//! This module contains functions for retrieve the original AST from lowered //! `hir`. #![deny(clippy::missing_docs_in_private_items)] use crate::utils::{is_expn_of, match_def_path, paths}; use if_chain::if_chain; use rustc_ast::ast; use rustc_hir as hir; use rustc_hir::{BorrowKind, Expr, ExprKind, StmtKind, UnOp}; use rustc_lint::LateContext; /// Converts a hir binary operator to the corresponding `ast` type. #[must_use] pub fn binop(op: hir::BinOpKind) -> ast::BinOpKind { match op { hir::BinOpKind::Eq => ast::BinOpKind::Eq, hir::BinOpKind::Ge => ast::BinOpKind::Ge, hir::BinOpKind::Gt => ast::BinOpKind::Gt, hir::BinOpKind::Le => ast::BinOpKind::Le, hir::BinOpKind::Lt => ast::BinOpKind::Lt, hir::BinOpKind::Ne => ast::BinOpKind::Ne, hir::BinOpKind::Or => ast::BinOpKind::Or, hir::BinOpKind::Add => ast::BinOpKind::Add, hir::BinOpKind::And => ast::BinOpKind::And, hir::BinOpKind::BitAnd => ast::BinOpKind::BitAnd, hir::BinOpKind::BitOr => ast::BinOpKind::BitOr, hir::BinOpKind::BitXor => ast::BinOpKind::BitXor, hir::BinOpKind::Div => ast::BinOpKind::Div, hir::BinOpKind::Mul => ast::BinOpKind::Mul, hir::BinOpKind::Rem => ast::BinOpKind::Rem, hir::BinOpKind::Shl => ast::BinOpKind::Shl, hir::BinOpKind::Shr => ast::BinOpKind::Shr, hir::BinOpKind::Sub => ast::BinOpKind::Sub, } } /// Represent a range akin to `ast::ExprKind::Range`. #[derive(Debug, Copy, Clone)] pub struct Range<'a> { /// The lower bound of the range, or `None` for ranges such as `..X`. pub start: Option<&'a hir::Expr<'a>>, /// The upper bound of the range, or `None` for ranges such as `X..`. pub end: Option<&'a hir::Expr<'a>>, /// Whether the interval is open or closed. pub limits: ast::RangeLimits, } /// Higher a `hir` range to something similar to `ast::ExprKind::Range`. pub fn range<'a>(expr: &'a hir::Expr<'_>) -> Option> { /// Finds the field named `name` in the field. Always return `Some` for /// convenience. fn get_field<'c>(name: &str, fields: &'c [hir::Field<'_>]) -> Option<&'c hir::Expr<'c>> { let expr = &fields.iter().find(|field| field.ident.name.as_str() == name)?.expr; Some(expr) } match expr.kind { hir::ExprKind::Call(ref path, ref args) if matches!( path.kind, hir::ExprKind::Path(hir::QPath::LangItem(hir::LangItem::RangeInclusiveNew, _)) ) => { Some(Range { start: Some(&args[0]), end: Some(&args[1]), limits: ast::RangeLimits::Closed, }) }, hir::ExprKind::Struct(ref path, ref fields, None) => match path { hir::QPath::LangItem(hir::LangItem::RangeFull, _) => Some(Range { start: None, end: None, limits: ast::RangeLimits::HalfOpen, }), hir::QPath::LangItem(hir::LangItem::RangeFrom, _) => Some(Range { start: Some(get_field("start", fields)?), end: None, limits: ast::RangeLimits::HalfOpen, }), hir::QPath::LangItem(hir::LangItem::Range, _) => Some(Range { start: Some(get_field("start", fields)?), end: Some(get_field("end", fields)?), limits: ast::RangeLimits::HalfOpen, }), hir::QPath::LangItem(hir::LangItem::RangeToInclusive, _) => Some(Range { start: None, end: Some(get_field("end", fields)?), limits: ast::RangeLimits::Closed, }), hir::QPath::LangItem(hir::LangItem::RangeTo, _) => Some(Range { start: None, end: Some(get_field("end", fields)?), limits: ast::RangeLimits::HalfOpen, }), _ => None, }, _ => None, } } /// Checks if a `let` statement is from a `for` loop desugaring. pub fn is_from_for_desugar(local: &hir::Local<'_>) -> bool { // This will detect plain for-loops without an actual variable binding: // // ``` // for x in some_vec { // // do stuff // } // ``` if_chain! { if let Some(ref expr) = local.init; if let hir::ExprKind::Match(_, _, hir::MatchSource::ForLoopDesugar) = expr.kind; then { return true; } } // This detects a variable binding in for loop to avoid `let_unit_value` // lint (see issue #1964). // // ``` // for _ in vec![()] { // // anything // } // ``` if let hir::LocalSource::ForLoopDesugar = local.source { return true; } false } /// Recover the essential nodes of a desugared for loop: /// `for pat in arg { body }` becomes `(pat, arg, body)`. pub fn for_loop<'tcx>( expr: &'tcx hir::Expr<'tcx>, ) -> Option<(&hir::Pat<'_>, &'tcx