use rustc::lint::*; use rustc_front::hir::*; use syntax::ast::Name; use syntax::ptr::P; use syntax::codemap::{Span, Spanned}; use rustc::middle::def_id::DefId; use rustc::middle::ty::{self, MethodTraitItemId, ImplOrTraitItemId}; use syntax::ast::{Lit, Lit_}; use utils::{get_item_name, snippet, span_lint, walk_ptrs_ty}; /// **What it does:** This lint checks for getting the length of something via `.len()` just to compare to zero, and suggests using `.is_empty()` where applicable. /// /// **Why is this bad?** Some structures can answer `.is_empty()` much faster than calculating their length. So it is good to get into the habit of using `.is_empty()`, and having it is cheap. Besides, it makes the intent clearer than a comparison. /// /// **Known problems:** None /// /// **Example:** `if x.len() == 0 { .. }` declare_lint! { pub LEN_ZERO, Warn, "checking `.len() == 0` or `.len() > 0` (or similar) when `.is_empty()` \ could be used instead" } /// **What it does:** This lint checks for items that implement `.len()` but not `.is_empty()`. /// /// **Why is this bad?** It is good custom to have both methods, because for some data structures, asking about the length will be a costly operation, whereas `.is_empty()` can usually answer in constant time. Also it used to lead to false positives on the [`len_zero`](#len_zero) lint – currently that lint will ignore such entities. /// /// **Known problems:** None /// /// **Example:** /// ``` /// impl X { /// fn len(&self) -> usize { .. } /// } /// ``` declare_lint! { pub LEN_WITHOUT_IS_EMPTY, Warn, "traits and impls that have `.len()` but not `.is_empty()`" } #[derive(Copy,Clone)] pub struct LenZero; impl LintPass for LenZero { fn get_lints(&self) -> LintArray { lint_array!(LEN_ZERO, LEN_WITHOUT_IS_EMPTY) } } impl LateLintPass for LenZero { fn check_item(&mut self, cx: &LateContext, item: &Item) { match item.node { ItemTrait(_, _, _, ref trait_items) => check_trait_items(cx, item, trait_items), ItemImpl(_, _, _, None, _, ref impl_items) => check_impl_items(cx, item, impl_items), _ => (), } } fn check_expr(&mut self, cx: &LateContext, expr: &Expr) { if let ExprBinary(Spanned{node: cmp, ..}, ref left, ref right) = expr.node { match cmp { BiEq => check_cmp(cx, expr.span, left, right, ""), BiGt | BiNe => check_cmp(cx, expr.span, left, right, "!"), _ => (), } } } } fn check_trait_items(cx: &LateContext, item: &Item, trait_items: &[TraitItem]) { fn is_named_self(item: &TraitItem, name: &str) -> bool { item.name.as_str() == name && if let MethodTraitItem(ref sig, _) = item.node { is_self_sig(sig) } else { false } } if !trait_items.iter().any(|i| is_named_self(i, "is_empty")) { // span_lint(cx, LEN_WITHOUT_IS_EMPTY, item.span, &format!("trait {}", item.ident)); for i in trait_items { if is_named_self(i, "len") { span_lint(cx, LEN_WITHOUT_IS_EMPTY, i.span, &format!("trait `{}` has a `.len(_: &Self)` method, but no `.is_empty(_: &Self)` method. \ Consider adding one", item.name)); } } } } fn check_impl_items(cx: &LateContext, item: &Item, impl_items: &[ImplItem]) { fn is_named_self(item: &ImplItem, name: &str) -> bool { item.name.as_str() == name && if let ImplItemKind::Method(ref sig, _) = item.node { is_self_sig(sig) } else { false } } if !impl_items.iter().any(|i| is_named_self(i, "is_empty")) { for i in impl_items { if is_named_self(i, "len") { let s = i.span; span_lint(cx, LEN_WITHOUT_IS_EMPTY, Span { lo: s.lo, hi: s.lo, expn_id: s.expn_id, }, &format!("item `{}` has a `.len(_: &Self)` method, but no `.is_empty(_: &Self)` method. \ Consider adding one", item.name)); return; } } } } fn is_self_sig(sig: &MethodSig) -> bool { if let SelfStatic = sig.explicit_self.node { false } else { sig.decl.inputs.len() == 1 } } fn check_cmp(cx: &LateContext, span: Span, left: &Expr, right: &Expr, op: &str) { // check if we are in an is_empty() method if let Some(name) = get_item_name(cx, left) { if name.as_str() == "is_empty" { return; } } match (&left.node, &right.node) { (&ExprLit(ref lit), &ExprMethodCall(ref method, _, ref args)) => { check_len_zero(cx, span, &method.node, args, lit, op) } (&ExprMethodCall(ref method, _, ref args), &ExprLit(ref lit)) => { check_len_zero(cx, span, &method.node, args, lit, op) } _ => (), } } fn check_len_zero(cx: &LateContext, span: Span, name: &Name, args: &[P], lit: &Lit, op: &str) { if let Spanned{node: Lit_::LitInt(0, _), ..} = *lit { if name.as_str() == "len" && args.len() == 1 && has_is_empty(cx, &args[0]) { span_lint(cx, LEN_ZERO, span, &format!("consider replacing the len comparison with `{}{}.is_empty()`", op, snippet(cx, args[0].span, "_"))); } } } /// check if this type has an is_empty method fn has_is_empty(cx: &LateContext, expr: &Expr) -> bool { /// get a ImplOrTraitItem and return true if it matches is_empty(self) fn is_is_empty(cx: &LateContext, id: &ImplOrTraitItemId) -> bool { if let MethodTraitItemId(def_id) = *id { if let ty::MethodTraitItem(ref method) = cx.tcx.impl_or_trait_item(def_id) { method.name.as_str() == "is_empty" && method.fty.sig.skip_binder().inputs.len() == 1 } else { false } } else { false } } /// check the inherent impl's items for an is_empty(self) method fn has_is_empty_impl(cx: &LateContext, id: &DefId) -> bool { let impl_items = cx.tcx.impl_items.borrow(); cx.tcx.inherent_impls.borrow().get(id).map_or(false, |ids| { ids.iter().any(|iid| impl_items.get(iid).map_or(false, |iids| iids.iter().any(|i| is_is_empty(cx, i)))) }) } let ty = &walk_ptrs_ty(&cx.tcx.expr_ty(expr)); match ty.sty { ty::TyTrait(_) => { cx.tcx .trait_item_def_ids .borrow() .get(&ty.ty_to_def_id().expect("trait impl not found")) .map_or(false, |ids| ids.iter().any(|i| is_is_empty(cx, i))) } ty::TyProjection(_) => ty.ty_to_def_id().map_or(false, |id| has_is_empty_impl(cx, &id)), ty::TyEnum(ref id, _) | ty::TyStruct(ref id, _) => has_is_empty_impl(cx, &id.did), ty::TyArray(..) => true, _ => false, } }