use std::ffi::OsStr; use std::{iter, mem}; use rustc::mir; use rustc::ty::{ self, layout::{self, LayoutOf, Size, TyLayout}, List, TyCtxt, }; use rustc_hir::def_id::{DefId, CRATE_DEF_INDEX}; use rustc_span::source_map::DUMMY_SP; use rand::RngCore; use crate::*; impl<'mir, 'tcx> EvalContextExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {} /// Gets an instance for a path. fn resolve_did<'mir, 'tcx>(tcx: TyCtxt<'tcx>, path: &[&str]) -> InterpResult<'tcx, DefId> { tcx.crates() .iter() .find(|&&krate| tcx.original_crate_name(krate).as_str() == path[0]) .and_then(|krate| { let krate = DefId { krate: *krate, index: CRATE_DEF_INDEX }; let mut items = tcx.item_children(krate); let mut path_it = path.iter().skip(1).peekable(); while let Some(segment) = path_it.next() { for item in mem::replace(&mut items, Default::default()).iter() { if item.ident.name.as_str() == *segment { if path_it.peek().is_none() { return Some(item.res.def_id()); } items = tcx.item_children(item.res.def_id()); break; } } } None }) .ok_or_else(|| { let path = path.iter().map(|&s| s.to_owned()).collect(); err_unsup!(PathNotFound(path)).into() }) } pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> { /// Gets an instance for a path. fn resolve_path(&self, path: &[&str]) -> InterpResult<'tcx, ty::Instance<'tcx>> { Ok(ty::Instance::mono( self.eval_context_ref().tcx.tcx, resolve_did(self.eval_context_ref().tcx.tcx, path)?, )) } /// Write a 0 of the appropriate size to `dest`. fn write_null(&mut self, dest: PlaceTy<'tcx, Tag>) -> InterpResult<'tcx> { self.eval_context_mut().write_scalar(Scalar::from_int(0, dest.layout.size), dest) } /// Test if this immediate equals 0. fn is_null(&self, val: Scalar) -> InterpResult<'tcx, bool> { let this = self.eval_context_ref(); let null = Scalar::from_int(0, this.memory.pointer_size()); this.ptr_eq(val, null) } /// Turn a Scalar into an Option fn test_null(&self, val: Scalar) -> InterpResult<'tcx, Option>> { let this = self.eval_context_ref(); Ok(if this.is_null(val)? { None } else { Some(val) }) } /// Get the `Place` for a local fn local_place(&mut self, local: mir::Local) -> InterpResult<'tcx, PlaceTy<'tcx, Tag>> { let this = self.eval_context_mut(); let place = mir::Place { local: local, projection: List::empty() }; this.eval_place(&place) } /// Generate some random bytes, and write them to `dest`. fn gen_random(&mut self, ptr: Scalar, len: usize) -> InterpResult<'tcx> { // Some programs pass in a null pointer and a length of 0 // to their platform's random-generation function (e.g. getrandom()) // on Linux. For compatibility with these programs, we don't perform // any additional checks - it's okay if the pointer is invalid, // since we wouldn't actually be writing to it. if len == 0 { return Ok(()); } let this = self.eval_context_mut(); let mut data = vec![0; len]; if this.machine.communicate { // Fill the buffer using the host's rng. getrandom::getrandom(&mut data) .map_err(|err| err_unsup_format!("getrandom failed: {}", err))?; } else { let rng = this.memory.extra.rng.get_mut(); rng.fill_bytes(&mut data); } this.memory.write_bytes(ptr, data.iter().copied()) } /// Call a function: Push the stack frame and pass the arguments. /// For now, arguments must be scalars (so that the caller does not have to know the layout). fn call_function( &mut self, f: ty::Instance<'tcx>, args: &[Immediate], dest: Option>, stack_pop: StackPopCleanup, ) -> InterpResult<'tcx> { let this = self.eval_context_mut(); // Push frame. let mir = &*this.load_mir(f.def, None)?; let