, prec) }; } // Convert a uint to string with a minimum number of digits. If precision // is 0 and num is 0 then the result is the empty string. Could move this // to uint: but it doesn't seem all that useful. pure fn uint_to_str_prec(num: uint, radix: uint, prec: uint) -> ~str { ret if prec == 0u && num == 0u { ~"" } else { let s = uint::to_str(num, radix); let len = str::char_len(s); if len < prec { let diff = prec - len; let pad = str::from_chars(vec::from_elem(diff, '0')); pad + s } else { s } }; } pure fn get_int_precision(cv: conv) -> uint { ret alt cv.precision { count_is(c) { c as uint } count_implied { 1u } }; } enum pad_mode { pad_signed, pad_unsigned, pad_nozero, pad_float } fn pad(cv: conv, &s: ~str, mode: pad_mode) -> ~str { let uwidth : uint = alt cv.width { count_implied { ret s; } count_is(width) { // FIXME: width should probably be uint (see Issue #1996) width as uint } }; let strlen = str::char_len(s); if uwidth <= strlen { ret s; } let mut padchar = ' '; let diff = uwidth - strlen; if have_flag(cv.flags, flag_left_justify) { let padstr = str::from_chars(vec::from_elem(diff, padchar)); ret s + padstr; } let {might_zero_pad, signed} = alt mode { pad_nozero { {might_zero_pad:false, signed:false} } pad_signed { {might_zero_pad:true, signed:true } } pad_float { {might_zero_pad:true, signed:true } } pad_unsigned { {might_zero_pad:true, signed:false} } }; pure fn have_precision(cv: conv) -> bool { ret alt cv.precision { count_implied { false } _ { true } }; } let zero_padding = { if might_zero_pad && have_flag(cv.flags, flag_left_zero_pad) && (!have_precision(cv) || mode == pad_float) { padchar = '0'; true } else { false } }; let padstr = str::from_chars(vec::from_elem(diff, padchar)); // This is completely heinous. If we have a signed value then // potentially rip apart the intermediate result and insert some // zeros. It may make sense to convert zero padding to a precision // instead. if signed && zero_padding && str::len(s) > 0u { let head = str::shift_char(s); if head == '+' || head == '-' || head == ' ' { let headstr = str::from_chars(vec::from_elem(1u, head)); ret headstr + padstr + s; } else { str::unshift_char(s, head); } } ret padstr + s; } pure fn have_flag(flags: u32, f: u32) -> bool { flags & f != 0 } } #[cfg(test)] mod test { #[test] fn fmt_slice() { let s = "abc"; let _s = #fmt("%s", s); } } // Local Variables: // mode: rust; // fill-column: 78; // indent-tabs-mode: nil // c-basic-offset: 4 // buffer-file-coding-system: utf-8-unix // End: