#![allow(non_camel_case_types, non_snake_case)] //! Code that is useful in various codegen modules. use crate::llvm::{self, True, False, Bool, BasicBlock, OperandBundleDef}; use crate::abi; use crate::consts; use crate::type_::Type; use crate::type_of::LayoutLlvmExt; use crate::value::Value; use rustc_codegen_ssa::traits::*; use crate::consts::const_alloc_to_llvm; use rustc::ty::layout::{HasDataLayout, LayoutOf, self, TyLayout, Size}; use rustc::mir::interpret::{Scalar, GlobalAlloc, Allocation}; use rustc_codegen_ssa::mir::place::PlaceRef; use libc::{c_uint, c_char}; use syntax::symbol::Symbol; use syntax::ast::Mutability; pub use crate::context::CodegenCx; /* * A note on nomenclature of linking: "extern", "foreign", and "upcall". * * An "extern" is an LLVM symbol we wind up emitting an undefined external * reference to. This means "we don't have the thing in this compilation unit, * please make sure you link it in at runtime". This could be a reference to * C code found in a C library, or rust code found in a rust crate. * * Most "externs" are implicitly declared (automatically) as a result of a * user declaring an extern _module_ dependency; this causes the rust driver * to locate an extern crate, scan its compilation metadata, and emit extern * declarations for any symbols used by the declaring crate. * * A "foreign" is an extern that references C (or other non-rust ABI) code. * There is no metadata to scan for extern references so in these cases either * a header-digester like bindgen, or manual function prototypes, have to * serve as declarators. So these are usually given explicitly as prototype * declarations, in rust code, with ABI attributes on them noting which ABI to * link via. * * An "upcall" is a foreign call generated by the compiler (not corresponding * to any user-written call in the code) into the runtime library, to perform * some helper task such as bringing a task to life, allocating memory, etc. * */ /// A structure representing an active landing pad for the duration of a basic /// block. /// /// Each `Block` may contain an instance of this, indicating whether the block /// is part of a landing pad or not. This is used to make decision about whether /// to emit `invoke` instructions (e.g., in a landing pad we don't continue to /// use `invoke`) and also about various function call metadata. /// /// For GNU exceptions (`landingpad` + `resume` instructions) this structure is /// just a bunch of `None` instances (not too interesting), but for MSVC /// exceptions (`cleanuppad` + `cleanupret` instructions) this contains data. /// When inside of a landing pad, each function call in LLVM IR needs to be /// annotated with which landing pad it's a part of. This is accomplished via /// the `OperandBundleDef` value created for MSVC landing pads. pub struct Funclet<'ll> { cleanuppad: &'ll Value, operand: OperandBundleDef<'ll>, } impl Funclet<'ll> { pub fn new(cleanuppad: &'ll Value) -> Self { Funclet { cleanuppad, operand: OperandBundleDef::new("funclet", &[cleanuppad]), } } pub fn cleanuppad(&self) -> &'ll Value { self.cleanuppad } pub fn bundle(&self) -> &OperandBundleDef<'ll> { &self.operand } } impl BackendTypes for CodegenCx<'ll, 'tcx> { type Value = &'ll Value; type FuncId = &'ll Value; type BasicBlock = &'ll BasicBlock; type Type = &'ll Type; type Funclet = Funclet<'ll>; type DIScope = &'ll llvm::debuginfo::DIScope; } impl CodegenCx<'ll, 'tcx> { pub fn const_fat_ptr( &self, ptr: &'ll Value, meta: &'ll Value ) -> &'ll Value { assert_eq!