// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Language-level runtime services that should reasonably expected //! to be available 'everywhere'. Local heaps, GC, unwinding, //! local storage, and logging. Even a 'freestanding' Rust would likely want //! to implement this. use super::local_heap::LocalHeap; use prelude::*; use borrow; use cast::transmute; use cleanup; use io::Writer; use libc::{c_void, uintptr_t, c_char, size_t}; use local_data; use option::{Option, Some, None}; use rt::borrowck::BorrowRecord; use rt::borrowck; use rt::context::Context; use rt::env; use rt::kill::Death; use rt::local::Local; use rt::logging::StdErrLogger; use rt::sched::{Scheduler, SchedHandle}; use rt::stack::{StackSegment, StackPool}; use send_str::SendStr; use task::TaskResult; use unstable::finally::Finally; use unstable::mutex::Mutex; // The Task struct represents all state associated with a rust // task. There are at this point two primary "subtypes" of task, // however instead of using a subtype we just have a "task_type" field // in the struct. This contains a pointer to another struct that holds // the type-specific state. pub struct Task { heap: LocalHeap, priv gc: GarbageCollector, storage: LocalStorage, logger: Option, unwinder: Unwinder, death: Death, destroyed: bool, name: Option, coroutine: Option, sched: Option<~Scheduler>, task_type: TaskType, // Dynamic borrowck debugging info borrow_list: Option<~[BorrowRecord]>, stdout_handle: Option<~Writer>, // See the comments in the scheduler about why this is necessary nasty_deschedule_lock: Mutex, } pub enum TaskType { GreenTask(Option), SchedTask } /// A coroutine is nothing more than a (register context, stack) pair. pub struct Coroutine { /// The segment of stack on which the task is currently running or /// if the task is blocked, on which the task will resume /// execution. /// /// Servo needs this to be public in order to tell SpiderMonkey /// about the stack bounds. current_stack_segment: StackSegment, /// Always valid if the task is alive and not running. saved_context: Context } /// Some tasks have a dedicated home scheduler that they must run on. pub enum SchedHome { AnySched, Sched(SchedHandle) } pub struct GarbageCollector; pub struct LocalStorage(Option); pub struct Unwinder { unwinding: bool, cause: Option<~Any> } impl Unwinder { fn result(&mut self) -> TaskResult { if self.unwinding { Err(self.cause.take().unwrap()) } else { Ok(()) } } } impl Task { // A helper to build a new task using the dynamically found // scheduler and task. Only works in GreenTask context. pub fn build_homed_child(stack_size: Option, f: proc(), home: SchedHome) -> ~Task { let mut running_task = Local::borrow(None::); let mut sched = running_task.get().sched.take_unwrap(); let new_task = ~running_task.get() .new_child_homed(&mut sched.stack_pool, stack_size, home, f); running_task.get().sched = Some(sched); new_task } pub fn build_child(stack_size: Option, f: proc()) -> ~Task { Task::build_homed_child(stack_size, f, AnySched) } pub fn build_homed_root(stack_size: Option, f: proc(), home: SchedHome) -> ~Task { let mut running_task = Local::borrow(None::); let mut sched = running_task.get().sched.take_unwrap(); let new_task = ~Task::new_root_homed(&mut sched.stack_pool, stack_size, home, f); running_task.get().sched = Some(sched); new_task } pub fn build_root(stack_size: Option, f: proc()) -> ~Task { Task::build_homed_root(stack_size, f, AnySched) } pub fn new_sched_task() -> Task { Task { heap: LocalHeap::new(), gc: GarbageCollector, storage: LocalStorage(None), logger: None, unwinder: Unwinder { unwinding: false, cause: None }, death: Death::new(), destroyed: false, coroutine: Some(Coroutine::empty()), name: None, sched: None, task_type: SchedTask, borrow_list: None, stdout_handle: None, nasty_deschedule_lock: unsafe { Mutex::new() }, } } pub fn new_root(stack_pool: &mut StackPool, stack_size: Option, start: