// Copyright 2012 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. use back::abi; use llvm; use llvm::ValueRef; use metadata::csearch; use middle::subst::VecPerParamSpace; use middle::subst; use middle::trans::base::*; use middle::trans::build::*; use middle::trans::callee::*; use middle::trans::callee; use middle::trans::cleanup; use middle::trans::common::*; use middle::trans::datum::*; use middle::trans::expr::{SaveIn, Ignore}; use middle::trans::expr; use middle::trans::glue; use middle::trans::monomorphize; use middle::trans::type_::Type; use middle::trans::type_of::*; use middle::ty; use middle::typeck; use middle::typeck::MethodCall; use util::common::indenter; use util::ppaux::Repr; use std::c_str::ToCStr; use syntax::abi::{Rust, RustCall}; use syntax::parse::token; use syntax::{ast, ast_map, visit}; use syntax::ast_util::PostExpansionMethod; /** The main "translation" pass for methods. Generates code for non-monomorphized methods only. Other methods will be generated once they are invoked with specific type parameters, see `trans::base::lval_static_fn()` or `trans::base::monomorphic_fn()`. */ pub fn trans_impl(ccx: &CrateContext, name: ast::Ident, impl_items: &[ast::ImplItem], generics: &ast::Generics, id: ast::NodeId) { let _icx = push_ctxt("meth::trans_impl"); let tcx = ccx.tcx(); debug!("trans_impl(name={}, id={:?})", name.repr(tcx), id); // Both here and below with generic methods, be sure to recurse and look for // items that we need to translate. if !generics.ty_params.is_empty() { let mut v = TransItemVisitor{ ccx: ccx }; for impl_item in impl_items.iter() { match *impl_item { ast::MethodImplItem(method) => { visit::walk_method_helper(&mut v, &*method, ()); } } } return; } for impl_item in impl_items.iter() { match *impl_item { ast::MethodImplItem(method) => { if method.pe_generics().ty_params.len() == 0u { let llfn = get_item_val(ccx, method.id); trans_fn(ccx, &*method.pe_fn_decl(), &*method.pe_body(), llfn, ¶m_substs::empty(), method.id, []); } let mut v = TransItemVisitor { ccx: ccx, }; visit::walk_method_helper(&mut v, &*method, ()); } } } } pub fn trans_method_callee<'a>( bcx: &'a Block<'a>, method_call: MethodCall, self_expr: Option<&ast::Expr>, arg_cleanup_scope: cleanup::ScopeId) -> Callee<'a> { let _icx = push_ctxt("meth::trans_method_callee"); let (origin, method_ty) = match bcx.tcx().method_map .borrow().find(&method_call) { Some(method) => { debug!("trans_method_callee({:?}, method={})", method_call, method.repr(bcx.tcx())); (method.origin, method.ty) } None => { bcx.sess().span_bug(bcx.tcx().map.span(method_call.expr_id), "method call expr wasn't in method map") } }; match origin { typeck::MethodStatic(did) | typeck::MethodStaticUnboxedClosure(did) => { Callee { bcx: bcx, data: Fn(callee::trans_fn_ref(bcx, did, MethodCall(method_call))), } } typeck::MethodParam(typeck::MethodParam { trait_id: trait_id, method_num: off, param_num: p, bound_num: b }) => { ty::populate_implementations_for_trait_if_necessary( bcx.tcx(), trait_id); let vtbl = find_vtable(bcx.tcx(), bcx.fcx.param_substs, p, b); trans_monomorphized_callee(bcx, method_call, trait_id, off, vtbl) } typeck::MethodObject(ref mt) => { let self_expr = match self_expr { Some(self_expr) => self_expr, None => { bcx.sess().span_bug(bcx.tcx().map.span(method_call.expr_id), "self expr wasn't provided for trait object \ callee (trying to call overloaded op?)") } }; trans_trait_callee(bcx, monomorphize_type(bcx, method_ty), mt.real_index, self_expr, arg_cleanup_scope) } } } pub fn trans_static_method_callee(bcx: &Block, method_id: ast::DefId, trait_id: ast::DefId, expr_id: ast::NodeId) -> ValueRef { let _icx = push_ctxt("meth::trans_static_method_callee"); let ccx = bcx.ccx(); debug!("trans_static_method_callee(method_id={:?}, trait_id={}, \ expr_id={:?})", method_id, ty::item_path_str(bcx.tcx(), trait_id), expr_id); let _indenter = indenter(); ty::populate_implementations_for_trait_if_necessary(bcx.tcx(), trait_id); let mname = if method_id.krate == ast::LOCAL_CRATE { match bcx.tcx().map.get(method_id.node) { ast_map::NodeTraitItem(method) => { let ident = match *method { ast::RequiredMethod(ref m) => m.ident, ast::ProvidedMethod(ref m) => m.pe_ident() }; ident.name } _ => fail!("callee is not a trait method") } } else { csearch::get_item_path(bcx.tcx(), method_id).last().unwrap().name() }; debug!("trans_static_method_callee: method_id={:?}, expr_id={:?}, \ name={}", method_id, expr_id, token::get_name(mname)); let vtable_key = MethodCall::expr(expr_id); let vtbls = resolve_vtables_in_fn_ctxt( bcx.fcx, ccx.tcx.vtable_map.borrow().get(&vtable_key)); match *vtbls.get_self().unwrap().get(0) { typeck::vtable_static(impl_did, ref rcvr_substs, ref rcvr_origins) => { assert!(rcvr_substs.types.all(|t| !ty::type_needs_infer(*t))); let mth_id = method_with_name(ccx, impl_did, mname); let (callee_substs, callee_origins) = combine_impl_and_methods_tps( bcx, ExprId(expr_id), (*rcvr_substs).clone(), (*rcvr_origins).clone()); let llfn = trans_fn_ref_with_vtables(bcx, mth_id, ExprId(expr_id), callee_substs, callee_origins); let callee_ty = node_id_type(bcx, expr_id); let llty = type_of_fn_from_ty(ccx, callee_ty).ptr_to(); PointerCast(bcx, llfn, llty) } typeck::vtable_unboxed_closure(_) => { bcx.tcx().sess.bug("can't call a closure vtable in a static way"); } _ => { fail!("vtable_param left in monomorphized \ function's vtable substs"); } } } fn method_with_name(ccx: &CrateContext, impl_id: ast::DefId, name: ast::Name) -> ast::DefId { match ccx.impl_method_cache.borrow().find_copy(&(impl_id, name)) { Some(m) => return m, None => {} } let impl_items = ccx.tcx.impl_items.borrow(); let impl_items = impl_items.find(&impl_id) .expect("could not find impl while translating"); let meth_did = impl_items.iter() .find(|&did| { match *did { ty::MethodTraitItemId(did) => { ty::impl_or_trait_item(&ccx.tcx, did).ident() .name == name } } }).expect("could not find method while \ translating"); ccx.impl_method_cache.borrow_mut().insert((impl_id, name), meth_did.def_id()); meth_did.def_id() } fn trans_monomorphized_callee<'a>( bcx: &'a Block<'a>, method_call: MethodCall, trait_id: ast::DefId, n_method: uint, vtbl: typeck::vtable_origin) -> Callee<'a> { let _icx = push_ctxt("meth::trans_monomorphized_callee"); match vtbl { typeck::vtable_static(impl_did, rcvr_substs, rcvr_origins) => { let ccx = bcx.ccx(); let mname = match ty::trait_item(ccx.tcx(), trait_id, n_method) { ty::MethodTraitItem(method) => method.ident, }; let mth_id = method_with_name(bcx.ccx(), impl_did, mname.name); // create a concatenated set of substitutions which includes // those from the impl and those from the method: let (callee_substs, callee_origins) = combine_impl_and_methods_tps( bcx, MethodCall(method_call), rcvr_substs, rcvr_origins); // translate the function let llfn = trans_fn_ref_with_vtables(bcx, mth_id, MethodCall(method_call), callee_substs, callee_origins); Callee { bcx: bcx, data: Fn(llfn) } } typeck::vtable_unboxed_closure(closure_def_id) => { // The static region and type parameters are lies, but we're in // trans so it doesn't matter. // // FIXME(pcwalton): Is this true in the case of type parameters? let callee_substs = get_callee_substitutions_for_unboxed_closure( bcx, closure_def_id); let llfn = trans_fn_ref_with_vtables(bcx, closure_def_id, MethodCall(method_call), callee_substs, VecPerParamSpace::empty()); Callee { bcx: bcx, data: Fn(llfn), } } typeck::vtable_param(..) => { bcx.tcx().sess.bug( "vtable_param left in monomorphized function's vtable