(abi::FAT_PTR_ADDR, 0); assert_eq!(abi::FAT_PTR_EXTRA, 1); self.const_struct(&[ptr, meta], false) } pub fn const_array(&self, ty: &'ll Type, elts: &[&'ll Value]) -> &'ll Value { unsafe { return llvm::LLVMConstArray(ty, elts.as_ptr(), elts.len() as c_uint); } } pub fn const_vector(&self, elts: &[&'ll Value]) -> &'ll Value { unsafe { return llvm::LLVMConstVector(elts.as_ptr(), elts.len() as c_uint); } } pub fn const_bytes(&self, bytes: &[u8]) -> &'ll Value { bytes_in_context(self.llcx, bytes) } fn const_cstr( &self, s: Symbol, null_terminated: bool, ) -> &'ll Value { unsafe { if let Some(&llval) = self.const_cstr_cache.borrow().get(&s) { return llval; } let s_str = s.as_str(); let sc = llvm::LLVMConstStringInContext(self.llcx, s_str.as_ptr() as *const c_char, s_str.len() as c_uint, !null_terminated as Bool); let sym = self.generate_local_symbol_name("str"); let g = self.define_global(&sym[..], self.val_ty(sc)).unwrap_or_else(||{ bug!("symbol `{}` is already defined", sym); }); llvm::LLVMSetInitializer(g, sc); llvm::LLVMSetGlobalConstant(g, True); llvm::LLVMRustSetLinkage(g, llvm::Linkage::InternalLinkage); self.const_cstr_cache.borrow_mut().insert(s, g); g } } pub fn const_str_slice(&self, s: Symbol) -> &'ll Value { let len = s.as_str().len(); let cs = consts::ptrcast(self.const_cstr(s, false), self.type_ptr_to(self.layout_of(self.tcx.mk_str()).llvm_type(self))); self.const_fat_ptr(cs, self.const_usize(len as u64)) } pub fn const_get_elt(&self, v: &'ll Value, idx: u64) -> &'ll Value { unsafe { assert_eq!(idx as c_uint as u64, idx); let us = &[idx as c_uint]; let r = llvm::LLVMConstExtractValue(v, us.as_ptr(), us.len() as c_uint); debug!("const_get_elt(v={:?}, idx={}, r={:?})", v, idx, r); r } } } impl ConstMethods<'tcx> for CodegenCx<'ll, 'tcx> { fn const_null(&self, t: &'ll Type) -> &'ll Value { unsafe { llvm::LLVMConstNull(t) } } fn const_undef(&self, t: &'ll Type) -> &'ll Value { unsafe { llvm::LLVMGetUndef(t) } } fn const_int(&self, t: &'ll Type, i: i64) -> &'ll Value { unsafe { llvm::LLVMConstInt(t, i as u64, True) } } fn const_uint(&self, t: &'ll Type, i: u64) -> &'ll Value { unsafe { llvm::LLVMConstInt(t, i, False) } } fn const_uint_big(&self, t: &'ll Type, u: u128) -> &'ll Value { unsafe { let words = [u as u64, (u >> 64) as u64]; llvm::LLVMConstIntOfArbitraryPrecision(t, 2, words.as_ptr()) } } fn const_bool(&self, val: bool) -> &'ll Value { self.const_uint(self.type_i1(), val as u64) } fn const_i32(&self, i: i32) -> &'ll Value { self.const_int(self.type_i32(), i as i64) } fn const_u32(&self, i: u32) -> &'ll Value { self.const_uint(self.type_i32(), i as u64) } fn const_u64(&self, i: u64) -> &'ll Value { self.const_uint(self.type_i64(), i) } fn const_usize(&self, i: u64) -> &'ll Value { let bit_size = self.data_layout().pointer_size.bits(); if bit_size < 64 { // make sure it doesn't overflow assert!