span = this .stack() .last() .and_then(Frame::current_source_info) .map(|si| si.span) .unwrap_or(DUMMY_SP); this.push_stack_frame(f, span, mir, dest, stack_pop)?; // Initialize arguments. let mut callee_args = this.frame().body.args_iter(); for arg in args { let callee_arg = this.local_place( callee_args.next().expect("callee has fewer arguments than expected"), )?; this.write_immediate(*arg, callee_arg)?; } callee_args.next().expect_none("callee has more arguments than expected"); Ok(()) } /// Visits the memory covered by `place`, sensitive to freezing: the 3rd parameter /// will be true if this is frozen, false if this is in an `UnsafeCell`. fn visit_freeze_sensitive( &self, place: MPlaceTy<'tcx, Tag>, size: Size, mut action: impl FnMut(Pointer, Size, bool) -> InterpResult<'tcx>, ) -> InterpResult<'tcx> { let this = self.eval_context_ref(); trace!("visit_frozen(place={:?}, size={:?})", *place, size); debug_assert_eq!( size, this.size_and_align_of_mplace(place)? .map(|(size, _)| size) .unwrap_or_else(|| place.layout.size) ); // Store how far we proceeded into the place so far. Everything to the left of // this offset has already been handled, in the sense that the frozen parts // have had `action` called on them. let mut end_ptr = place.ptr.assert_ptr(); // Called when we detected an `UnsafeCell` at the given offset and size. // Calls `action` and advances `end_ptr`. let mut unsafe_cell_action = |unsafe_cell_ptr: Scalar, unsafe_cell_size: Size| { let unsafe_cell_ptr = unsafe_cell_ptr.assert_ptr(); debug_assert_eq!(unsafe_cell_ptr.alloc_id, end_ptr.alloc_id); debug_assert_eq!(unsafe_cell_ptr.tag, end_ptr.tag); // We assume that we are given the fields in increasing offset order, // and nothing else changes. let unsafe_cell_offset = unsafe_cell_ptr.offset; let end_offset = end_ptr.offset; assert!(unsafe_cell_offset >= end_offset); let frozen_size = unsafe_cell_offset - end_offset; // Everything between the end_ptr and this `UnsafeCell` is frozen. if frozen_size != Size::ZERO { action(end_ptr, frozen_size, /*frozen*/ true)?; } // This `UnsafeCell` is NOT frozen. if unsafe_cell_size != Size::ZERO { action(unsafe_cell_ptr, unsafe_cell_size, /*frozen*/ false)?; } // Update end end_ptr. end_ptr = unsafe_cell_ptr.wrapping_offset(unsafe_cell_size, this); // Done Ok(()) }; // Run a visitor { let mut visitor = UnsafeCellVisitor { ecx: this, unsafe_cell_action: |place| { trace!("unsafe_cell_action on {:?}", place.ptr); // We need a size to go on. let unsafe_cell_size = this .size_and_align_of_mplace(place)? .map(|(size, _)| size) // for extern types, just cover what we can .unwrap_or_else(|| place.layout.size); // Now handle this `UnsafeCell`, unless it is empty. if unsafe_cell_size != Size::ZERO { unsafe_cell_action(place.ptr, unsafe_cell_size) } else { Ok(()) } }, }; visitor.visit_value(place)?; } // The part between the end_ptr and the end of the place is also frozen. // So pretend there is a 0-sized `UnsafeCell` at the end. unsafe_cell_action(place.ptr.ptr_wrapping_offset(size, this), Size::ZERO)?; // Done! return Ok(()); /// Visiting the memory covered by a `MemPlace`, being aware of /// whether we are inside an `UnsafeCell` or not. struct UnsafeCellVisitor<'ecx, 'mir, 'tcx, F> where F: FnMut(MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx>, { ecx: &'ecx MiriEvalContext<'mir, 'tcx>, unsafe_cell_action: F, } impl<'ecx, 'mir, 'tcx, F> ValueVisitor<'mir, 'tcx, Evaluator<'tcx>> for UnsafeCellVisitor<'ecx, 'mir, 'tcx, F> where F: FnMut(MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx>, { type V = MPlaceTy<'tcx, Tag>; #[inline(always)] fn ecx(&self) -> &MiriEvalContext<'mir, 'tcx> { &self.ecx } // Hook to detect `UnsafeCell`. fn visit_value(&mut self, v: MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx> { trace!