substs"); } typeck::vtable_error => { bcx.tcx().sess.bug( "vtable_error left in monomorphized function's vtable substs"); } } } fn combine_impl_and_methods_tps(bcx: &Block, node: ExprOrMethodCall, rcvr_substs: subst::Substs, rcvr_origins: typeck::vtable_res) -> (subst::Substs, typeck::vtable_res) { /*! * Creates a concatenated set of substitutions which includes * those from the impl and those from the method. This are * some subtle complications here. Statically, we have a list * of type parameters like `[T0, T1, T2, M1, M2, M3]` where * `Tn` are type parameters that appear on the receiver. For * example, if the receiver is a method parameter `A` with a * bound like `trait` then `Tn` would be `[B,C,D]`. * * The weird part is that the type `A` might now be bound to * any other type, such as `foo`. In that case, the vector * we want is: `[X, M1, M2, M3]`. Therefore, what we do now is * to slice off the method type parameters and append them to * the type parameters from the type that the receiver is * mapped to. */ let ccx = bcx.ccx(); let vtable_key = match node { ExprId(id) => MethodCall::expr(id), MethodCall(method_call) => method_call }; let node_substs = node_id_substs(bcx, node); let node_vtables = node_vtables(bcx, vtable_key); debug!("rcvr_substs={:?}", rcvr_substs.repr(ccx.tcx())); debug!("node_substs={:?}", node_substs.repr(ccx.tcx())); // Break apart the type parameters from the node and type // parameters from the receiver. let (_, _, node_method) = node_substs.types.split(); let (rcvr_type, rcvr_self, rcvr_method) = rcvr_substs.types.clone().split(); assert!(rcvr_method.is_empty()); let ty_substs = subst::Substs { regions: subst::ErasedRegions, types: subst::VecPerParamSpace::new(rcvr_type, rcvr_self, node_method) }; // Now do the same work for the vtables. let (rcvr_type, rcvr_self, rcvr_method) = rcvr_origins.split(); let (_, _, node_method) = node_vtables.split(); assert!(rcvr_method.is_empty()); let vtables = subst::VecPerParamSpace::new(rcvr_type, rcvr_self, node_method); (ty_substs, vtables) } fn trans_trait_callee<'a>(bcx: &'a Block<'a>, method_ty: ty::t, n_method: uint, self_expr: &ast::Expr, arg_cleanup_scope: cleanup::ScopeId) -> Callee<'a> { /*! * Create a method callee where the method is coming from a trait * object (e.g., Box type). In this case, we must pull the fn * pointer out of the vtable that is packaged up with the object. * Objects are represented as a pair, so we first evaluate the self * expression and then extract the self data and vtable out of the * pair. */ let _icx = push_ctxt("meth::trans_trait_callee"); let mut bcx = bcx; // Translate self_datum and take ownership of the value by // converting to an rvalue. let self_datum = unpack_datum!( bcx, expr::trans(bcx, self_expr)); let llval = if ty::type_needs_drop(bcx.tcx(), self_datum.ty) { let self_datum = unpack_datum!( bcx, self_datum.to_rvalue_datum(bcx, "trait_callee")); // Convert to by-ref since `trans_trait_callee_from_llval` wants it // that way. let self_datum = unpack_datum!( bcx, self_datum.to_ref_datum(bcx)); // Arrange cleanup in case something should go wrong before the // actual call occurs. self_datum.add_clean(bcx.fcx, arg_cleanup_scope) } else { // We don't have to do anything about cleanups for &Trait and &mut Trait. assert!(self_datum.kind.is_by_ref()); self_datum.val }; trans_trait_callee_from_llval(bcx, method_ty, n_method, llval) } pub fn trans_trait_callee_from_llval<'a>(bcx: &'a Block<'a>, callee_ty: ty::t, n_method: uint, llpair: ValueRef) -> Callee<'a> { /*! * Same as `trans_trait_callee()` above, except that it is given * a by-ref pointer to the object pair. */ let _icx = push_ctxt("meth::trans_trait_callee"); let ccx = bcx.ccx(); // Load the data pointer from the object. debug!