use std::collections::{hash_map::Entry, HashMap}; use hir::{InFile, Module, ModuleSource}; use ide_db::{ base_db::FileRange, defs::Definition, search::{FileReference, ReferenceCategory, SearchScope}, RootDatabase, }; use syntax::{ast, AstNode}; use text_edit::TextRange; use crate::{AssistContext, AssistId, AssistKind, Assists}; // Assist: remove_unused_imports // // Removes any use statements in the current selection that are unused. // // ``` // struct X(); // mod foo { // use super::X$0; // } // ``` // -> // ``` // struct X(); // mod foo { // } // ``` pub(crate) fn remove_unused_imports(acc: &mut Assists, ctx: &AssistContext<'_>) -> Option<()> { // First, grab the uses that intersect with the current selection. let selected_el = match ctx.covering_element() { syntax::NodeOrToken::Node(n) => n, syntax::NodeOrToken::Token(t) => t.parent()?, }; // This applies to all uses that are selected, or are ancestors of our selection. let uses_up = selected_el.ancestors().skip(1).filter_map(ast::Use::cast); let uses_down = selected_el .descendants() .filter(|x| x.text_range().intersect(ctx.selection_trimmed()).is_some()) .filter_map(ast::Use::cast); let uses = uses_up.chain(uses_down).collect::>(); // Maps use nodes to the scope that we should search through to find let mut search_scopes = HashMap::>::new(); // iterator over all unused use trees let mut unused = uses .into_iter() .flat_map(|u| u.syntax().descendants().filter_map(ast::UseTree::cast)) .filter(|u| u.use_tree_list().is_none()) .filter_map(|u| { // Find any uses trees that are unused let use_module = ctx.sema.scope(&u.syntax()).map(|s| s.module())?; let scope = match search_scopes.entry(use_module) { Entry::Occupied(o) => o.into_mut(), Entry::Vacant(v) => v.insert(module_search_scope(ctx.db(), use_module)), }; // Gets the path associated with this use tree. If there isn't one, then ignore this use tree. let path = if let Some(path) = u.path() { path } else if u.star_token().is_some() { // This case maps to the situation where the * token is braced. // In this case, the parent use tree's path is the one we should use to resolve the glob. match u.syntax().ancestors().skip(1).find_map(ast::UseTree::cast) { Some(parent_u) if parent_u.path().is_some() => parent_u.path()?, _ => return None, } } else { return None; }; // Get the actual definition associated with this use item. let res = match ctx.sema.resolve_path(&path) { Some(x) => x, None => { return None; } }; let def = match res { hir::PathResolution::Def(d) => Definition::from(d), _ => return None, }; if u.star_token().is_some() { // Check if any of the children of this module are used let def_mod = match def { Definition::Module(module) => module, _ => return None, }; if !def_mod .scope(ctx.db(), Some(use_module)) .iter() .filter_map(|(_, x)| match x { hir::ScopeDef::ModuleDef(d) => Some(Definition::from(*d)), _ => None, }) .any(|d| used_once_in_scope(ctx, d, scope)) { return Some(u); } } else if let Definition::Trait(ref t) = def { // If the trait or any item is used. if !std::iter::once(def) .chain(t.items(ctx.db()).into_iter().map(Definition::from)) .any(|d| used_once_in_scope(ctx, d, scope)) { return Some(u); } } else { if !used_once_in_scope(ctx, def, &scope) { return Some(u); } } None }) .peekable(); // Peek so we terminate early if an unused use is found. Only do the rest of the work if the user selects the assist. if unused.peek().is_some() { acc.add( AssistId("remove_unused_imports", AssistKind::QuickFix), "Remove