hir::Expr<'tcx>, &'tcx hir::Expr<'tcx>)> { if_chain! { if let hir::ExprKind::Match(ref iterexpr, ref arms, hir::MatchSource::ForLoopDesugar) = expr.kind; if let hir::ExprKind::Call(_, ref iterargs) = iterexpr.kind; if iterargs.len() == 1 && arms.len() == 1 && arms[0].guard.is_none(); if let hir::ExprKind::Loop(ref block, _, _) = arms[0].body.kind; if block.expr.is_none(); if let [ _, _, ref let_stmt, ref body ] = *block.stmts; if let hir::StmtKind::Local(ref local) = let_stmt.kind; if let hir::StmtKind::Expr(ref expr) = body.kind; then { return Some((&*local.pat, &iterargs[0], expr)); } } None } /// Recover the essential nodes of a desugared while loop: /// `while cond { body }` becomes `(cond, body)`. pub fn while_loop<'tcx>(expr: &'tcx hir::Expr<'tcx>) -> Option<(&'tcx hir::Expr<'tcx>, &'tcx hir::Expr<'tcx>)> { if_chain! { if let hir::ExprKind::Loop(block, _, hir::LoopSource::While) = &expr.kind; if let hir::Block { expr: Some(expr), .. } = &**block; if let hir::ExprKind::Match(cond, arms, hir::MatchSource::WhileDesugar) = &expr.kind; if let hir::ExprKind::DropTemps(cond) = &cond.kind; if let [hir::Arm { body, .. }, ..] = &arms[..]; then { return Some((cond, body)); } } None } /// Represent the pre-expansion arguments of a `vec!` invocation. pub enum VecArgs<'a> { /// `vec![elem; len]` Repeat(&'a hir::Expr<'a>, &'a hir::Expr<'a>), /// `vec![a, b, c]` Vec(&'a [hir::Expr<'a>]), } /// Returns the arguments of the `vec!` macro if this expression was expanded /// from `vec!`. pub fn vec_macro<'e>(cx: &LateContext<'_>, expr: &'e hir::Expr<'_>) -> Option> { if_chain! { if let hir::ExprKind::Call(ref fun, ref args) = expr.kind; if let hir::ExprKind::Path(ref qpath) = fun.kind; if is_expn_of(fun.span, "vec").is_some(); if let Some(fun_def_id) = cx.qpath_res(qpath, fun.hir_id).opt_def_id(); then { return if match_def_path(cx, fun_def_id, &paths::VEC_FROM_ELEM) && args.len() == 2 { // `vec![elem; size]` case Some(VecArgs::Repeat(&args[0], &args[1])) } else if match_def_path(cx, fun_def_id, &paths::SLICE_INTO_VEC) && args.len() == 1 { // `vec![a, b, c]` case if_chain! { if let hir::ExprKind::Box(ref boxed) = args[0].kind; if let hir::ExprKind::Array(ref args) = boxed.kind; then { return Some(VecArgs::Vec(&*args)); } } None } else if match_def_path(cx, fun_def_id, &paths::VEC_NEW) && args.is_empty() { Some(VecArgs::Vec(&[])) } else { None }; } } None } /// Extract args from an assert-like macro. /// Currently working with: /// - `assert!`, `assert_eq!` and `assert_ne!` /// - `debug_assert!`, `debug_assert_eq!` and `debug_assert_ne!` /// For example: /// `assert!(expr)` will return Some([expr]) /// `debug_assert_eq!(a, b)` will return Some([a, b]) pub fn extract_assert_macro_args<'tcx>(e: &'tcx Expr<'tcx>) -> Option>> { /// Try to match the AST for a pattern that contains a match, for example when two args are /// compared fn ast_matchblock(matchblock_expr: &'tcx Expr<'tcx>) -> Option>> { if_chain! { if let ExprKind::Match(ref headerexpr, _, _) = &matchblock_expr.kind; if let ExprKind::Tup([lhs, rhs]) = &headerexpr.kind; if let ExprKind::AddrOf(BorrowKind::Ref, _, lhs) = lhs.kind; if let ExprKind::AddrOf(BorrowKind::Ref, _, rhs) = rhs.kind; then { return Some(vec![lhs, rhs]); } } None } if let ExprKind::Block(ref block, _) = e.kind { if block.stmts.len() == 1 { if let StmtKind::Semi(ref matchexpr) = block.stmts.get(0)?.kind { // macros with unique arg: `{debug_}assert!` (e.g., `debug_assert!(some_condition)`) if_chain! { if let ExprKind::If(ref clause, _, _) = matchexpr.kind; if let ExprKind::Unary(UnOp::UnNot, condition) = clause.kind; then { return Some(vec![condition]); } } // debug macros with two args: `debug_assert_{ne, eq}` (e.g., `assert_ne!(a, b)`) if_chain! { if let ExprKind::Block(ref matchblock,_) = matchexpr.kind; if let Some(ref matchblock_expr) = matchblock.expr; then { return ast_matchblock(matchblock_expr); } } } } else if let Some(matchblock_expr) = block.expr { // macros with two args: `assert_{ne, eq}` (e.g., `assert_ne!(a, b)`) return ast_matchblock(&matchblock_expr); } } None }