("UnsafeCellVisitor: {:?} {:?}", *v, v.layout.ty); let is_unsafe_cell = match v.layout.ty.kind { ty::Adt(adt, _) => Some(adt.did) == self.ecx.tcx.lang_items().unsafe_cell_type(), _ => false, }; if is_unsafe_cell { // We do not have to recurse further, this is an `UnsafeCell`. (self.unsafe_cell_action)(v) } else if self.ecx.type_is_freeze(v.layout.ty) { // This is `Freeze`, there cannot be an `UnsafeCell` Ok(()) } else { // We want to not actually read from memory for this visit. So, before // walking this value, we have to make sure it is not a // `Variants::Multiple`. match v.layout.variants { layout::Variants::Multiple { .. } => { // A multi-variant enum, or generator, or so. // Treat this like a union: without reading from memory, // we cannot determine the variant we are in. Reading from // memory would be subject to Stacked Borrows rules, leading // to all sorts of "funny" recursion. // We only end up here if the type is *not* freeze, so we just call the // `UnsafeCell` action. (self.unsafe_cell_action)(v) } layout::Variants::Single { .. } => { // Proceed further, try to find where exactly that `UnsafeCell` // is hiding. self.walk_value(v) } } } } // Make sure we visit aggregrates in increasing offset order. fn visit_aggregate( &mut self, place: MPlaceTy<'tcx, Tag>, fields: impl Iterator>>, ) -> InterpResult<'tcx> { match place.layout.fields { layout::FieldPlacement::Array { .. } => { // For the array layout, we know the iterator will yield sorted elements so // we can avoid the allocation. self.walk_aggregate(place, fields) } layout::FieldPlacement::Arbitrary { .. } => { // Gather the subplaces and sort them before visiting. let mut places = fields.collect::>>>()?; places.sort_by_key(|place| place.ptr.assert_ptr().offset); self.walk_aggregate(place, places.into_iter().map(Ok)) } layout::FieldPlacement::Union { .. } => { // Uh, what? bug!("a union is not an aggregate we should ever visit") } } } // We have to do *something* for unions. fn visit_union(&mut self, v: MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx> { // With unions, we fall back to whatever the type says, to hopefully be consistent // with LLVM IR. // FIXME: are we consistent, and is this really the behavior we want? let frozen = self.ecx.type_is_freeze(v.layout.ty); if frozen { Ok(()) } else { (self.unsafe_cell_action)(v) } } // We should never get to a primitive, but always short-circuit somewhere above. fn visit_primitive(&mut self, _v: MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx> { bug!("we should always short-circuit before coming to a primitive") } } } /// Helper function to get a `libc` constant as a `Scalar`. fn eval_libc(&mut self, name: &str) -> InterpResult<'tcx, Scalar> { self.eval_context_mut() .eval_path_scalar(&["libc", name])? .ok_or_else(|| err_unsup_format!