// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. /*! A doubly-linked list. Supports O(1) head, tail, count, push, pop, etc. # Safety note Do not use ==, !=, <, etc on doubly-linked lists -- it may not terminate. */ use core::prelude::*; use core::managed; pub type DListLink = Option<@mut DListNode>; pub struct DListNode { data: T, linked: bool, // for assertions prev: DListLink, next: DListLink, } pub struct DList { size: uint, hd: DListLink, tl: DListLink, } priv impl DListNode { fn assert_links(@mut self) { match self.next { Some(neighbour) => match neighbour.prev { Some(me) => if !managed::mut_ptr_eq(self, me) { fail!("Asymmetric next-link in dlist node.") }, None => fail!("One-way next-link in dlist node.") }, None => () } match self.prev { Some(neighbour) => match neighbour.next { Some(me) => if !managed::mut_ptr_eq(me, self) { fail!("Asymmetric prev-link in dlist node.") }, None => fail!("One-way prev-link in dlist node.") }, None => () } } } pub impl DListNode { /// Get the next node in the list, if there is one. fn next_link(@mut self) -> DListLink { self.assert_links(); self.next } /// Get the next node in the list, failing if there isn't one. fn next_node(@mut self) -> @mut DListNode { match self.next_link() { Some(nobe) => nobe, None => fail!("This dlist node has no next neighbour.") } } /// Get the previous node in the list, if there is one. fn prev_link(@mut self) -> DListLink { self.assert_links(); self.prev } /// Get the previous node in the list, failing if there isn't one. fn prev_node(@mut self) -> @mut DListNode { match self.prev_link() { Some(nobe) => nobe, None => fail!("This dlist node has no previous neighbour.") } } } /// Creates a new dlist node with the given data. pub fn new_dlist_node(data: T) -> @mut DListNode { @mut DListNode { data: data, linked: false, prev: None, next: None } } /// Creates a new, empty dlist. pub fn DList() -> @mut DList { @mut DList { size: 0, hd: None, tl: None } } /// Creates a new dlist with a single element pub fn from_elem(data: T) -> @mut DList { let list = DList(); list.push(data); list } pub fn from_vec(vec: &[T]) -> @mut DList { do vec::foldl(DList(), vec) |list,data| { list.push(*data); // Iterating left-to-right -- add newly to the tail. list } } /// Produce a list from a list of lists, leaving no elements behind in the /// input. O(number of sub-lists). pub fn concat(lists: @mut DList<@mut DList>) -> @mut DList { let result = DList(); while !lists.is_empty() { result.append(lists.pop().get()); } result } priv impl DList { fn new_link(data: T) -> DListLink { Some(@mut DListNode { data: data, linked: true, prev: None, next: None }) } fn assert_mine(@mut self, nobe: @mut DListNode) { // These asserts could be stronger if we had node-root back-pointers, // but those wouldn't allow for O(1) append. if self.size == 0 { fail!("This dlist is empty; that node can't be on it.") } if !nobe.linked { fail!("That node isn't linked to any dlist.") } if !((nobe.prev.is_some() || managed::mut_ptr_eq(self.hd.expect("headless dlist?"), nobe)) && (nobe.next.is_some() || managed::mut_ptr_eq(self.tl.expect("tailless dlist?"), nobe))) { fail!("That node isn't on this dlist.") } } fn make_mine(&self, nobe: @mut DListNode) { if nobe.prev.is_some() || nobe.next.is_some() || nobe.linked { fail!("Cannot insert node that's already on a dlist!") } nobe.linked = true; } // Link two nodes together. If either of them are 'none', also sets // the head and/or tail pointers appropriately. #[inline(always)] fn link(&mut self, before: DListLink, after: DListLink) { match before { Some(neighbour) => neighbour.next = after, None => self.hd = after } match after { Some(neighbour) => neighbour.prev = before, None => self.tl = before } } // Remove a node from the list. fn unlink(@mut self, nobe: @mut DListNode) { self.assert_mine(nobe); assert!