proc()) -> Task { Task::new_root_homed(stack_pool, stack_size, AnySched, start) } pub fn new_child(&mut self, stack_pool: &mut StackPool, stack_size: Option, start: proc()) -> Task { self.new_child_homed(stack_pool, stack_size, AnySched, start) } pub fn new_root_homed(stack_pool: &mut StackPool, stack_size: Option, home: SchedHome, start: proc()) -> Task { Task { heap: LocalHeap::new(), gc: GarbageCollector, storage: LocalStorage(None), logger: None, unwinder: Unwinder { unwinding: false, cause: None }, death: Death::new(), destroyed: false, name: None, coroutine: Some(Coroutine::new(stack_pool, stack_size, start)), sched: None, task_type: GreenTask(Some(home)), borrow_list: None, stdout_handle: None, nasty_deschedule_lock: unsafe { Mutex::new() }, } } pub fn new_child_homed(&mut self, stack_pool: &mut StackPool, stack_size: Option, home: SchedHome, start: proc()) -> Task { Task { heap: LocalHeap::new(), gc: GarbageCollector, storage: LocalStorage(None), logger: None, unwinder: Unwinder { unwinding: false, cause: None }, death: Death::new(), destroyed: false, name: None, coroutine: Some(Coroutine::new(stack_pool, stack_size, start)), sched: None, task_type: GreenTask(Some(home)), borrow_list: None, stdout_handle: None, nasty_deschedule_lock: unsafe { Mutex::new() }, } } pub fn give_home(&mut self, new_home: SchedHome) { match self.task_type { GreenTask(ref mut home) => { *home = Some(new_home); } SchedTask => { rtabort!("type error: used SchedTask as GreenTask"); } } } pub fn take_unwrap_home(&mut self) -> SchedHome { match self.task_type { GreenTask(ref mut home) => { let out = home.take_unwrap(); return out; } SchedTask => { rtabort!("type error: used SchedTask as GreenTask"); } } } pub fn run(&mut self, f: ||) { rtdebug!("run called on task: {}", borrow::to_uint(self)); // The only try/catch block in the world. Attempt to run the task's // client-specified code and catch any failures. self.unwinder.try(|| { // Run the task main function, then do some cleanup. f.finally(|| { // First, destroy task-local storage. This may run user dtors. // // FIXME #8302: Dear diary. I'm so tired and confused. // There's some interaction in rustc between the box // annihilator and the TLS dtor by which TLS is // accessed from annihilated box dtors *after* TLS is // destroyed. Somehow setting TLS back to null, as the // old runtime did, makes this work, but I don't currently // understand how. I would expect that, if the annihilator // reinvokes TLS while TLS is uninitialized, that // TLS would be reinitialized but never destroyed, // but somehow this works. I have no idea what's going // on but this seems to make things magically work. FML. // // (added after initial comment) A possible interaction here is // that the destructors for the objects in TLS themselves invoke // TLS, or possibly some destructors for those objects being // annihilated invoke TLS. Sadly these two operations seemed to // be intertwined, and miraculously work for now... self.storage.take(); // Destroy remaining boxes. Also may run user dtors. unsafe { cleanup::annihilate(); } // Finally flush and destroy any output handles which the task // owns. There are no boxes here, and no user destructors should // run after this any more. match self.stdout_handle.take() { Some(handle) => { let mut handle = handle; handle.flush(); } None => {} } self.logger.take(); }) }); // Cleanup the dynamic borrowck debugging info borrowck::clear_task_borrow_list(); self.death.collect_failure(self.unwinder.result()); self.destroyed = true; } // New utility functions for homes. pub fn is_home_no_tls(&self, sched: &~Scheduler) -> bool { match self.task_type { GreenTask(Some(AnySched)) => { false } GreenTask(Some(Sched(SchedHandle { sched_id: ref id, .. }))) => { *id == sched.sched_id() } GreenTask(None) => { rtabort!("task without home"); } SchedTask => { // Awe yea rtabort!