("(translating trait callee) loading second index from pair"); let llboxptr = GEPi(bcx, llpair, [0u, abi::trt_field_box]); let llbox = Load(bcx, llboxptr); let llself = PointerCast(bcx, llbox, Type::i8p(ccx)); // Load the function from the vtable and cast it to the expected type. debug!("(translating trait callee) loading method"); // Replace the self type (&Self or Box) with an opaque pointer. let llcallee_ty = match ty::get(callee_ty).sty { ty::ty_bare_fn(ref f) if f.abi == Rust || f.abi == RustCall => { type_of_rust_fn(ccx, Some(Type::i8p(ccx)), f.sig.inputs.slice_from(1), f.sig.output, f.abi) } _ => { ccx.sess().bug("meth::trans_trait_callee given non-bare-rust-fn"); } }; let llvtable = Load(bcx, PointerCast(bcx, GEPi(bcx, llpair, [0u, abi::trt_field_vtable]), Type::vtable(ccx).ptr_to().ptr_to())); let mptr = Load(bcx, GEPi(bcx, llvtable, [0u, n_method + 1])); let mptr = PointerCast(bcx, mptr, llcallee_ty.ptr_to()); return Callee { bcx: bcx, data: TraitItem(MethodData { llfn: mptr, llself: llself, }) }; } /// Creates the self type and (fake) callee substitutions for an unboxed /// closure with the given def ID. The static region and type parameters are /// lies, but we're in trans so it doesn't matter. fn get_callee_substitutions_for_unboxed_closure(bcx: &Block, def_id: ast::DefId) -> subst::Substs { let self_ty = ty::mk_unboxed_closure(bcx.tcx(), def_id, ty::ReStatic); subst::Substs::erased( VecPerParamSpace::new(Vec::new(), vec![ ty::mk_rptr(bcx.tcx(), ty::ReStatic, ty::mt { ty: self_ty, mutbl: ast::MutMutable, }) ], Vec::new())) } /// Creates a returns a dynamic vtable for the given type and vtable origin. /// This is used only for objects. fn get_vtable(bcx: &Block, self_ty: ty::t, origins: typeck::vtable_param_res) -> ValueRef { debug!("get_vtable(self_ty={}, origins={})", self_ty.repr(bcx.tcx()), origins.repr(bcx.tcx())); let ccx = bcx.ccx(); let _icx = push_ctxt("meth::get_vtable"); // Check the cache. let hash_id = (self_ty, monomorphize::make_vtable_id(ccx, origins.get(0))); match ccx.vtables.borrow().find(&hash_id) { Some(&val) => { return val } None => { } } // Not in the cache. Actually build it. let methods = origins.move_iter().flat_map(|origin| { match origin { typeck::vtable_static(id, substs, sub_vtables) => { emit_vtable_methods(bcx, id, substs, sub_vtables).move_iter() } typeck::vtable_unboxed_closure(closure_def_id) => { let callee_substs = get_callee_substitutions_for_unboxed_closure( bcx, closure_def_id); let mut llfn = trans_fn_ref_with_vtables( bcx, closure_def_id, ExprId(0), callee_substs.clone(), VecPerParamSpace::empty()); { let unboxed_closures = bcx.tcx() .unboxed_closures .borrow(); let closure_info = unboxed_closures.find(&closure_def_id) .expect("get_vtable(): didn't find \ unboxed closure"); if closure_info.kind == ty::FnOnceUnboxedClosureKind { // Untuple the arguments and create an unboxing shim. let mut new_inputs = vec![ ty::mk_unboxed_closure(bcx.tcx(), closure_def_id, ty::ReStatic) ]; match ty::get(closure_info.closure_type .sig .inputs[0]).sty { ty::ty_tup(ref elements) => { for element in elements.iter() { new_inputs.push(*element) } } ty::ty_nil => {} _ => { bcx.tcx().sess.bug("get_vtable(): closure \ type wasn't a tuple") } } let closure_type = ty::BareFnTy { fn_style: closure_info.closure_type.fn_style, abi: Rust, sig: ty::FnSig { binder_id: closure_info.closure_type .sig .binder_id, inputs: new_inputs, output: closure_info.closure_type.sig.output, variadic: false, }, }; debug!("get_vtable(): closure type is {}", closure_type.repr(bcx.tcx())); llfn = trans_unboxing_shim(bcx, llfn, &closure_type, closure_def_id, callee_substs); } } (vec!