(self.size > 0); self.link(nobe.prev, nobe.next); nobe.prev = None; // Release extraneous references. nobe.next = None; nobe.linked = false; self.size -= 1; } fn add_head(@mut self, nobe: DListLink) { self.link(nobe, self.hd); // Might set tail too. self.hd = nobe; self.size += 1; } fn add_tail(@mut self, nobe: DListLink) { self.link(self.tl, nobe); // Might set head too. self.tl = nobe; self.size += 1; } fn insert_left(@mut self, nobe: DListLink, neighbour: @mut DListNode) { self.assert_mine(neighbour); assert!(self.size > 0); self.link(neighbour.prev, nobe); self.link(nobe, Some(neighbour)); self.size += 1; } fn insert_right(@mut self, neighbour: @mut DListNode, nobe: DListLink) { self.assert_mine(neighbour); assert!(self.size > 0); self.link(nobe, neighbour.next); self.link(Some(neighbour), nobe); self.size += 1; } } pub impl DList { /// Get the size of the list. O(1). fn len(@mut self) -> uint { self.size } /// Returns true if the list is empty. O(1). fn is_empty(@mut self) -> bool { self.len() == 0 } /// Add data to the head of the list. O(1). fn push_head(@mut self, data: T) { self.add_head(DList::new_link(data)); } /** * Add data to the head of the list, and get the new containing * node. O(1). */ fn push_head_n(@mut self, data: T) -> @mut DListNode { let nobe = DList::new_link(data); self.add_head(nobe); nobe.get() } /// Add data to the tail of the list. O(1). fn push(@mut self, data: T) { self.add_tail(DList::new_link(data)); } /** * Add data to the tail of the list, and get the new containing * node. O(1). */ fn push_n(@mut self, data: T) -> @mut DListNode { let nobe = DList::new_link(data); self.add_tail(nobe); nobe.get() } /** * Insert data into the middle of the list, left of the given node. * O(1). */ fn insert_before(@mut self, data: T, neighbour: @mut DListNode) { self.insert_left(DList::new_link(data), neighbour); } /** * Insert an existing node in the middle of the list, left of the * given node. O(1). */ fn insert_n_before(@mut self, nobe: @mut DListNode, neighbour: @mut DListNode) { self.make_mine(nobe); self.insert_left(Some(nobe), neighbour); } /** * Insert data in the middle of the list, left of the given node, * and get its containing node. O(1). */ fn insert_before_n( @mut self, data: T, neighbour: @mut DListNode ) -> @mut DListNode { let nobe = DList::new_link(data); self.insert_left(nobe, neighbour); nobe.get() } /** * Insert data into the middle of the list, right of the given node. * O(1). */ fn insert_after(@mut self, data: T, neighbour: @mut DListNode) { self.insert_right(neighbour, DList::new_link(data)); } /** * Insert an existing node in the middle of the list, right of the * given node. O(1). */ fn insert_n_after(@mut self, nobe: @mut DListNode, neighbour: @mut DListNode) { self.make_mine(nobe); self.insert_right(neighbour, Some(nobe)); } /** * Insert data in the middle of the list, right of the given node, * and get its containing node. O(1). */ fn insert_after_n( @mut self, data: T, neighbour: @mut DListNode ) -> @mut DListNode { let nobe = DList::new_link(data); self.insert_right(neighbour, nobe); nobe.get() } /// Remove a node from the head of the list. O(1). fn pop_n(@mut self) -> DListLink { let hd = self.peek_n(); hd.map(|nobe| self.unlink(*nobe)); hd } /// Remove a node from the tail of the list. O(1). fn pop_tail_n(@mut self) -> DListLink { let tl = self.peek_tail_n(); tl.map(|nobe| self.unlink(*nobe)); tl } /// Get the node at the list's head. O(1). fn peek_n(@mut self) -> DListLink { self.hd } /// Get the node at the list's tail. O(1). fn peek_tail_n(@mut self) -> DListLink { self.tl } /// Get the node at the list's head, failing if empty. O(1). fn head_n(@mut self) -> @mut DListNode { match self.hd { Some(nobe) => nobe, None => fail!