use crate::*; use helpers::check_arg_count; use rustc_middle::ty::{self, TypeAndMut}; use rustc_ast::ast::Mutability; use rustc_span::BytePos; use rustc_target::abi::Size; use std::convert::TryInto as _; use crate::rustc_target::abi::LayoutOf as _; impl<'mir, 'tcx: 'mir> EvalContextExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {} pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> { fn handle_miri_get_backtrace( &mut self, args: &[OpTy<'tcx, Tag>], dest: PlaceTy<'tcx, Tag> ) -> InterpResult<'tcx> { let this = self.eval_context_mut(); let tcx = this.tcx; let &[flags] = check_arg_count(args)?; let flags = this.read_scalar(flags)?.to_u64()?; if flags != 0 { throw_unsup_format!("unknown `miri_get_backtrace` flags {}", flags); } let mut data = Vec::new(); for frame in this.active_thread_stack().iter().rev() { data.push((frame.instance, frame.current_span().lo())); } let ptrs: Vec<_> = data.into_iter().map(|(instance, pos)| { // We represent a frame pointer by using the `span.lo` value // as an offset into the function's allocation. This gives us an // opaque pointer that we can return to user code, and allows us // to reconstruct the needed frame information in `handle_miri_resolve_frame`. // Note that we never actually read or write anything from/to this pointer - // all of the data is represented by the pointer value itself. let mut fn_ptr = this.memory.create_fn_alloc(FnVal::Instance(instance)); fn_ptr.offset = Size::from_bytes(pos.0); Scalar::Ptr(fn_ptr) }).collect(); let len = ptrs.len(); let ptr_ty = tcx.mk_ptr(TypeAndMut { ty: tcx.types.unit, mutbl: Mutability::Mut }); let array_ty = tcx.mk_array(ptr_ty, ptrs.len().try_into().unwrap()); // Write pointers into array let alloc = this.allocate(this.layout_of(array_ty).unwrap(), MiriMemoryKind::Rust.into()); for (i, ptr) in ptrs.into_iter().enumerate() { let place = this.mplace_index(alloc, i as u64)?; this.write_immediate_to_mplace(ptr.into(), place)?; } this.write_immediate(Immediate::new_slice(alloc.ptr.into(), len.try_into().unwrap(), this), dest)?; Ok(()) } fn handle_miri_resolve_frame( &mut self, args: &[OpTy<'tcx, Tag>], dest: PlaceTy<'tcx, Tag> ) -> InterpResult<'tcx> { let this = self.eval_context_mut(); let tcx = this.tcx; let &[ptr, flags] = check_arg_count(args)?; let flags = this.read_scalar(flags)?.to_u64()?; if flags != 0 { throw_unsup_format!("unknown `miri_resolve_frame` flags {}", flags); } let ptr = match this.read_scalar(ptr)?.check_init()? { Scalar::Ptr(ptr) => ptr, Scalar::Raw { .. } => throw_ub_format!("expected a pointer in `rust_miri_resolve_frame`, found {:?}", ptr) }; let fn_instance = if let Some(GlobalAlloc::Function(instance)) = this.tcx.get_global_alloc(ptr.alloc_id) { instance } else { throw_ub_format!("expected function pointer, found {:?}", ptr); }; if dest.layout.layout.fields.count() != 4 { throw_ub_format!("bad declaration of miri_resolve_frame - should return a struct with 4 fields"); } let pos = BytePos(ptr.offset.bytes().try_into().unwrap()); let name = fn_instance.to_string(); let lo = tcx.sess.source_map().lookup_char_pos(pos); let filename = lo.file.name.to_string(); let lineno: u32 = lo.line as u32; // `lo.col` is 0-based - add 1 to make it 1-based for the caller. let colno: u32 = lo.col.0 as u32 + 1; let name_alloc = this.allocate_str(&name, MiriMemoryKind::Rust.into()); let filename_alloc = this.allocate_str(&filename, MiriMemoryKind::Rust.into()); let lineno_alloc = Scalar::from_u32(lineno); let colno_alloc = Scalar::from_u32(colno); let dest = this.force_allocation(dest)?; if let ty::Adt(adt, _) = dest.layout.ty.kind() { if !adt.repr.c() { throw_ub_format!("miri_resolve_frame must be declared with a `#[repr(C)]` return type"); } } this.write_immediate(name_alloc.to_ref(), this.mplace_field(dest, 0)?.into())?; this.write_immediate(filename_alloc.to_ref(), this.mplace_field(dest, 1)?.into())?; this.write_scalar(lineno_alloc, this.mplace_field(dest, 2)?.into())?; this.write_scalar(colno_alloc, this.mplace_field(dest, 3)?.into())?; Ok(()) } }