(i < (1< &'ll Value { self.const_uint(self.type_i8(), i as u64) } fn const_real(&self, t: &'ll Type, val: f64) -> &'ll Value { unsafe { llvm::LLVMConstReal(t, val) } } fn const_struct( &self, elts: &[&'ll Value], packed: bool ) -> &'ll Value { struct_in_context(self.llcx, elts, packed) } fn const_to_opt_uint(&self, v: &'ll Value) -> Option { if is_const_integral(v) { unsafe { Some(llvm::LLVMConstIntGetZExtValue(v)) } } else { None } } fn const_to_opt_u128(&self, v: &'ll Value, sign_ext: bool) -> Option { unsafe { if is_const_integral(v) { let (mut lo, mut hi) = (0u64, 0u64); let success = llvm::LLVMRustConstInt128Get(v, sign_ext, &mut hi, &mut lo); if success { Some(hi_lo_to_u128(lo, hi)) } else { None } } else { None } } } fn scalar_to_backend( &self, cv: Scalar, layout: &layout::Scalar, llty: &'ll Type, ) -> &'ll Value { let bitsize = if layout.is_bool() { 1 } else { layout.value.size(self).bits() }; match cv { Scalar::Raw { size: 0, .. } => { assert_eq!(0, layout.value.size(self).bytes()); self.const_undef(self.type_ix(0)) }, Scalar::Raw { data, size } => { assert_eq!(size as u64, layout.value.size(self).bytes()); let llval = self.const_uint_big(self.type_ix(bitsize), data); if layout.value == layout::Pointer { unsafe { llvm::LLVMConstIntToPtr(llval, llty) } } else { self.const_bitcast(llval, llty) } }, Scalar::Ptr(ptr) => { let alloc_kind = self.tcx.alloc_map.lock().get(ptr.alloc_id); let base_addr = match alloc_kind { Some(GlobalAlloc::Memory(alloc)) => { let init = const_alloc_to_llvm(self, alloc); if alloc.mutability == Mutability::Mutable { self.static_addr_of_mut(init, alloc.align, None) } else { self.static_addr_of(init, alloc.align, None) } } Some(GlobalAlloc::Function(fn_instance)) => { self.get_fn(fn_instance) } Some(GlobalAlloc::Static(def_id)) => { assert!(self.tcx.is_static(def_id)); self.get_static(def_id) } None => bug!("missing allocation {:?}", ptr.alloc_id), }; let llval = unsafe { llvm::LLVMConstInBoundsGEP( self.const_bitcast(base_addr, self.type_i8p()), &self.const_usize(ptr.offset.bytes()), 1, ) }; if layout.value != layout::Pointer { unsafe { llvm::LLVMConstPtrToInt(llval, llty) } } else { self.const_bitcast(llval, llty) } } } } fn from_const_alloc( &self, layout: TyLayout<'tcx>, alloc: &Allocation, offset: Size, ) -> PlaceRef<'tcx, &'ll Value> { assert_eq!(alloc.align, layout.align.abi); let llty = self.type_ptr_to(layout.llvm_type(self)); let llval = if layout.size == Size::ZERO { let llval = self.const_usize(alloc.align.bytes()); unsafe { llvm::LLVMConstIntToPtr(llval, llty) } } else { let init = const_alloc_to_llvm(self, alloc); let base_addr = self.static_addr_of(init, alloc.align, None); let llval = unsafe { llvm::LLVMConstInBoundsGEP( self.const_bitcast(base_addr, self.type_i8p()), &self.const_usize(offset.bytes()), 1, )}; self.const_bitcast(llval, llty) }; PlaceRef::new_sized(llval, layout) } fn const_ptrcast(&self, val: &'ll Value, ty: &'ll Type) -> &'ll Value { consts::ptrcast(val, ty) } } pub fn val_ty(v: &'ll Value) -> &'ll Type { unsafe { llvm::LLVMTypeOf(v) } } pub fn bytes_in_context(llcx: &'ll llvm::Context, bytes: &[u8]) -> &'ll Value { unsafe { let ptr = bytes.as_ptr() as *const c_char; return llvm::LLVMConstStringInContext(llcx, ptr, bytes.len() as c_uint, True); } } pub fn struct_in_context( llcx: &'a llvm::Context, elts: &[&'a Value], packed: bool, ) -> &'a Value { unsafe { llvm::LLVMConstStructInContext(llcx, elts.as_ptr(), elts.len() as c_uint, packed as Bool) } } #[inline] fn hi_lo_to_u128(lo: u64, hi: u64) -> u128 { ((hi as u128) << 64) | (lo as u128) } fn is_const_integral(v: &'ll Value) -> bool { unsafe { llvm::LLVMIsAConstantInt(v).is_some() } }