("Attempted to get the head of an empty dlist.") } } /// Get the node at the list's tail, failing if empty. O(1). fn tail_n(@mut self) -> @mut DListNode { match self.tl { Some(nobe) => nobe, None => fail!("Attempted to get the tail of an empty dlist.") } } /// Remove a node from anywhere in the list. O(1). fn remove(@mut self, nobe: @mut DListNode) { self.unlink(nobe); } /** * Empty another list onto the end of this list, joining this list's tail * to the other list's head. O(1). */ fn append(@mut self, them: @mut DList) { if managed::mut_ptr_eq(self, them) { fail!("Cannot append a dlist to itself!") } if them.len() > 0 { self.link(self.tl, them.hd); self.tl = them.tl; self.size += them.size; them.size = 0; them.hd = None; them.tl = None; } } /** * Empty another list onto the start of this list, joining the other * list's tail to this list's head. O(1). */ fn prepend(@mut self, them: @mut DList) { if managed::mut_ptr_eq(self, them) { fail!("Cannot prepend a dlist to itself!") } if them.len() > 0 { self.link(them.tl, self.hd); self.hd = them.hd; self.size += them.size; them.size = 0; them.hd = None; them.tl = None; } } /// Reverse the list's elements in place. O(n). fn reverse(@mut self) { do self.hd.while_some |nobe| { let next_nobe = nobe.next; self.remove(nobe); self.make_mine(nobe); self.add_head(Some(nobe)); next_nobe } } /** * Remove everything from the list. This is important because the cyclic * links won't otherwise be automatically refcounted-collected. O(n). */ fn clear(@mut self) { // Cute as it would be to simply detach the list and proclaim "O(1)!", // the GC would still be a hidden O(n). Better to be honest about it. while !self.is_empty() { let _ = self.pop_n(); } } /// Iterate over nodes. fn each_node(@mut self, f: &fn(@mut DListNode) -> bool) -> bool { let mut link = self.peek_n(); while link.is_some() { let nobe = link.get(); if !f(nobe) { return false; } link = nobe.next_link(); } return true; } /// Check data structure integrity. O(n). fn assert_consistent(@mut self) { if self.hd.is_none() || self.tl.is_none() { assert!(self.hd.is_none() && self.tl.is_none()); } // iterate forwards let mut count = 0; let mut link = self.peek_n(); let mut rabbit = link; while link.is_some() { let nobe = link.get(); assert!(nobe.linked); // check cycle if rabbit.is_some() { rabbit = rabbit.get().next; } if rabbit.is_some() { rabbit = rabbit.get().next; } if rabbit.is_some() { assert!(!managed::mut_ptr_eq(rabbit.get(), nobe)); } // advance link = nobe.next_link(); count += 1; } assert_eq!(count, self.len()); // iterate backwards - some of this is probably redundant. link = self.peek_tail_n(); rabbit = link; while link.is_some() { let nobe = link.get(); assert!(nobe.linked); // check cycle if rabbit.is_some() { rabbit = rabbit.get().prev; } if rabbit.is_some() { rabbit = rabbit.get().prev; } if rabbit.is_some() { assert!(!managed::mut_ptr_eq(rabbit.get(), nobe)); } // advance link = nobe.prev_link(); count -= 1; } assert_eq!(count, 0); } } pub impl DList { /// Remove data from the head of the list. O(1). fn pop(@mut self) -> Option { self.pop_n().map(|nobe| nobe.data) } /// Remove data from the tail of the list. O(1). fn pop_tail(@mut self) -> Option { self.pop_tail_n().map(|nobe| nobe.data) } /// Get data at the list's head. O(1). fn peek(@mut self) -> Option { self.peek_n().map(|nobe| nobe.data) } /// Get data at the list's tail. O(1). fn peek_tail(@mut self) -> Option { self.peek_tail_n().map (|nobe| nobe.data) } /// Get data at the list's head, failing if empty. O(1). fn head(@mut self) -> T { self.head_n().data } /// Get data at the list's tail, failing if empty. O(1). fn tail(@mut self) -> T { self.tail_n().data } /// Get the elements of the list as a vector. O(n). fn to_vec(@mut self) -> ~[T] { let mut v = vec::with_capacity(self.size); for old_iter::eachi(&self) |index,data| { v[index] = *data; } v } } impl BaseIter for @mut DList { /** * Iterates through the current contents. * * Attempts to access this dlist during iteration are allowed (to * allow for e.g. breadth-first search with in-place enqueues), but * removing the current node is forbidden. */ fn each(&self, f: &fn(v: &T) -> bool) -> bool { let mut link = self.peek_n(); while link.is_some() { let nobe = link.get(); assert!(nobe.linked); { let frozen_nobe = &*nobe; if !f(&frozen_nobe.data) { return false; } } // Check (weakly) that the user didn't do a remove. if self.size == 0 { fail!("The dlist became empty during iteration??") } if !nobe.linked || (!((nobe.prev.is_some() || managed::mut_ptr_eq(self.hd.expect("headless dlist?"), nobe)) && (nobe.next.is_some() || managed::mut_ptr_eq(self.tl.expect("tailless dlist?"), nobe)))) { fail!("Removing a dlist node during iteration is forbidden!") } link = nobe.next_link(); } return true; } #[inline(always)] fn size_hint(&self) -> Option { Some(self.len()) } } #[cfg(test)] mod tests { use core::prelude::*; use super::*; #[test] fn test_dlist_concat() { let a = from_vec([1,2]); let b = from_vec([3,4]); let c = from_vec([5,6]); let d = from_vec([7,8]); let ab = from_vec([a,b]); let cd = from_vec([c,d]); let abcd = concat(concat(from_vec([ab,cd]))); abcd.assert_consistent(); assert_eq!(abcd.len(), 8); abcd.assert_consistent(); assert_eq!(abcd.pop().get(), 1); abcd.assert_consistent(); assert_eq!(abcd.pop().get(), 2); abcd.assert_consistent(); assert_eq!(abcd.pop().get(), 3); abcd.assert_consistent(); assert_eq!(abcd.pop().get(), 4); abcd.assert_consistent(); assert_eq!(abcd.pop().get(), 5); abcd.assert_consistent(); assert_eq!(abcd.pop().get(), 6); abcd.assert_consistent(); assert_eq!(abcd.pop().get(), 7); abcd.assert_consistent(); assert_eq!(abcd.pop().get(), 8); abcd.assert_consistent(); assert!(abcd.is_empty()); } #[test] fn test_dlist_append() { let a = from_vec([1,2,3]); let b = from_vec([4,5,6]); a.append(b); assert_eq!(a.len(), 6); assert_eq!(b.len(), 0); b.assert_consistent(); a.assert_consistent(); assert_eq!(a.pop().get(), 1); a.assert_consistent(); assert_eq!(a.pop().get(), 2); a.assert_consistent(); assert_eq!(a.pop().get(), 3); a.assert_consistent(); assert_eq!(a.pop().get(), 4); a.assert_consistent(); assert_eq!(a.pop().get(), 5); a.assert_consistent(); assert_eq!(a.pop().get(), 6); a.assert_consistent(); assert!(a.is_empty()); } #[test] fn test_dlist_append_empty() { let a = from_vec([1,2,3]); let b = DList::(); a.append(b); assert_eq!(a.len(), 3); assert_eq!(b.len(), 0); b.assert_consistent(); a.assert_consistent(); assert_eq!(a.pop().get(), 1); a.assert_consistent(); assert_eq!(a.pop().get(), 2); a.assert_consistent(); assert_eq!(a.pop().get(), 3); a.assert_consistent(); assert!(a.is_empty()); } #[test] fn test_dlist_append_to_empty() { let a = DList::(); let b = from_vec([4,5,6]); a.append(b); assert_eq!(a.len(), 3); assert_eq!(b.len(), 0); b.assert_consistent(); a.assert_consistent(); assert_eq!(a.pop().get(), 4); a.assert_consistent(); assert_eq!(a.pop().get(), 5); a.assert_consistent(); assert_eq!(a.pop().get(), 6); a.assert_consistent(); assert!(a.is_empty()); } #[test] fn test_dlist_append_two_empty() { let a = DList::(); let b = DList::(); a.append(b); assert_eq!(a.len(), 0); assert_eq!(b.len(), 0); b.assert_consistent(); a.assert_consistent(); } #[test] #[ignore(cfg(windows))] #[should_fail] fn test_dlist_append_self() { let a = DList::(); a.append(a); } #[test] #[ignore(cfg(windows))] #[should_fail] fn test_dlist_prepend_self() { let a = DList::(); a.prepend(a); } #[test] fn test_dlist_prepend() { let a = from_vec([1,2,3]); let b = from_vec([4,5,6]); b.prepend(a); assert_eq!