("type error: expected: GreenTask, found: SchedTask"); } } } pub fn homed(&self) -> bool { match self.task_type { GreenTask(Some(AnySched)) => { false } GreenTask(Some(Sched(SchedHandle { .. }))) => { true } GreenTask(None) => { rtabort!("task without home"); } SchedTask => { rtabort!("type error: expected: GreenTask, found: SchedTask"); } } } // Grab both the scheduler and the task from TLS and check if the // task is executing on an appropriate scheduler. pub fn on_appropriate_sched() -> bool { let mut task = Local::borrow(None::); let sched_id = task.get().sched.get_ref().sched_id(); let sched_run_anything = task.get().sched.get_ref().run_anything; match task.get().task_type { GreenTask(Some(AnySched)) => { rtdebug!("anysched task in sched check ****"); sched_run_anything } GreenTask(Some(Sched(SchedHandle { sched_id: ref id, ..}))) => { rtdebug!("homed task in sched check ****"); *id == sched_id } GreenTask(None) => { rtabort!("task without home"); } SchedTask => { rtabort!("type error: expected: GreenTask, found: SchedTask"); } } } } impl Drop for Task { fn drop(&mut self) { rtdebug!("called drop for a task: {}", borrow::to_uint(self)); rtassert!(self.destroyed); unsafe { self.nasty_deschedule_lock.destroy(); } } } // Coroutines represent nothing more than a context and a stack // segment. impl Coroutine { pub fn new(stack_pool: &mut StackPool, stack_size: Option, start: proc()) -> Coroutine { let stack_size = match stack_size { Some(size) => size, None => env::min_stack() }; let start = Coroutine::build_start_wrapper(start); let mut stack = stack_pool.take_segment(stack_size); let initial_context = Context::new(start, &mut stack); Coroutine { current_stack_segment: stack, saved_context: initial_context } } pub fn empty() -> Coroutine { Coroutine { current_stack_segment: StackSegment::new(0), saved_context: Context::empty() } } fn build_start_wrapper(start: proc()) -> proc() { let wrapper: proc() = proc() { // First code after swap to this new context. Run our // cleanup job. unsafe { // Again - might work while safe, or it might not. { let mut sched = Local::borrow(None::); sched.get().run_cleanup_job(); } // To call the run method on a task we need a direct // reference to it. The task is in TLS, so we can // simply unsafe_borrow it to get this reference. We // need to still have the task in TLS though, so we // need to unsafe_borrow. let task: *mut Task = Local::unsafe_borrow(); let mut start_cell = Some(start); (*task).run(|| { // N.B. Removing `start` from the start wrapper // closure by emptying a cell is critical for // correctness. The ~Task pointer, and in turn the // closure used to initialize the first call // frame, is destroyed in the scheduler context, // not task context. So any captured closures must // not contain user-definable dtors that expect to // be in task context. By moving `start` out of // the closure, all the user code goes our of // scope while the task is still running. let start = start_cell.take_unwrap(); start(); }); } // We remove the sched from the Task in TLS right now. let sched: ~Scheduler = Local::take(); // ... allowing us to give it away when performing a // scheduling operation. sched.terminate_current_task() }; return wrapper; } /// Destroy coroutine and try to reuse stack segment. pub fn recycle(self, stack_pool: &mut StackPool) { match self { Coroutine { current_stack_segment, .. } => { stack_pool.give_segment(current_stack_segment); } } } } // Just a sanity check to make sure we are catching a Rust-thrown exception static UNWIND_TOKEN: uintptr_t = 839147; impl Unwinder { pub fn try(&mut self, f: ||) { use unstable::raw::Closure; unsafe { let closure: Closure = transmute(f); let code = transmute(closure.code); let env = transmute(closure.env); let token = rust_try(try_fn, code, env); assert!