(llfn)).move_iter() } _ => ccx.sess().bug("get_vtable: expected a static origin"), } }); // Generate a destructor for the vtable. let drop_glue = glue::get_drop_glue(ccx, self_ty); let vtable = make_vtable(ccx, drop_glue, methods); ccx.vtables.borrow_mut().insert(hash_id, vtable); vtable } /// Helper function to declare and initialize the vtable. pub fn make_vtable>(ccx: &CrateContext, drop_glue: ValueRef, ptrs: I) -> ValueRef { let _icx = push_ctxt("meth::make_vtable"); let components: Vec<_> = Some(drop_glue).move_iter().chain(ptrs).collect(); unsafe { let tbl = C_struct(ccx, components.as_slice(), false); let sym = token::gensym("vtable"); let vt_gvar = format!("vtable{}", sym.uint()).with_c_str(|buf| { llvm::LLVMAddGlobal(ccx.llmod, val_ty(tbl).to_ref(), buf) }); llvm::LLVMSetInitializer(vt_gvar, tbl); llvm::LLVMSetGlobalConstant(vt_gvar, llvm::True); llvm::SetLinkage(vt_gvar, llvm::InternalLinkage); vt_gvar } } fn emit_vtable_methods(bcx: &Block, impl_id: ast::DefId, substs: subst::Substs, vtables: typeck::vtable_res) -> Vec { let ccx = bcx.ccx(); let tcx = ccx.tcx(); let trt_id = match ty::impl_trait_ref(tcx, impl_id) { Some(t_id) => t_id.def_id, None => ccx.sess().bug("make_impl_vtable: don't know how to \ make a vtable for a type impl!") }; ty::populate_implementations_for_trait_if_necessary(bcx.tcx(), trt_id); let trait_item_def_ids = ty::trait_item_def_ids(tcx, trt_id); trait_item_def_ids.iter().map(|method_def_id| { let method_def_id = method_def_id.def_id(); let ident = ty::impl_or_trait_item(tcx, method_def_id).ident(); // The substitutions we have are on the impl, so we grab // the method type from the impl to substitute into. let m_id = method_with_name(ccx, impl_id, ident.name); let ti = ty::impl_or_trait_item(tcx, m_id); match ti { ty::MethodTraitItem(m) => { debug!("(making impl vtable) emitting method {} at subst {}", m.repr(tcx), substs.repr(tcx)); if m.generics.has_type_params(subst::FnSpace) || ty::type_has_self(ty::mk_bare_fn(tcx, m.fty.clone())) { debug!("(making impl vtable) method has self or type \ params: {}", token::get_ident(ident)); C_null(Type::nil(ccx).ptr_to()) } else { let mut fn_ref = trans_fn_ref_with_vtables( bcx, m_id, ExprId(0), substs.clone(), vtables.clone()); if m.explicit_self == ty::ByValueExplicitSelfCategory { fn_ref = trans_unboxing_shim(bcx, fn_ref, &m.fty, m_id, substs.clone()); } fn_ref } } } }).collect() } pub fn trans_trait_cast<'a>(bcx: &'a Block<'a>, datum: Datum, id: ast::NodeId, dest: expr::Dest) -> &'a Block<'a> { /*! * Generates the code to convert from a pointer (`Box`, `&T`, etc) * into an object (`Box`, `&Trait`, etc). This means creating a * pair where the first word is the vtable and the second word is * the pointer. */ let mut bcx = bcx; let _icx = push_ctxt("meth::trans_cast"); let lldest = match dest { Ignore => { return datum.clean(bcx, "trait_cast", id); } SaveIn(dest) => dest }; let ccx = bcx.ccx(); let v_ty = datum.ty; let llbox_ty = type_of(bcx.ccx(), datum.ty); // Store the pointer into the first half of pair. let mut llboxdest = GEPi(bcx, lldest, [0u, abi::trt_field_box]); llboxdest = PointerCast(bcx, llboxdest, llbox_ty.ptr_to()); bcx = datum.store_to(bcx, llboxdest); // Store the vtable into the second half of pair. let origins = { let vtable_map = ccx.tcx.vtable_map.borrow(); // This trait cast might be because of implicit coercion let method_call = match ccx.tcx.adjustments.borrow().find(&id) { Some(&ty::AutoObject(..)) => MethodCall::autoobject(id), _ => MethodCall::expr(id) }; let vres = vtable_map.get(&method_call).get_self().unwrap(); resolve_param_vtables_under_param_substs(ccx.tcx(), bcx.fcx.param_substs, vres) }; let vtable = get_vtable(bcx, v_ty, origins); let llvtabledest = GEPi(bcx, lldest, [0u, abi::trt_field_vtable]); let llvtabledest = PointerCast(bcx, llvtabledest, val_ty(vtable).ptr_to()); Store(bcx, vtable, llvtabledest); bcx }