(a.len(), 0); assert_eq!(b.len(), 6); a.assert_consistent(); b.assert_consistent(); assert_eq!(b.pop().get(), 1); b.assert_consistent(); assert_eq!(b.pop().get(), 2); b.assert_consistent(); assert_eq!(b.pop().get(), 3); b.assert_consistent(); assert_eq!(b.pop().get(), 4); b.assert_consistent(); assert_eq!(b.pop().get(), 5); b.assert_consistent(); assert_eq!(b.pop().get(), 6); b.assert_consistent(); assert!(b.is_empty()); } #[test] fn test_dlist_reverse() { let a = from_vec([5,4,3,2,1]); a.reverse(); assert_eq!(a.len(), 5); a.assert_consistent(); assert_eq!(a.pop().get(), 1); a.assert_consistent(); assert_eq!(a.pop().get(), 2); a.assert_consistent(); assert_eq!(a.pop().get(), 3); a.assert_consistent(); assert_eq!(a.pop().get(), 4); a.assert_consistent(); assert_eq!(a.pop().get(), 5); a.assert_consistent(); assert!(a.is_empty()); } #[test] fn test_dlist_reverse_empty() { let a = DList::(); a.reverse(); assert_eq!(a.len(), 0); a.assert_consistent(); } #[test] fn test_dlist_each_node() { let a = from_vec([1,2,4,5]); for a.each_node |nobe| { if nobe.data > 3 { a.insert_before(3, nobe); } } assert_eq!(a.len(), 6); a.assert_consistent(); assert_eq!(a.pop().get(), 1); a.assert_consistent(); assert_eq!(a.pop().get(), 2); a.assert_consistent(); assert_eq!(a.pop().get(), 3); a.assert_consistent(); assert_eq!(a.pop().get(), 4); a.assert_consistent(); assert_eq!(a.pop().get(), 3); a.assert_consistent(); assert_eq!(a.pop().get(), 5); a.assert_consistent(); assert!(a.is_empty()); } #[test] fn test_dlist_clear() { let a = from_vec([5,4,3,2,1]); a.clear(); assert_eq!(a.len(), 0); a.assert_consistent(); } #[test] fn test_dlist_is_empty() { let empty = DList::(); let full1 = from_vec([1,2,3]); assert!(empty.is_empty()); assert!(!full1.is_empty()); } #[test] fn test_dlist_head_tail() { let l = from_vec([1,2,3]); assert_eq!(l.head(), 1); assert_eq!(l.tail(), 3); assert_eq!(l.len(), 3); } #[test] fn test_dlist_pop() { let l = from_vec([1,2,3]); assert_eq!(l.pop().get(), 1); assert_eq!(l.tail(), 3); assert_eq!(l.head(), 2); assert_eq!(l.pop().get(), 2); assert_eq!(l.tail(), 3); assert_eq!(l.head(), 3); assert_eq!(l.pop().get(), 3); assert!(l.is_empty()); assert!(l.pop().is_none()); } #[test] fn test_dlist_pop_tail() { let l = from_vec([1,2,3]); assert_eq!(l.pop_tail().get(), 3); assert_eq!(l.tail(), 2); assert_eq!(l.head(), 1); assert_eq!(l.pop_tail().get(), 2); assert_eq!(l.tail(), 1); assert_eq!(l.head(), 1); assert_eq!(l.pop_tail().get(), 1); assert!(l.is_empty()); assert!(l.pop_tail().is_none()); } #[test] fn test_dlist_push() { let l = DList::(); l.push(1); assert_eq!(l.head(), 1); assert_eq!(l.tail(), 1); l.push(2); assert_eq!(l.head(), 1); assert_eq!(l.tail(), 2); l.push(3); assert_eq!(l.head(), 1); assert_eq!(l.tail(), 3); assert_eq!(l.len(), 3); } #[test] fn test_dlist_push_head() { let l = DList::(); l.push_head(3); assert_eq!(l.head(), 3); assert_eq!(l.tail(), 3); l.push_head(2); assert_eq!(l.head(), 2); assert_eq!(l.tail(), 3); l.push_head(1); assert_eq!(l.head(), 1); assert_eq!(l.tail(), 3); assert_eq!(l.len(), 3); } #[test] fn test_dlist_foldl() { let l = from_vec(vec::from_fn(101, |x|x)); assert_eq!(old_iter::foldl(&l, 0, |accum,elem| *accum+*elem), 5050); } #[test] fn test_dlist_break_early() { let l = from_vec([1,2,3,4,5]); let mut x = 0; for l.each |i| { x += 1; if (*i == 3) { break; } } assert_eq!(x, 3); } #[test] fn test_dlist_remove_head() { let l = DList::(); l.assert_consistent(); let one = l.push_n(1); l.assert_consistent(); let _two = l.push_n(2); l.assert_consistent(); let _three = l.push_n(3); l.assert_consistent(); assert_eq!(l.len(), 3); l.assert_consistent(); l.remove(one); l.assert_consistent(); assert_eq!