(token == 0 || token == UNWIND_TOKEN); } extern fn try_fn(code: *c_void, env: *c_void) { unsafe { let closure: Closure = Closure { code: transmute(code), env: transmute(env), }; let closure: || = transmute(closure); closure(); } } extern { fn rust_try(f: extern "C" fn(*c_void, *c_void), code: *c_void, data: *c_void) -> uintptr_t; } } pub fn begin_unwind(&mut self, cause: ~Any) -> ! { self.unwinding = true; self.cause = Some(cause); unsafe { rust_begin_unwind(UNWIND_TOKEN); return transmute(()); } extern { fn rust_begin_unwind(token: uintptr_t); } } } /// This function is invoked from rust's current __morestack function. Segmented /// stacks are currently not enabled as segmented stacks, but rather one giant /// stack segment. This means that whenever we run out of stack, we want to /// truly consider it to be stack overflow rather than allocating a new stack. #[no_mangle] // - this is called from C code #[no_split_stack] // - it would be sad for this function to trigger __morestack #[doc(hidden)] // - Function must be `pub` to get exported, but it's // irrelevant for documentation purposes. #[cfg(not(test))] // in testing, use the original libstd's version pub extern "C" fn rust_stack_exhausted() { use rt::context; use rt::in_green_task_context; use rt::task::Task; use rt::local::Local; use unstable::intrinsics; unsafe { // We're calling this function because the stack just ran out. We need // to call some other rust functions, but if we invoke the functions // right now it'll just trigger this handler being called again. In // order to alleviate this, we move the stack limit to be inside of the // red zone that was allocated for exactly this reason. let limit = context::get_sp_limit(); context::record_sp_limit(limit - context::RED_ZONE / 2); // This probably isn't the best course of action. Ideally one would want // to unwind the stack here instead of just aborting the entire process. // This is a tricky problem, however. There's a few things which need to // be considered: // // 1. We're here because of a stack overflow, yet unwinding will run // destructors and hence arbitrary code. What if that code overflows // the stack? One possibility is to use the above allocation of an // extra 10k to hope that we don't hit the limit, and if we do then // abort the whole program. Not the best, but kind of hard to deal // with unless we want to switch stacks. // // 2. LLVM will optimize functions based on whether they can unwind or // not. It will flag functions with 'nounwind' if it believes that // the function cannot trigger unwinding, but if we do unwind on // stack overflow then it means that we could unwind in any function // anywhere. We would have to make sure that LLVM only places the // nounwind flag on functions which don't call any other functions. // // 3. The function that overflowed may have owned arguments. These // arguments need to have their destructors run, but we haven't even // begun executing the function yet, so unwinding will not run the // any landing pads for these functions. If this is ignored, then // the arguments will just be leaked. // // Exactly what to do here is a very delicate topic, and is possibly // still up in the air for what exactly to do. Some relevant issues: // // #3555 - out-of-stack failure leaks arguments // #3695 - should there be a stack limit? // #9855 - possible strategies which could be taken // #9854 - unwinding on windows through __morestack has never worked // #2361 - possible implementation of not using landing pads if in_green_task_context() { let mut task = Local::borrow(None::); let n = task.get() .name .as_ref() .map(|n| n.as_slice()) .unwrap_or(""); // See the message below for why this is not emitted to the // task's logger. This has the additional conundrum of the // logger may not be initialized just yet, meaning that an FFI // call would happen to initialized it (calling out to libuv), // and the FFI call needs 2MB of stack when we just ran out. rterrln!("task '{}' has overflowed its stack", n); } else { rterrln!