//! A type representing either success or failure use cmp::Eq; use either::Either; /// The result type enum Result { /// Contains the successful result value Ok(T), /// Contains the error value Err(U) } /** * Get the value out of a successful result * * # Failure * * If the result is an error */ pure fn get(res: Result) -> T { match res { Ok(t) => t, Err(the_err) => unsafe { fail fmt!("get called on error result: %?", the_err) } } } /** * Get a reference to the value out of a successful result * * # Failure * * If the result is an error */ pure fn get_ref(res: &a/Result) -> &a/T { match *res { Ok(ref t) => t, Err(ref the_err) => unsafe { fail fmt!("get_ref called on error result: %?", the_err) } } } /** * Get the value out of an error result * * # Failure * * If the result is not an error */ pure fn get_err(res: Result) -> U { match res { Err(u) => u, Ok(_) => fail ~"get_err called on ok result" } } /// Returns true if the result is `ok` pure fn is_ok(res: Result) -> bool { match res { Ok(_) => true, Err(_) => false } } /// Returns true if the result is `err` pure fn is_err(res: Result) -> bool { !is_ok(res) } /** * Convert to the `either` type * * `ok` result variants are converted to `either::right` variants, `err` * result variants are converted to `either::left`. */ pure fn to_either(res: Result) -> Either { match res { Ok(res) => either::Right(res), Err(fail_) => either::Left(fail_) } } /** * Call a function based on a previous result * * If `res` is `ok` then the value is extracted and passed to `op` whereupon * `op`s result is returned. if `res` is `err` then it is immediately * returned. This function can be used to compose the results of two * functions. * * Example: * * let res = chain(read_file(file)) { |buf| * ok(parse_bytes(buf)) * } */ fn chain(res: Result, op: fn(T) -> Result) -> Result { match res { Ok(t) => op(t), Err(e) => Err(e) } } /** * Call a function based on a previous result * * If `res` is `err` then the value is extracted and passed to `op` * whereupon `op`s result is returned. if `res` is `ok` then it is * immediately returned. This function can be used to pass through a * successful result while handling an error. */ fn chain_err( res: Result, op: fn(V) -> Result) -> Result { match res { Ok(t) => Ok(t), Err(v) => op(v) } } /** * Call a function based on a previous result * * If `res` is `ok` then the value is extracted and passed to `op` whereupon * `op`s result is returned. if `res` is `err` then it is immediately * returned. This function can be used to compose the results of two * functions. * * Example: * * iter(read_file(file)) { |buf| * print_buf(buf) * } */ fn iter(res: Result, f: fn(T)) { match res { Ok(t) => f(t), Err(_) => () } } /** * Call a function based on a previous result * * If `res` is `err` then the value is extracted and passed to `op` whereupon * `op`s result is returned. if `res` is `ok` then it is immediately returned. * This function can be used to pass through a successful result while * handling an error. */ fn iter_err(res: Result, f: fn(E)) { match res { Ok(_) => (), Err(e) => f(e) } } /** * Call a function based on a previous result * * If `res` is `ok` then the value is extracted and passed to `op` whereupon * `op`s result is wrapped in `ok` and returned. if `res` is `err` then it is * immediately returned. This function can be used to compose the results of * two functions. * * Example: * * let res = map(read_file(file)) { |buf| * parse_bytes(buf) * } */ fn map(res: Result, op: fn(T) -> U) -> Result { match res { Ok(t) => Ok(op(t)), Err(e) => Err(e) } } /** * Call a function based on a previous result * * If `res` is `err` then the value is extracted and passed to `op` whereupon * `op`s result is wrapped in an `err` and returned. if `res` is `ok` then it * is immediately returned. This function can be used to pass through a * successful result while handling an error. */ fn map_err(res: Result, op: fn(E) -> F) -> Result { match res { Ok(t) => Ok(t), Err(e) => Err(op(e)) } } impl Result { fn is_ok() -> bool { is_ok(self) } fn is_err() -> bool { is_err(self) } fn iter(f: fn(T)) { match self { Ok(t) => f(t), Err(_) => () } } fn iter_err(f: fn(E)) { match self { Ok(_) => (), Err(e) => f(e) } } } impl Result { fn get() -> T { get(self) } fn map_err(op: fn(E) -> F) -> Result { match self { Ok(t) => Ok(t), Err(e) => Err(op(e)) } } } impl Result { fn get_err() -> E { get_err(self) } fn map(op: fn(T) -> U) -> Result { match self { Ok(t) => Ok(op(t)), Err(e) => Err(e) } } } impl Result { fn chain(op: fn(T) -> Result) -> Result { chain(self, op) } fn chain_err(op: fn(E) -> Result) -> Result { chain_err(self, op) } } /** * Maps each element in the vector `ts` using the operation `op`. Should an * error occur, no further mappings are performed and the error is returned. * Should no error occur, a vector containing the result of each map is * returned. * * Here is an example which increments every integer in a vector, * checking for overflow: * * fn inc_conditionally(x: uint) -> result { * if x == uint::max_value { return err("overflow"); } * else { return ok(x+1u); } * } * map(~[1u, 2u, 3u], inc_conditionally).chain {|incd| * assert incd == ~[2u, 3u, 4u]; * } */ fn map_vec( ts: &[T], op: fn((&T)) -> Result) -> Result<~[V],U> { let mut vs: ~[V] = ~[]; vec::reserve(vs, vec::len(ts)); for vec::each(ts) |t| { match op(t) { Ok(v) => vec::push(vs, v), Err(u) => return Err(u) } } return Ok(move vs); } fn map_opt( o_t: Option, op: fn(T) -> Result) -> Result,U> { match o_t { None => Ok(None), Some(t) => match op(t) { Ok(v) => Ok(Some(v)), Err(e) => Err(e) } } } /** * Same as map, but it operates over two parallel vectors. * * A precondition is used here to ensure that the vectors are the same * length. While we do not often use preconditions in the standard * library, a precondition is used here because result::t is generally * used in 'careful' code contexts where it is both appropriate and easy * to accommodate an error like the vectors being of different lengths. */ fn map_vec2(ss: &[S], ts: &[T], op: fn(S,T) -> Result) -> Result<~[V],U> { assert vec::same_length(ss, ts); let n = vec::len(ts); let mut vs = ~[]; vec::reserve(vs, n); let mut i = 0u; while i < n { match op(ss[i],ts[i]) { Ok(v) => vec::push(vs, v), Err(u) => return Err(u) } i += 1u; } return Ok(move vs); } /** * Applies op to the pairwise elements from `ss` and `ts`, aborting on * error. This could be implemented using `map2()` but it is more efficient * on its own as no result vector is built. */ fn iter_vec2(ss: &[S], ts: &[T], op: fn(S,T) -> Result<(),U>) -> Result<(),U> { assert vec::same_length(ss, ts); let n = vec::len(ts); let mut i = 0u; while i < n { match op(ss[i],ts[i]) { Ok(()) => (), Err(u) => return Err(u) } i += 1u; } return Ok(()); } /// Unwraps a result, assuming it is an `ok(T)` fn unwrap(+res: Result) -> T { match move res { Ok(move t) => move t, Err(_) => fail ~"unwrap called on an err result" } } /// Unwraps a result, assuming it is an `err(U)` fn unwrap_err(+res: Result) -> U { match move res { Err(move u) => move u, Ok(_) => fail ~"unwrap called on an ok result" } } #[cfg(stage0)] impl Result : Eq { pure fn eq(&&other: Result) -> bool { match self { Ok(e0a) => { match other { Ok(e0b) => e0a == e0b, _ => false } } Err(e0a) => { match other { Err(e0b) => e0a == e0b, _ => false } } } } pure fn ne(&&other: Result) -> bool { !self.eq(other) } } #[cfg(stage1)] #[cfg(stage2)] impl Result : Eq { pure fn eq(other: &Result) -> bool { match self { Ok(e0a) => { match (*other) { Ok(e0b) => e0a == e0b, _ => false } } Err(e0a) => { match (*other) { Err(e0b) => e0a == e0b, _ => false } } } } pure fn ne(other: &Result) -> bool { !self.eq(other) } } #[cfg(test)] #[allow(non_implicitly_copyable_typarams)] mod tests { fn op1() -> result::Result { result::Ok(666) } fn op2(&&i: int) -> result::Result { result::Ok(i as uint + 1u) } fn op3() -> result::Result { result::Err(~"sadface") } #[test] fn chain_success() { assert get(chain(op1(), op2)) == 667u; } #[test] fn chain_failure() { assert get_err(chain(op3(), op2)) == ~"sadface"; } #[test] fn test_impl_iter() { let mut valid = false; Ok::<~str, ~str>(~"a").iter(|_x| valid = true); assert valid; Err::<~str, ~str>(~"b").iter(|_x| valid = false); assert valid; } #[test] fn test_impl_iter_err() { let mut valid = true; Ok::<~str, ~str>(~"a").iter_err(|_x| valid = false); assert valid; valid = false; Err::<~str, ~str>(~"b").iter_err(|_x| valid = true); assert valid; } #[test] fn test_impl_map() { assert Ok::<~str, ~str>(~"a").map(|_x| ~"b") == Ok(~"b"); assert Err::<~str, ~str>(~"a").map(|_x| ~"b") == Err(~"a"); } #[test] fn test_impl_map_err() { assert Ok::<~str, ~str>(~"a").map_err(|_x| ~"b") == Ok(~"a"); assert Err::<~str, ~str>(~"a").map_err(|_x| ~"b") == Err(~"b"); } }