("Path libc::{} cannot be resolved.", name))? .not_undef() } /// Helper function to get a `libc` constant as an `i32`. fn eval_libc_i32(&mut self, name: &str) -> InterpResult<'tcx, i32> { self.eval_libc(name)?.to_i32() } /// Helper function to get the `TyLayout` of a `libc` type fn libc_ty_layout(&mut self, name: &str) -> InterpResult<'tcx, TyLayout<'tcx>> { let this = self.eval_context_mut(); let ty = this.resolve_path(&["libc", name])?.monomorphic_ty(*this.tcx); this.layout_of(ty) } // Writes several `ImmTy`s contiguosly into memory. This is useful when you have to pack // different values into a struct. fn write_packed_immediates( &mut self, place: MPlaceTy<'tcx, Tag>, imms: &[ImmTy<'tcx, Tag>], ) -> InterpResult<'tcx> { let this = self.eval_context_mut(); let mut offset = Size::from_bytes(0); for &imm in imms { this.write_immediate_to_mplace( *imm, place.offset(offset, MemPlaceMeta::None, imm.layout, &*this.tcx)?, )?; offset += imm.layout.size; } Ok(()) } /// Helper function used inside the shims of foreign functions to check that isolation is /// disabled. It returns an error using the `name` of the foreign function if this is not the /// case. fn check_no_isolation(&self, name: &str) -> InterpResult<'tcx> { if !self.eval_context_ref().machine.communicate { throw_unsup_format!( "`{}` not available when isolation is enabled. Pass the flag `-Zmiri-disable-isolation` to disable it.", name, ) } Ok(()) } /// Helper function used inside the shims of foreign functions to assert that the target /// platform is `platform`. It panics showing a message with the `name` of the foreign function /// if this is not the case. fn assert_platform(&self, platform: &str, name: &str) { assert_eq!( self.eval_context_ref().tcx.sess.target.target.target_os, platform, "`{}` is only available on the `{}` platform", name, platform, ) } /// Sets the last error variable. fn set_last_error(&mut self, scalar: Scalar) -> InterpResult<'tcx> { let this = self.eval_context_mut(); let errno_place = this.machine.last_error.unwrap(); this.write_scalar(scalar, errno_place.into()) } /// Gets the last error variable. fn get_last_error(&self) -> InterpResult<'tcx, Scalar> { let this = self.eval_context_ref(); let errno_place = this.machine.last_error.unwrap(); this.read_scalar(errno_place.into())?.not_undef() } /// Sets the last OS error using a `std::io::Error`. This function tries to produce the most /// similar OS error from the `std::io::ErrorKind` and sets it as the last OS error. fn set_last_error_from_io_error(&mut self, e: std::io::Error) -> InterpResult<'tcx> { use std::io::ErrorKind::*; let this = self.eval_context_mut(); let target = &this.tcx.tcx.sess.target.target; let last_error = if target.options.target_family == Some("unix".to_owned()) { this.eval_libc(match e.kind() { ConnectionRefused => "ECONNREFUSED", ConnectionReset => "ECONNRESET", PermissionDenied => "EPERM", BrokenPipe => "EPIPE", NotConnected => "ENOTCONN", ConnectionAborted => "ECONNABORTED", AddrNotAvailable => "EADDRNOTAVAIL", AddrInUse => "EADDRINUSE", NotFound => "ENOENT", Interrupted => "EINTR", InvalidInput => "EINVAL", TimedOut => "ETIMEDOUT", AlreadyExists => "EEXIST", WouldBlock => "EWOULDBLOCK", _ => { throw_unsup_format!("The {} error cannot be transformed into a raw os error", e) } })? } else { // FIXME: we have to implement the Windows equivalent of this. throw_unsup_format!( "Setting the last OS error from an io::Error is unsupported for {}.", target.target_os ) }; this.set_last_error(last_error) } /// Helper function that consumes an `std::io::Result` and returns an /// `InterpResult<'tcx,T>::Ok` instead. In case the result is an error, this function returns /// `Ok(-1)` and sets the last OS error accordingly. /// /// This function uses `T: From` instead of `i32` directly because some IO related /// functions return different integer types (like `read`, that returns an `i64`). fn try_unwrap_io_result>( &mut self, result: std::io::Result, ) -> InterpResult<'tcx, T> { match result { Ok(ok) => Ok(ok), Err(e) => { self.eval_context_mut().set_last_error_from_io_error(e)?; Ok((-1).into()) } } } /// Helper function to read an OsString from a null-terminated sequence of bytes, which is what /// the Unix APIs usually handle. fn read_os_str_from_c_str<'a>(&'a self, scalar: Scalar) -> InterpResult<'tcx, &'a OsStr> where 'tcx: 'a, 'mir: 'a, { #[cfg(target_os = "unix")] fn bytes_to_os_str<'tcx, 'a>(bytes: &'a [u8]) -> InterpResult<'tcx, &'a OsStr> { Ok(std::os::unix::ffi::OsStringExt::from_bytes(bytes)) } #[cfg(not(target_os = "unix"))] fn bytes_to_os_str<'tcx, 'a>(bytes: &'a [u8]) -> InterpResult<'tcx, &'a OsStr> { let s = std::str::from_utf8(bytes) .map_err(|_| err_unsup_format!("{:?} is not a valid utf-8 string", bytes))?; Ok(&OsStr::new(s)) } let this = self.eval_context_ref(); let bytes = this.memory.read_c_str(scalar)?; bytes_to_os_str(bytes) } /// Helper function to write an OsStr as a null-terminated sequence of bytes, which is what /// the Unix APIs usually handle. This function returns `Ok((false, length))` without trying /// to write if `size` is not large enough to fit the contents of `os_string` plus a null /// terminator. It returns `Ok((true, length))` if the writing process was successful. The /// string length returned does not include the null terminator. fn write_os_str_to_c_str( &mut self, os_str: &OsStr, scalar: Scalar, size: u64, ) -> InterpResult<'tcx, (bool, u64)> { #[cfg(target_os = "unix")] fn os_str_to_bytes<'tcx, 'a>(os_str: &'a OsStr) -> InterpResult<'tcx, &'a [u8]> { std::os::unix::ffi::OsStringExt::into_bytes(os_str) } #[cfg(not(target_os = "unix"))] fn os_str_to_bytes<'tcx, 'a>(os_str: &'a OsStr) -> InterpResult<'tcx, &'a [u8]> { // On non-unix platforms the best we can do to transform bytes from/to OS strings is to do the // intermediate transformation into strings. Which invalidates non-utf8 paths that are actually // valid. os_str .to_str() .map(|s| s.as_bytes()) .ok_or_else(|| err_unsup_format!("{:?} is not a valid utf-8 string", os_str).into()) } let bytes = os_str_to_bytes(os_str)?; // If `size` is smaller or equal than `bytes.len()`, writing `bytes` plus the required null // terminator to memory using the `ptr` pointer would cause an out-of-bounds access. let string_length = bytes.len() as u64; if size <= string_length { return Ok((false, string_length)); } self.eval_context_mut() .memory .write_bytes(scalar, bytes.iter().copied().chain(iter::once(0u8)))?; Ok((true, string_length)) } fn alloc_os_str_as_c_str( &mut self, os_str: &OsStr, memkind: MemoryKind, ) -> Pointer { let size = os_str.len() as u64 + 1; // Make space for `0` terminator. let this = self.eval_context_mut(); let arg_type = this.tcx.mk_array(this.tcx.types.u8, size); let arg_place = this.allocate(this.layout_of(arg_type).unwrap(), memkind); self.write_os_str_to_c_str(os_str, arg_place.ptr, size).unwrap(); arg_place.ptr.assert_ptr() } } pub fn immty_from_int_checked<'tcx>( int: impl Into, layout: TyLayout<'tcx>, ) -> InterpResult<'tcx, ImmTy<'tcx, Tag>> { let int = int.into(); Ok(ImmTy::try_from_int(int, layout).ok_or_else(|| { err_unsup_format!("Signed value {:#x} does not fit in {} bits", int, layout.size.bits()) })?) } pub fn immty_from_uint_checked<'tcx>( int: impl Into, layout: TyLayout<'tcx>, ) -> InterpResult<'tcx, ImmTy<'tcx, Tag>> { let int = int.into(); Ok(ImmTy::try_from_uint(int, layout).ok_or_else(|| { err_unsup_format!("Signed value {:#x} does not fit in {} bits", int, layout.size.bits()) })?) }