("stack overflow in non-task context"); } intrinsics::abort(); } } /// This is the entry point of unwinding for things like lang items and such. /// The arguments are normally generated by the compiler, and need to /// have static lifetimes. pub fn begin_unwind_raw(msg: *c_char, file: *c_char, line: size_t) -> ! { use c_str::CString; use cast::transmute; #[inline] fn static_char_ptr(p: *c_char) -> &'static str { let s = unsafe { CString::new(p, false) }; match s.as_str() { Some(s) => unsafe { transmute::<&str, &'static str>(s) }, None => rtabort!("message wasn't utf8?") } } let msg = static_char_ptr(msg); let file = static_char_ptr(file); begin_unwind(msg, file, line as uint) } /// This is the entry point of unwinding for fail!() and assert!(). pub fn begin_unwind(msg: M, file: &'static str, line: uint) -> ! { use any::AnyRefExt; use rt::in_green_task_context; use rt::local::Local; use rt::task::Task; use str::Str; use unstable::intrinsics; unsafe { let task: *mut Task; // Note that this should be the only allocation performed in this block. // Currently this means that fail!() on OOM will invoke this code path, // but then again we're not really ready for failing on OOM anyway. If // we do start doing this, then we should propagate this allocation to // be performed in the parent of this task instead of the task that's // failing. let msg = ~msg as ~Any; { //let msg: &Any = msg; let msg_s = match msg.as_ref::<&'static str>() { Some(s) => *s, None => match msg.as_ref::<~str>() { Some(s) => s.as_slice(), None => "~Any", } }; if !in_green_task_context() { rterrln!("failed in non-task context at '{}', {}:{}", msg_s, file, line); intrinsics::abort(); } task = Local::unsafe_borrow(); let n = (*task).name.as_ref().map(|n| n.as_slice()).unwrap_or(""); // XXX: this should no get forcibly printed to the console, this should // either be sent to the parent task (ideally), or get printed to // the task's logger. Right now the logger is actually a uvio // instance, which uses unkillable blocks internally for various // reasons. This will cause serious trouble if the task is failing // due to mismanagment of its own kill flag, so calling our own // logger in its current state is a bit of a problem. rterrln!("task '{}' failed at '{}', {}:{}", n, msg_s, file, line); if (*task).unwinder.unwinding { rtabort!("unwinding again"); } } (*task).unwinder.begin_unwind(msg); } } #[cfg(test)] mod test { use super::*; use rt::test::*; use prelude::*; #[test] fn local_heap() { do run_in_newsched_task() { let a = @5; let b = a; assert!(*a == 5); assert!(*b == 5); } } #[test] fn tls() { use local_data; do run_in_newsched_task() { local_data_key!(key: @~str) local_data::set(key, @~"data"); assert!(*local_data::get(key, |k| k.map(|k| *k)).unwrap() == ~"data"); local_data_key!(key2: @~str) local_data::set(key2, @~"data"); assert!(*local_data::get(key2, |k| k.map(|k| *k)).unwrap() == ~"data"); } } #[test] fn unwind() { do run_in_newsched_task() { let result = spawntask_try(proc()()); rtdebug!("trying first assert"); assert!(result.is_ok()); let result = spawntask_try(proc() fail!()); rtdebug!("trying second assert"); assert!(result.is_err()); } } #[test] fn rng() { do run_in_uv_task() { use rand::{rng, Rng}; let mut r = rng(); let _ = r.next_u32(); } } #[test] fn logging() { do run_in_uv_task() { info!("here i am. logging in a newsched task"); } } #[test] fn comm_stream() { do run_in_newsched_task() { let (port, chan) = Chan::new(); chan.send(10); assert!(port.recv() == 10); } } #[test] fn comm_shared_chan() { do run_in_newsched_task() { let (port, chan) = SharedChan::new(); chan.send(10); assert!(port.recv() == 10); } } #[test] fn heap_cycles() { use option::{Option, Some, None}; do run_in_newsched_task { struct List { next: Option<@mut List>, } let a = @mut List { next: None }; let b = @mut List { next: Some(a) }; a.next = Some(b); } } #[test] #[should_fail] fn test_begin_unwind() { begin_unwind("cause", file!(), line!()) } }