all the unused imports", selected_el.text_range(), |builder| { let unused: Vec = unused.map(|x| builder.make_mut(x)).collect(); for node in unused { node.remove_recursive(); } }, ) } else { None } } fn used_once_in_scope(ctx: &AssistContext<'_>, def: Definition, scopes: &Vec) -> bool { let mut found = false; for scope in scopes { let mut search_non_import = |_, r: FileReference| { // The import itself is a use; we must skip that. if r.category != Some(ReferenceCategory::Import) { found = true; true } else { false } }; def.usages(&ctx.sema).in_scope(scope).search(&mut search_non_import); if found { break; } } found } /// Build a search scope spanning the given module but none of its submodules. fn module_search_scope(db: &RootDatabase, module: hir::Module) -> Vec { let (file_id, range) = { let InFile { file_id, value } = module.definition_source(db); if let Some((file_id, call_source)) = file_id.original_call_node(db) { (file_id, Some(call_source.text_range())) } else { ( file_id.original_file(db), match value { ModuleSource::SourceFile(_) => None, ModuleSource::Module(it) => Some(it.syntax().text_range()), ModuleSource::BlockExpr(it) => Some(it.syntax().text_range()), }, ) } }; fn split_at_subrange(first: TextRange, second: TextRange) -> (TextRange, Option) { let intersect = first.intersect(second); if let Some(intersect) = intersect { let start_range = TextRange::new(first.start(), intersect.start()); if intersect.end() < first.end() { (start_range, Some(TextRange::new(intersect.end(), first.end()))) } else { (start_range, None) } } else { (first, None) } } let mut scopes = Vec::new(); if let Some(range) = range { let mut ranges = vec![range]; for child in module.children(db) { let rng = match child.definition_source(db).value { ModuleSource::SourceFile(_) => continue, ModuleSource::Module(it) => it.syntax().text_range(), ModuleSource::BlockExpr(_) => continue, }; let mut new_ranges = Vec::new(); for old_range in ranges.iter_mut() { let split = split_at_subrange(old_range.clone(), rng); *old_range = split.0; new_ranges.extend(split.1); } ranges.append(&mut new_ranges); } for range in ranges { scopes.push(SearchScope::file_range(FileRange { file_id, range })); } } else { scopes.push(SearchScope::single_file(file_id)); } scopes } #[cfg(test)] mod tests { use crate::tests::{check_assist, check_assist_not_applicable}; use super::*; #[test] fn remove_unused() { check_assist( remove_unused_imports, r#" struct X(); struct Y(); mod z { $0use super::X; use super::Y;$0 } "#, r#" struct X(); struct Y(); mod z { } "#, ); } #[test] fn remove_unused_is_precise() { check_assist( remove_unused_imports, r#" struct X(); mod z { $0use super::X;$0 fn w() { struct X(); let x = X(); } } "#, r#" struct X(); mod z { fn w() { struct X(); let x = X(); } } "#, ); } #[test] fn trait_name_use_is_use() { check_assist_not_applicable( remove_unused_imports, r#" struct X(); trait Y { fn f(); } impl Y for X { fn f() {} } mod z { $0use super::X; use super::Y;$0 fn w() { X::f(); } } "#, ); } #[test] fn trait_item_use_is_use() { check_assist_not_applicable( remove_unused_imports, r#" struct X(); trait Y { fn f(self); } impl Y for X { fn f(self) {} } mod z { $0use super::X; use super::Y;$0 fn w() { let x = X(); x.f(); } } "#, ); } #[test] fn ranamed_trait_item_use_is_use() { check_assist_not_applicable( remove_unused_imports, r#" struct X(); trait Y { fn f(self); } impl Y for X { fn f(self) {} } mod z { $0use