(l.len(), 2); l.assert_consistent(); assert_eq!(l.head(), 2); l.assert_consistent(); assert_eq!(l.tail(), 3); l.assert_consistent(); assert_eq!(l.pop().get(), 2); l.assert_consistent(); assert_eq!(l.pop().get(), 3); l.assert_consistent(); assert!(l.is_empty()); } #[test] fn test_dlist_remove_mid() { let l = DList::(); l.assert_consistent(); let _one = l.push_n(1); l.assert_consistent(); let two = l.push_n(2); l.assert_consistent(); let _three = l.push_n(3); l.assert_consistent(); assert_eq!(l.len(), 3); l.assert_consistent(); l.remove(two); l.assert_consistent(); assert_eq!(l.len(), 2); l.assert_consistent(); assert_eq!(l.head(), 1); l.assert_consistent(); assert_eq!(l.tail(), 3); l.assert_consistent(); assert_eq!(l.pop().get(), 1); l.assert_consistent(); assert_eq!(l.pop().get(), 3); l.assert_consistent(); assert!(l.is_empty()); } #[test] fn test_dlist_remove_tail() { let l = DList::(); l.assert_consistent(); let _one = l.push_n(1); l.assert_consistent(); let _two = l.push_n(2); l.assert_consistent(); let three = l.push_n(3); l.assert_consistent(); assert_eq!(l.len(), 3); l.assert_consistent(); l.remove(three); l.assert_consistent(); assert_eq!(l.len(), 2); l.assert_consistent(); assert_eq!(l.head(), 1); l.assert_consistent(); assert_eq!(l.tail(), 2); l.assert_consistent(); assert_eq!(l.pop().get(), 1); l.assert_consistent(); assert_eq!(l.pop().get(), 2); l.assert_consistent(); assert!(l.is_empty()); } #[test] fn test_dlist_remove_one_two() { let l = DList::(); l.assert_consistent(); let one = l.push_n(1); l.assert_consistent(); let two = l.push_n(2); l.assert_consistent(); let _three = l.push_n(3); l.assert_consistent(); assert_eq!(l.len(), 3); l.assert_consistent(); l.remove(one); l.assert_consistent(); l.remove(two); // and through and through, the vorpal blade went snicker-snack l.assert_consistent(); assert_eq!(l.len(), 1); l.assert_consistent(); assert_eq!(l.head(), 3); l.assert_consistent(); assert_eq!(l.tail(), 3); l.assert_consistent(); assert_eq!(l.pop().get(), 3); l.assert_consistent(); assert!(l.is_empty()); } #[test] fn test_dlist_remove_one_three() { let l = DList::(); l.assert_consistent(); let one = l.push_n(1); l.assert_consistent(); let _two = l.push_n(2); l.assert_consistent(); let three = l.push_n(3); l.assert_consistent(); assert_eq!(l.len(), 3); l.assert_consistent(); l.remove(one); l.assert_consistent(); l.remove(three); l.assert_consistent(); assert_eq!(l.len(), 1); l.assert_consistent(); assert_eq!(l.head(), 2); l.assert_consistent(); assert_eq!(l.tail(), 2); l.assert_consistent(); assert_eq!(l.pop().get(), 2); l.assert_consistent(); assert!(l.is_empty()); } #[test] fn test_dlist_remove_two_three() { let l = DList::(); l.assert_consistent(); let _one = l.push_n(1); l.assert_consistent(); let two = l.push_n(2); l.assert_consistent(); let three = l.push_n(3); l.assert_consistent(); assert_eq!(l.len(), 3); l.assert_consistent(); l.remove(two); l.assert_consistent(); l.remove(three); l.assert_consistent(); assert_eq!(l.len(), 1); l.assert_consistent(); assert_eq!(l.head(), 1); l.assert_consistent(); assert_eq!(l.tail(), 1); l.assert_consistent(); assert_eq!(l.pop().get(), 1); l.assert_consistent(); assert!(l.is_empty()); } #[test] fn test_dlist_remove_all() { let l = DList::(); l.assert_consistent(); let one = l.push_n(1); l.assert_consistent(); let two = l.push_n(2); l.assert_consistent(); let three = l.push_n(3); l.assert_consistent(); assert_eq!(l.len(), 3); l.assert_consistent(); l.remove(two); l.assert_consistent(); l.remove(three); l.assert_consistent(); l.remove(one); // Twenty-three is number one! l.assert_consistent(); assert!(l.peek().is_none()); l.assert_consistent(); assert!