super::X; use super::Y as Z;$0 fn w() { let x = X(); x.f(); } } "#, ); } #[test] fn ranamed_underscore_trait_item_use_is_use() { check_assist_not_applicable( remove_unused_imports, r#" struct X(); trait Y { fn f(self); } impl Y for X { fn f(self) {} } mod z { $0use super::X; use super::Y as _;$0 fn w() { let x = X(); x.f(); } } "#, ); } #[test] fn dont_remove_used() { check_assist_not_applicable( remove_unused_imports, r#" struct X(); struct Y(); mod z { $0use super::X; use super::Y;$0 fn w() { let x = X(); let y = Y(); } } "#, ); } #[test] fn remove_unused_in_braces() { check_assist( remove_unused_imports, r#" struct X(); struct Y(); mod z { $0use super::{X, Y};$0 fn w() { let x = X(); } } "#, r#" struct X(); struct Y(); mod z { use super::{X}; fn w() { let x = X(); } } "#, ); } #[test] fn remove_unused_under_cursor() { check_assist( remove_unused_imports, r#" struct X(); mod z { use super::X$0; } "#, r#" struct X(); mod z { } "#, ); } #[test] fn remove_multi_use_block() { check_assist( remove_unused_imports, r#" struct X(); $0mod y { use super::X; } mod z { use super::X; }$0 "#, r#" struct X(); mod y { } mod z { } "#, ); } #[test] fn remove_nested() { check_assist( remove_unused_imports, r#" struct X(); mod y { struct Y(); mod z { use crate::{X, y::Y}$0; fn f() { let x = X(); } } } "#, r#" struct X(); mod y { struct Y(); mod z { use crate::{X}; fn f() { let x = X(); } } } "#, ); } #[test] fn remove_nested_first_item() { check_assist( remove_unused_imports, r#" struct X(); mod y { struct Y(); mod z { use crate::{X, y::Y}$0; fn f() { let y = Y(); } } } "#, r#" struct X(); mod y { struct Y(); mod z { use crate::{y::Y}; fn f() { let y = Y(); } } } "#, ); } #[test] fn remove_nested_all_unused() { check_assist( remove_unused_imports, r#" struct X(); mod y { struct Y(); mod z { use crate::{X, y::Y}$0; } } "#, r#" struct X(); mod y { struct Y(); mod z { } } "#, ); } #[test] fn remove_unused_glob() { check_assist( remove_unused_imports, r#" struct X(); struct Y(); mod z { use super::*$0; } "#, r#" struct X(); struct Y(); mod z { } "#, ); } #[test] fn remove_unused_braced_glob() { check_assist( remove_unused_imports, r#" struct X(); struct Y(); mod z { use super::{*}$0; } "#, r#" struct X(); struct Y(); mod z { } "#, ); } #[test] fn dont_remove_used_glob() { check_assist_not_applicable( remove_unused_imports, r#" struct X(); struct Y(); mod z { use super::*$0; fn f() { let x = X(); } } "#, ); } #[test] fn only_remove_from_selection() { check_assist( remove_unused_imports, r#" struct X(); struct Y(); mod z { $0use super::X;$0 use super::Y; } mod w { use super::Y; } "#, r#" struct X(); struct Y(); mod z { use super::Y; } mod w { use super::Y; } "#, ); } #[test] fn test_several_files() { check_assist( remove_unused_imports, r#" //- /foo.rs pub struct X(); pub struct Y(); //- /main.rs $0use foo::X; use foo::Y; $0 mod foo; mod z { use crate::foo::X; } "#, r#" mod foo; mod z { use crate::foo::X; } "#, ); } #[test] fn use_in_submodule_doesnt_count() { check_assist( remove_unused_imports, r#" struct X(); mod z { use super::X$0; mod w { use crate::X; fn f() { let x = X(); } } } "#, r#" struct X(); mod z { mod w { use crate::X; fn f() { let x = X(); } } } "#, ); } #[test] fn use_in_submodule_file_doesnt_count() { check_assist( remove_unused_imports, r#" //- /z/foo.rs use crate::X; fn f() { let x = X(); } //- /main.rs pub struct X(); mod z { use crate::X$0; mod foo; } "#, r#" pub struct X(); mod z { mod foo; } "#, ); } }