(l.is_empty()); } #[test] fn test_dlist_insert_n_before() { let l = DList::(); l.assert_consistent(); let _one = l.push_n(1); l.assert_consistent(); let two = l.push_n(2); l.assert_consistent(); let three = new_dlist_node(3); l.assert_consistent(); assert_eq!(l.len(), 2); l.assert_consistent(); l.insert_n_before(three, two); l.assert_consistent(); assert_eq!(l.len(), 3); l.assert_consistent(); assert_eq!(l.head(), 1); l.assert_consistent(); assert_eq!(l.tail(), 2); l.assert_consistent(); assert_eq!(l.pop().get(), 1); l.assert_consistent(); assert_eq!(l.pop().get(), 3); l.assert_consistent(); assert_eq!(l.pop().get(), 2); l.assert_consistent(); assert!(l.is_empty()); } #[test] fn test_dlist_insert_n_after() { let l = DList::(); l.assert_consistent(); let one = l.push_n(1); l.assert_consistent(); let _two = l.push_n(2); l.assert_consistent(); let three = new_dlist_node(3); l.assert_consistent(); assert_eq!(l.len(), 2); l.assert_consistent(); l.insert_n_after(three, one); l.assert_consistent(); assert_eq!(l.len(), 3); l.assert_consistent(); assert_eq!(l.head(), 1); l.assert_consistent(); assert_eq!(l.tail(), 2); l.assert_consistent(); assert_eq!(l.pop().get(), 1); l.assert_consistent(); assert_eq!(l.pop().get(), 3); l.assert_consistent(); assert_eq!(l.pop().get(), 2); l.assert_consistent(); assert!(l.is_empty()); } #[test] fn test_dlist_insert_before_head() { let l = DList::(); l.assert_consistent(); let one = l.push_n(1); l.assert_consistent(); let _two = l.push_n(2); l.assert_consistent(); assert_eq!(l.len(), 2); l.assert_consistent(); l.insert_before(3, one); l.assert_consistent(); assert_eq!(l.len(), 3); l.assert_consistent(); assert_eq!(l.head(), 3); l.assert_consistent(); assert_eq!(l.tail(), 2); l.assert_consistent(); assert_eq!(l.pop().get(), 3); l.assert_consistent(); assert_eq!(l.pop().get(), 1); l.assert_consistent(); assert_eq!(l.pop().get(), 2); l.assert_consistent(); assert!(l.is_empty()); } #[test] fn test_dlist_insert_after_tail() { let l = DList::(); l.assert_consistent(); let _one = l.push_n(1); l.assert_consistent(); let two = l.push_n(2); l.assert_consistent(); assert_eq!(l.len(), 2); l.assert_consistent(); l.insert_after(3, two); l.assert_consistent(); assert_eq!(l.len(), 3); l.assert_consistent(); assert_eq!(l.head(), 1); l.assert_consistent(); assert_eq!(l.tail(), 3); l.assert_consistent(); assert_eq!(l.pop().get(), 1); l.assert_consistent(); assert_eq!(l.pop().get(), 2); l.assert_consistent(); assert_eq!(l.pop().get(), 3); l.assert_consistent(); assert!(l.is_empty()); } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_dlist_asymmetric_link() { let l = DList::(); let _one = l.push_n(1); let two = l.push_n(2); two.prev = None; l.assert_consistent(); } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_dlist_cyclic_list() { let l = DList::(); let one = l.push_n(1); let _two = l.push_n(2); let three = l.push_n(3); three.next = Some(one); one.prev = Some(three); l.assert_consistent(); } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_dlist_headless() { DList::().head(); } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_dlist_insert_already_present_before() { let l = DList::(); let one = l.push_n(1); let two = l.push_n(2); l.insert_n_before(two, one); } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_dlist_insert_already_present_after() { let l = DList::(); let one = l.push_n(1); let two = l.push_n(2); l.insert_n_after(one, two); } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_dlist_insert_before_orphan() { let l = DList::(); let one = new_dlist_node(1); let two = new_dlist_node(2); l.insert_n_before(one, two); } #[test] #[should_fail] #[ignore(cfg(windows))] fn test_dlist_insert_after_orphan() { let l = DList::(); let one = new_dlist_node(1); let two = new_dlist_node(2); l.insert_n_after(two, one); } }